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A unified approach of detecting 
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Deciphering the non‑trivial interactions and mechanisms driving the evolution of time‑varying 
complex networks (TVCNs) plays a crucial role in designing optimal control strategies for such 
networks or enhancing their causal predictive capabilities. In this paper, we advance the science of 
TVCNs by providing a mathematical framework through which we can gauge how local changes within 
a complex weighted network affect its global properties. More precisely, we focus on unraveling 
unknown geometric properties of a network and determine its implications on detecting phase 
transitions within the dynamics of a TVCN. In this vein, we aim at elaborating a novel and unified 
approach that can be used to depict the relationship between local interactions in a complex network 
and its global kinetics. We propose a geometric‑inspired framework to characterize the network’s 
state and detect a phase transition between different states, to infer the TVCN’s dynamics. A phase 
of a TVCN is determined by its Forman–Ricci curvature property. Numerical experiments show the 
usefulness of the proposed curvature formalism to detect the transition between phases within 
artificially generated networks. Furthermore, we demonstrate the effectiveness of the proposed 
framework in identifying the phase transition phenomena governing the training and learning 
processes of artificial neural networks. Moreover, we exploit this approach to investigate the phase 
transition phenomena in cellular re‑programming by interpreting the dynamics of Hi‑C matrices as 
TVCNs and observing singularity trends in the curvature network entropy. Finally, we demonstrate 
that this curvature formalism can detect a political change. Specifically, our framework can be applied 
to the US Senate data to detect a political change in the United States of America after the 1994 
election, as discussed by political scientists.

Driven by the implications of complex networks (CNs) on many applications, studying CNs has become of crucial 
importance for designing efficient algorithms to control or predict the behavior of such networks. In plenty of 
real-world applications, CNs are not static but vary in time. For example, these applications range from genetic 
interactions in the human genome, microbial to neuronal interactions in the gut-brain axis, to spread of epidemic 
disease on social  networks1. A practical mathematical model of such networks is to represent them as time-
varying graphs, where the interactions between different entities (nodes) are generally marked as links (edges) 
with the strength of the interactions encoded as weights. For instance, in social networks, an edge between two 
nodes means that there exists a relationship between them, and the weight on that edge encodes the strength of 
similarity or measure of influence. It follows that adding or strengthening interactions between entities in a CN 
has a direct effect on the state of the network under study. More specifically, while the network is evolving in 
time, either by introducing new links or modifying existing weights, the topological properties of the CN may 
change drastically which we characterize as a network phase transition. Therefore, the investigation of the time 
evolution of these local interactions is a key step in understanding the causal predictive power of a network.

Consider a CN (having the same set of nodes) in two different states where this difference can be a conse-
quence of a change in its topological properties. One can treat them analogously without the knowledge of the 
two states. That is why it is imperative to propose an approach to quantify the state of a given network in order 
to analyze it correctly. A similar setup can also be depicted for studying TVCNs where a phase is characterized 
by invariant network characteristics over a time interval. For instance, the time-varying interactions can drive 
the network from one phase to another (such as the emergence of a self-optimization behavior of the network 
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information transfer observed in brain-derived neuronal  networks2). The objective is to decipher non-trivial 
local properties of a network and how these affect its global behavior.

Although, the problem of detecting such a change has attracted the interest of many researchers, it has not 
been extensively studied in previous work especially for weighted CNs.

A framework to estimate change point in time-evolving networks, more specifically, in a sequence of evolving 
Markov random fields was proposed in Ref.3 where they suggested and investigated the statistical properties of 
a maximum penalized pseudo-likelihood estimate. Other works such as in Refs.4  and5 rely on the underlying 
network generating model to perform a maximum likelihood based approach to identify change points. The 
analysis of small-world networks has been performed based on computation of clustering coefficient and average 
path length in Ref.6 to prove the existence of a phase transition which occurs depending on the rewiring prob-
ability parameter. Along the same lines, an alternative approach focused on studying random growing  networks7 
where it claimed that the change in degree distribution depends on the attachment probability parameter. Finally 
in Ref.8, the phase transition detection is based on the core community structure recovery.

In this context, identifying the change between different states of the network (i.e., phase transition) needs 
more sophisticated tools that go beyond the classical ones used for analyzing networks (e.g., degree distribution, 
average path length, modularity, assortativity, clustering, etc.) and being able to detect change points from as 
few snapshots of the TVCNs as possible.

On the other hand, geometric curvature analysis of networks has been recently advocated as a promising can-
didate for network analysis. Similar to curvature in differential geometry, where we use curvature to characterize 
an object by measuring its deviation from being flat, prior  work9–21 analyzed the characteristics of a CN by looking 
at its curvature. Specifically, Ricci curvature (RC) has been introduced to analyze CNs in order to provide better 
intuition about the topology of CNs. In general, RC measures the deviation of a volume of a small geodesic ball in 
a curved Riemannian manifold from being a standard ball in Euclidean  space9,22–24, hence, it measures the growth 
of geodesics’ volumes. In order to provide a more comprehensive topological characterization of TVCNs, the RC 
can identify the higher-order connectivity structure between different agents in a network; it offers mathemati-
cal tools for a better understanding of the non-trivial topological properties of a network across multiple scales. 
Along these lines, Ollivier proposed a discrete version of RC, (i.e., Ollivier-RC) that is related to optimal transport 
theory and allows to investigate discrete spaces like  graphs10,11,25,26. For instance, the Ollivier-RC proved crucial 
to discovering the community structure in weighted and unweighted  CNs18,27. Inspired by Bochner–Laplace 
 operator28, Forman provided a second discrete version of RC for network analysis, (i.e., Forman-RC) which 
proves appealing for the analysis of large CN due to the computational advantages provided by its mathematical 
formula to estimate the localized curvature for each edge. Also, it is worth mentioning that Ollivier-RC directly 
captures the growth of volumes property of RC, while Forman-RC encodes the dispersion of geodesics property 
of RC. Recent works applied these two definitions in different scenarios to analyze  networks10–17. In contrast to 
prior work, we focus on exploiting the Forman-RC concept to uncover the hidden properties of time-varying 
CNs which may inform us about the structural changes or anomalies that may occur.

To the best of our knowledge, detecting a transition from one state to another for TVCNs via a geometric 
based approach has not been considered before. Relying on the Forman-RC concept, we develop a novel algo-
rithm for characterizing and detecting a significant change in the network’s structure. In contrast to prior  work3–8 
which focus on specific network models, community structure algorithmic strategies or other classical network 
metrics, a key ingredient to fully understand the time evolution of CNs is to analyze how scale-dependent inter-
actions between different CN components (i.e., encoded in the weights of the graphs) contribute to localized 
geometric changes in the graph curvature and emerging phase transitions over time. The latter critical point has 
not been considered in most of the previous works. Taking advantage of the geometric analysis of the network’s 
structure, our work can take into account the aforementioned issue; also it can be applied not only to unweighted 
networks but also to weighted networks. This approach provides a more in-depth understanding of the time 
evolution of a CN; hence this formalism can be exploited for developing optimal control schemes required to 
bring one network under study from one phase to another.

The outline of the paper is as follows. First, we provide the results of our work applied to artificiality gener-
ated time-varying networks as well as neural networks. Then, experimental results for real-world dataset are 
provided to validate the presented framework. Next, we consider both the human fibroblasts proliferation dataset 
and the roll call votes of the United States Senate, and we map their dynamics onto the formalism of TVCNs. 
Applying our method, we retrieve the political change after the 1994 election in the USA, marked with the end 
of the “Conservative Coalition” according to political science. Finally, in the “Methods” section we present the 
mathematical model used for developing the proposed framework.

Results
In this work, we consider TVCNs in which the nodes are fixed but with edge weights changing over time. Our 
objective is to be able to provide a multi-scale mathematical framework that can address the following questions: 
When does the topology of a complex network change? What are the different states of the complex network? 
To answer these questions and validate the proposed strategy, we proceed as follows: First, we generate artificial 
complex weighted networks according to a knob variable that can control whether the CN is approaching a ran-
dom or a scale free graph and study how the Forman-RC based algorithm can identify the phase transition as a 
function of network sizes. Second, we use the rewiring probability to interpolate between a regular, a small-world 
and a random graph and demonstrate how the Forman-RC based algorithm can detect the phase transition.

Third, we mimic the phase transition as changes to the network community structure generated from a sto-
chastic block model and observe the detecting capability of the Forman-RC based algorithm. Finally, we apply 
the proposed formalism to two real-world TVCNs (e.g., TVCNs corresponding to cellular reprogramming and 
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political decision making). In all cases, this framework shows interesting results in the sense that it can detect 
the phase transition accurately.

Random growing weighted networks
To investigate the implications of curvature analysis on detecting phase transition phenomena, we first con-
sider a random growing network obeying the Barabási-Albert inspired network  model29. In order to be able to 
interpolate between different classes of networks (network phases) from Erdos–Renyi to scale-free and beyond, 
we modify the connection kernel, thus, the preferential attachment mechanism. Specifically, we generate a 
weighted network in which the preferential attachment probability for a node i in the network is given by the 
parameterized preferential probability pi = kαi /

∑

j k
α
j  , where ki is the degree of node i and α ≥ 0 . Our intuition 

is that the parameterized preferential attachment mechanism plays an important role in defining the structure 
and the high-order topological properties of the Barabási-Albert network. Figure 1 illustrates a TVCN sample 
generated according to the random growing weighted network model for N = 30 defined with m0 = 4 and 
m = 2 . The presented 8 network snapshots in Fig. 1 corresponding to several parameter values for αt (i.e., 
αt = 0, 0.2, 0.5, 1, 1.5, 2, 3, and 5, respectively) which contribute to network topologies that interpolate between 
a random network and a more regular one (despite the networks are being generated randomly).

Figure 2a, illustrates the Forman–Ricci network entropy for a network of N = 10,000 nodes, as a function 
of the parameter αt (the blue curve). The blue curve is the result of a Monte-Carlo simulation performed for 103 
realizations of the random growing network. The two red curves define 95% mean confidence interval (shaded 
region in the zoomed part). From Fig. 2a, we can observe that the network has two distinct states and a transi-
tion period (cyan shaded region). The first state with a “quasi-constant” Forman-RC network entropy occurs 
for αt ≤ 0.6 , and a second stable state occurring for αt ≥ 1.45 achieving constant entropy value. From the figure 
we can observe the transition between the two states happening around 0.6 ≤ αt ≤ 1.45 ; however, providing an 
accurate estimation of the boundary of the phases is not trivial. In the “Methods” section, we provide an approach 
to quantify the lower and upper boundaries that separates the different phases by observing the first-order 
derivative of the Forman-RC network entropy (Fig. 2c). Interestingly, the significant change is happening around 
αt = 1 (the cyan shaded area) which corresponds to the classical Barabási-Albert model. This highlights the 
change of the topology of such network for αt < 1 , αt = 1 and αt > 1 . Hence, we can conclude that the random 
network, under study, experiences a phase transition which separates two major states of the network. This result 
is consistent with the claim of  reference7 where the authors showed that different behaviors arise for the network 
considering different values of αt . Therefore, αt is a crucial parameter that defines the topology of the network.

Figure 2b summarizes similar experiments obtained for different network sizes ( N = 100 , 200, 500, 1000 and 
5000 nodes). From the aforementioned figure, we can see that the Forman–Ricci network entropy has the same 
shape analogous to a sigmoid curve. We can remark that the midpoint is fixed; the cyan bar is consistent around 
αt = 1 . Observing the first-order derivative of the Forman-RC network entropy versus the time-dependent 
parameter αt as in Fig. 2c, we can see, for each fixed network size N, the first derivative of the Forman-RC 
network entropy is a unimodal curve where the “energy” is concentrated around the same value αt = 1 . This 
defines the peak of the first derivative of the entropic measure which confirms the transition is occurring exactly 

Figure 1.  A sample time-varying network generated according to the random growing weighted network 
model. Each time t corresponds to a parameter αt which is used to generate the network Gt containing N = 30 
nodes and having parameters m0 = 4 and m = 2 (these parameters are similar to the ones in the Barábasi–
Albert network model). Node colors are indicative of the node’s degree.
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at αt = 1 . The other observation from the distinct plots is that the Forman-RC network entropy, being in the 
first state ( αt ≤ 0.6 ), does not vary too much while changing the size of network N, but it increases for large 
network sizes N when the network is in the second state ( αt ≥ 1.45 ). Furthermore, we observe that the shaded 
region (zoomed part mentioned before) shrinks as N increases (see Fig. 2e); this result is intuitive since we have 
more samples of the Forman-RC in large networks. Hence, we will have an accurate estimator of the probability 
density function corresponding to the Forman-RC in the network. Thus, the error relative to the wavelet-based 
estimator will decrease which will narrow the 95% mean confidence interval. As we can see from the tangent 
lines (marked in dark khaki color) corresponding to each plot in the transition phase ( αt = 1 ), the slope of the 
rise of the Forman–Ricci network entropy is changing while growing the size of the network N. Figure 2d shows 
the relationship between the slope of rise of the Forman–Ricci network entropy HR(Gt) denoted aN (HR(Gt)) 
and the network size N. It is clear that the slope and the size N are positively correlated which aligns with our 
intuition (for infinitely large network sizes, the Forman–Ricci network entropy plot will be similar to a step 
function). Additionally, we perform linear regression analysis and deduce that for large value of N, we have 
aN logNδ where δ = 2.9± 0.1 . An interesting observation from this figure is that the slope varies linearly versus 
logN . More investigation will be done in the future to explain this relationship. Finally in Fig. 2f, we show an 
example of the histogram (blue rectangles) of the Forman-RC distribution associated with the random growing 
network for N = 1000 and α = 0.5 as well as the estimated distribution f(x) using the wavelet-based estimator 
(red curve) versus the curvature of edges denoted x.

Small‑world weighted network
To validate the proposed approach, we design a second scenario where we consider the case of small-world 
networks generated according to the Watts–Strogatz model that depends on three parameters (N: number of 
nodes, p: rewiring probability and K: average degree). Here, we assume that at each time instant we generate a 
weighted network with rewiring probability p between 0 (Regular network) and 1 (Random network), and as 
the time evolves the parameter p increases. Our goal is to study the structure of the network and detect when it 
changes. To illustrate this phenomenon, Fig. 3a shows five network snapshots wherein the rewiring probability 
pt takes the values pt = {0, 0.2, 0.5, 0.8, 1} at times t = {0, 1, 2, 3, 4} , respectively. The network is evolving from 
a regular network (i.e., p0 = 0 ), where each node is only connected to its neighbors, to a random network (i.e., 
p4 = 1 ). Hence, the topological properties of this network are changing while the rewiring probability is changing 
in time. In Fig. 3b, we consider a random network of size N = 1000 nodes, we plot the Forman–Ricci network 
entropy versus the rewiring probability parameter p. The blue curve is determined by running a Monte–Carlo 
simulation performed for 103 realizations of the Watts–Strogatz network. From Fig. 3b, we can observe that the 
network has two distinct states (State 1: p ≤ 10−2 , State 2: p ≥ 10−1 ). For the values 10−2 ≤ p ≤ 10−1 , we can 
see a phase transition between the two states. Similar to the analysis done for the random growing networks case, 
Fig. 3c shows the first derivative of the Forman-RC network entropy. More specifically, the transition is happen-
ing between p = 0.02 and p = 0.03 . This result matches perfectly with the observation presented  in6, where they 

Figure 2.  (a) Forman–Ricci network entropy of random growing network of size N = 10,000 performed at 103 
realizations. The blue curve is the expected value of the Forman–Ricci network entropy, and the two red curves 
define the 95% mean confidence interval. (b) Forman–Ricci network entropy and (c) its first derivative for 
random growing network of sizes N = 100, 200, 500, 1000, 5000 and 10, 000 where the first derivative is used as 
a tool to detect the phase transition of a random growing network. (d) The slope of the Forman–Ricci network 
entropy’s rise versus the network size N. (e) Shaded area vs. the network size N. (f) Forman–Ricci curvature 
distribution associated to a random growing weighted network with parameters, size of the network N = 1000 
and attachment probability parameter α = 0.5.
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also observe the properties of a small-world network for a similar range of rewiring probability. However, their 
analysis was based on evaluating the clustering coefficient and the average path length (the transition regime is 
characterized by a high clustering coefficient and short path length). Similarly, in Fig. 3d, we plot the estimated 
Forman–Ricci curvature distribution and the histogram for a small-world network of size N = 1000 with average 
degree K = 50 and a rewiring probability p = 0.5 . In this case, the support is wider than the one corresponding 
to the Forman–Ricci curvature distribution for a random growing network. In both cases, by comparing both 
histograms and their estimated distributions, we can see that the density estimators perform well. This result is 
expected since we have a relatively large network size N = 1000 , thus a large sample size for density estimation.

Stochastic Block model with planted community structure
We investigate the network phase transition phenomena as we observe changes in the core community structures 
over time. We follow the time-varying complex network setup similar  to8 where we utilize the Stochastic Block 
model (SBM) as the network generating model for N = 1000 nodes and T = 30 network snapshots. At t = 1 , 11 
densely connected communities are generated and labelled from 0, . . . , 10 of size 120, 100, 100, 100, 80, 80, 70
, 70, 70, 60, and 60, respectively, with the remaining 90 nodes not forming any community. Abrupt changes to 
the community structure is induced at (i) t = 11 with community 10 merged to 0 and 9 merged to 1, and at (ii) 
t = 21 with communities 7 and 8 merged to 6. Figure 4a shows the heatmap images of the adjacency matrix for 
the following time stamps t = 1, 11 , and 21, respectively. Yellow pixels denote edges. Squares of densely packed 
yellow pixels denote community structures. The community structure is represented as a low-ranked matrix L(t) 
which is held invariant between phase transition points. The density of connections pc = 0.2 within community 
is generated as follows: Lin

i.i.d.∼ Bernoulli(pc) and Lout = 0 , where Lin denotes connections within communities 
and Lout otherwise. Sparse noise S(t) represents the perturbations and are allowed to vary freely at each time 
instant. The noise density is set at ps = 0.1 . S(t) is generated as follows: P(Sij = 1) = 0.05 , P(Sij = −1) = 0.05 , 
and P(Sij = 0) = 0.9 . Finally, the sum of L and S is projected as an adjacency matrix: A(t) = P�[L(t)+ S(t)] , 
thus keeping binary values and symmetry.

In this scenario, we investigate the curvature analysis on detecting phase transitions that are characterized by 
changes to the core community structure with the presence of noise. Figure 4b shows the Forman–Ricci network 
entropy over the entire time period up to t = T . The blue solid line represents the sample means, and the blue 
shaded region represents the sample standard deviation bands for 100 realizations. The red dashed lines indicate 
the phase transitions. The inscribed plots within the main figure show the histograms and density estimates 
of the Forman–Ricci curvatures for the selected time instants t = 1, 11 , and 21, respectively. From Fig. 4b, we 
can observe that the mean Forman–Ricci network entropy has mean values at 5.88, 6.34 and 6.45 and standard 
deviation values at 0.0044, 0.0024 and 0.0025 for each of the three stable time periods, respectively, wherein the 
community structures are invariant. Variations in the network entropy within the stable periods are due to the 
induced perturbations. For this setup, despite the induced perturbations, the Forman–Ricci network entropy 
can deduce the phase transition points. Pre-processing the data by filtering out the noise is expected to further 
improve the results. This example shows that Forman–Ricci curvature analysis method is able to detect phase 

Figure 3.  (a) Time evolution of a small-world network from regular to random with varying rewiring 
probability pt changing in time. Each time t corresponds to a value of pt used to generate the network Gt 
containing N = 30 nodes having an average degree kavg = 2 . (b) Forman–Ricci network entropy, (c) first 
derivative of the Forman–Ricci network entropy, and (d) Forman–Ricci curvature distribution associated to 
small-world networks generated according Watts–Strogatz model (i.e., rewired graphs with rewiring probability 
parameter p), N = 1000 , K = 50.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17948  | https://doi.org/10.1038/s41598-023-44791-3

www.nature.com/scientificreports/

transitions due to changes in core community structure. This method does not need to perform a direct com-
munity detection method at each time instant which can lead to very high computation complexity.

Weighted multifractal networks (WMFNs)
Similar to the Stochastic Block Model with Planted Community Structure case study (Fig. 4), the proposed For-
man–Ricci network entropy metric is capable of detecting multiple phase transitions in  WMFNs21. In contrast 
to the SBM example where changes to the community structures cause the phase transition, the changes in the 
generating parameters drive the WMFN phase transition. The result of the case study on WMFNs is presented 
in Fig. 5. Here, each network snapshot has N = 1000 nodes. The multifractal generating model is recursively 
generated from a self-similar division of a simple square structure. We use R = 2 layer unit-squares, M = 2 
intervals and K = 3 self-similar operations. The linkage probabilities pi = [pi(1), pi(2)] has two sets of matrix 
values due to the chosen R = 2 number of layers. We keep the interval lengths fixed for all times with value 
L = [0.75, 0.25] . At the generating parameter change points t = {10, 20} , the proposed method detects the phase 
transition through a remarkable change in the Forman–Ricci network entropy value. In fact, the proposed 
metric is capable of quantifying a state of a WMFN that is uniquely defined by the generating parameters which 
characterizes the topology of the network.

As shown in Fig. 5, we can observe that we have three different phases which is compatible with the values of 
the chosen generator parameters. The mean Forman–Ricci network entropy is marked with a solid blue line. The 
fluctuations in entropy across time t within the each of the stable parameter is due to the induced perturbation 
in the generating parameters. The Forman–Ricci network entropy is calculated using a Monte-Carlo simulation 
performed for multiple realizations of the WMFN. The shaded blue region defines a 95% confidence interval for 
the mean value of the Forman–Ricci network entropy. At t = 10 and t = 20 , the generating parameter transitions 
from p1 to p2 and p2 to p3 , respectively, resulting in a significant change in network structure as described by the 
degree distribution and average clustering coefficients. The KL divergence for the degree distributions at the phase 
transitions are KLdiv(1 → 2) = 0.7446 and KLdiv(2 → 3) = 1.2967 . The change in average clustering coeffi-
cients are �|C(1 → 2)| = 0.006 and �|C(2 → 3)| = 0.067 . This corresponds to a Forman–Ricci network entropy 
change |�HR(1 → 2)| = |HR(G10)−HR(G9)| ≈ 2.2 and |�HR(2 → 3)| = |HR(G20)−HR(G19)| ≈ 0.7 . Only a 
subtle change in network structure occurs as described by the difference in degree distributions ( KLdiv(1 → 2) ) 

Figure 4.  Forman–Ricci network entropy analysis of time-varying stochastic block models (SBM) for 
T = 30 network snapshots. Phase transitions occur at t = 11 and t = 21 by merging of communities. The 
stable time periods are characterized by fixed community structures occurring at the following time intervals 
t = {[1, 10], [11, 20], [21, 30]} . (a) Heatmap images of select adjacency matrices at different stable time periods. 
Time instants t = 1, 11,and 21 are shown. Densely packed yellow pixels (edges) indicate community structures. 
(b) Forman–Ricci network entropy over the entire time period up to time t = T . Blue line and blue shaded 
region indicate the sample mean and sample standard deviation bands for 100 realizations, respectively. Red 
dashed lines indicate the phase transition points. Inscribed plots within the main plot show the Forman–Ricci 
curvature histograms and density estimates for one realization at time instants t = 1, 11 , and 21, respectively.
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and average clustering coefficients ( �|C(1 → 2)| ) when comparing the parameter change between p1 and p2 
(time intervals 1 and 2). Nevertheless, this results in a detectable phase transition with a Forman–Ricci network 
entropy change of |�HR(1 → 2)| . We can utilize the first derivative of the Forman–Ricci network entropy as a 
tool to quantitatively detect the phase transition region (see “Methods” section on Transition boundary quan-
tification, Eq. (5)).

We further analyze the impact of perturbation at different magnitudes to the linkage probabilities for a mono-
fractal network. For a monofractal network, the linkage probabilities are all uniformly set for all box-coverings. 
For this example, we start at a linkage probability of p = 0.1 · 12 , where 1n is an n-by-n matrix of ones. At t = 10 , 
the linkage probability is perturbed by ǫ , p = (0.1+ ǫ) · 12 . From Fig. 6, perturbations greater than 1% of the 

Figure 5.  Forman–Ricci network entropy analysis of time-varying weighted multifractal network  models21,30 
for T = 30 network snapshots for N = 1000 network size. Phase transitions occur at t = 10 and t = 20 by 
changes to the linkage probabilities p. The “stable” time periods are characterized by the same weighted 
multifractal network generator parameters with small perturbations across time occurring at the following time 
intervals [1, 9], [10, 19] and [20, 30]. A sample degree histogram is provided for each of the “stable” regions, as 
well as the average clustering and associativity. The simulation is repeated for 10 iterations.

Figure 6.  Forman–Ricci network entropy with respect to perturbations in the linkage probability for a 
monofractal network.
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initial p value results in detectable phase transition. Meanwhile, perturbations smaller than 1% of the initial p 
value results in very small changes in network entropy for a successful phase transition detection.

Artificial neural networks
Due to the diverse range of applications attributed to deep neural networks (DNNs), it is imperative to com-
prehend their intricacies in order to enhance the design of optimal architectures that are capable of effectively 
addressing various real-world machine learning problems. Analyzing the non-trivial interactions between the 
nodes of a DNN architecture is a key step towards elucidating the underlying mechanism governing the network 
throughout the training process. In this vein, our aim is to develop an approach that unveils the interplay between 
the geometric properties of the artificial neural network and the corresponding learning task.

In pursuit of this endeavor, we present a case study wherein we investigate the hypothesis that our proposed 
framework has the capacity to detect topological phase transitions during the training process of a neural network 
architecture. Such transitions can offer valuable insights into the state of the DNN. Specifically, we conduct the 
experiment of training a NN architecture with dimensions 784-32-10 on the Fashion-MNIST  dataset31 (Fig. 7). 
It is worth noting that the first layer of the network is specifically designed to reshape the input grayscale images, 
which have a size of 28× 28 pixels.

We train the DNN on the Fashion-MNIST dataset for 90 epochs and record the accuracy and the For-
man–Ricci network entropy at each training epoch. At around epoch 30, the classification accuracy starts to 
plateau around 0.915 which indicates that the additional training samples are not significantly helping the learn-
ing process (Fig. 8a). Figure 8b shows the Forman–Ricci network entropy over the entire training epochs with 
the shaded region indicating a 95% confidence interval for the mean Forman–Ricci network entropy calculated 
over multiple experiments. Similar to the accuracy plot, the Forman–Ricci network entropy is also an increasing 
function versus the training epochs. As we can observe, the Forman–Ricci network entropy plot has a similar 
behavior as the accuracy plot. As shown in Fig. 8c, the scatter plot shows a strong, positive correlation between 
accuracy and Forman–Ricci network entropy during the training process. During the training process of a NN 
architecture, the accuracy starts increasing (and the loss functions starts decreasing) versus the training epochs 
until convergence (i.e., minimal additional improvement from additional training samples). Consequently, there 
are two phases during training a NN architecture over multiple epochs. From the positive correlation presented 
in Fig. 8c and the information provided in Fig.8b, we can conclude that the Forman–Ricci entropy metric is 
capable of detecting the learning phase change in during DNN training.

In order to deeply analyze the connection between the accuracy and the Forman–Ricci network entropy, we 
have estimated the joint probability distribution function shown in Fig. 8d with a concentration in probability 
around accuracy values between 0.915 and 0.94 and entropy values between 9.9 and 10.4. This indicates a state 
of learning saturation as indicated with a slow rate of change in accuracy and Forman–Ricci network entropy 
convergence. This relates the geometry of the network of neurons in a NN architecture with the learning process. 
In the line with this analysis, we have computed the Pearson correlation coefficient between the Forman–Ricci 
network entropy and the accuracy and we get ρ = 0.9735 . The observed findings demonstrate a strong posi-
tive correlation between the aforementioned metrics, providing robust evidence that substantiates our initial 
hypothesis. This compelling outcome confirms the efficacy of the proposed framework in accurately detecting 
and quantifying topological changes that occur throughout the training process of a neural network architecture.

Next, we analyze the exceedance probability of the Forman–Ricci curvature values associated to the edges 
present in network at each epoch. We have remarked that all the Forman–Ricci curvature values are nega-
tive, so we considered the magnitude of the Forman–Ricci curvature in the exceedance probability evaluation, 
Pexceedance = P(|RicF | > δ) . The Forman–Ricci curvature exceedance probability plot is shown in Fig. 9. As the 
NN architecture is trained from the initial setting up to epoch 15, we see an increase in the Forman–Ricci cur-
vature exceedance probability for threshold values δ < 55 . The opposite happens for the same threshold values 

Figure 7.  Phase transition analysis for the DNN architecture training using the Fashion MNIST dataset. Data 
samples are 28× 28 pixel images from the 10 classes of the Fashion-MNIST dataset using a NN architecture of 
784-32-10 input-hidden-output neurons.
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δ < 55 with the Forman–Ricci curvature exceedance probability decreasing as the training continues from epoch 
25–90. We note that the exceedance probability curves cross around δ ≈ 55 with the first crossing occurring 
between epochs 15 and 25. From Fig. 8a,b, we also observe a significant decrease in the rate of change in both 
accuracy and the Forman–Ricci network entropy between epochs 15 and 25. This behavior can be attributed to 
changes in network topology with a critical phase change occurring between these training epochs.

To further validate the efficacy of our framework and the insights garnered from the previous neural network 
experiment, we conducted additional experiments employing a distinct dataset, namely CIFAR-10. The aim 
was to fortify the credibility and generalizability of our proposed framework. Specifically, we have replicated 

(c)

(a)

(d)

(b)
Fashion MNIST dataset

Figure 8.  Results for training NN architecture (784-32-10) for the purpose of classifying the Fashion MNIST 
dataset: (a) Training accuracy over the number of training epochs. (b) Forman–Ricci network entropy over the 
number of training epochs. The shaded region represents a 95% confidence interval for the mean Forman–Ricci 
network entropy calculated over multiple experiments. (c) Accuracy versus the Forman–Ricci network entropy. 
(d) Joint distribution of the accuracy values and the Forman–Ricci network entropy.

Figure 9.  Forman–Ricci curvature exceedance probability as a function of threshold δ.
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the previous experiment by employing the same architecture (1024-32-10) utilized for classifying the Fashion-
MNIST dataset.

It is noteworthy to highlight that we have tested our framework on grayscale images, which necessitated 
the conversion of the RGB images from the CIFAR-10 dataset into grayscale representations. Subsequently, the 
grayscale images, characterized by a single channel instead of the original three channels in RGB images, were 
utilized as input to the neural network architecture. Consequently, the first layer of the network was designed to 
accommodate the transformed grayscale image inputs. It consisted of 1024 nodes, aligning with the dimensions 
of the grayscale images, which have a size of 32× 32 pixels.

Due to the conversion of the images and the utilization of a simplistic architecture for the learning task, the 
achieved accuracy is not high enough (i.e., 0.35) as shown in Fig. 10a. Similarly to the results illustrated in Fig. 8, 
we observe that the Forman–Ricci network entropy is a monotonically increasing function throughout the train-
ing process. However, we can observe that the rate of change of the Forman–Ricci network entropy diminishes 
as the number of epochs increases (Fig. 10b), which corresponds to a similar behavior observed in the accuracy 
metric. Both metrics exhibit comparable trends, thereby corroborating our earlier observation concerning the 
intrinsic relationship between the the Forman–Ricci network entropy and the training accuracy as shown in 
Fig. 10c,d. This experiment is designed to confirm the correlation between the accuracy and the Forman–Ricci 
network entropy. Consistent with the previous experiment, we performed a calculation of the Pearson correlation 
coefficient between the Forman–Ricci network entropy and the accuracy and we get ρ = 0.9809.

In order to establish and confirm the robust correlation between the Forman–Ricci network entropy and 
the training accuracy of a NN architecture, we have designed an experiment where we have changed the NN 
architecture to classify the grayscale images from the CIFAR-10 dataset. The classification task was performed 
using a deeper and more complex NN architecture with dimensions 1024-256-64-32-10, employing the rectified 
linear unit (ReLU) as activation functions. This architectural modification allowed for an increase in accuracy, 
reaching a value of 0.563, as demonstrated in Fig. 11a.

Furthermore, in line with our previous observations, we can notice that the Forman–Ricci network entropy is 
consistently exhibited an upward trend throughout the training phase, as depicted in Fig. 11b and this affirms that 
running multi-layer perceptron tends to increase the Forman–Ricci network entropy during the training phase. 
Notably, in this experiment, the Pearson correlation coefficient between the Forman–Ricci network entropy and 
the accuracy is equal to ρ = 0.996 , further emphasizing the strong correlation between both metrics which is 
also depicted in Fig. 11c,d. We hypothesize that the correlation strength intensifies as the architecture’s depth 
increases. With this analysis, we have built a connection between the topological properties of the nodes in a 
NN architecture and its performance. On one hand, the Forman–Ricci network entropy is strongly correlated 
to the accuracy throughout the training process. On the other hand, the proposed metric is capable of detect-
ing phase transition in NN topology during the training process. In fact, our experiments yielded promising 

(b)(a)

(c) (d)

CIFAR-10 dataset

Figure 10.  Results for training NN architecture (1024-32-10) for the purpose of classifying the CIFAR-10 
dataset: (a) Training accuracy over the number of training epochs. (b) Forman–Ricci network entropy over the 
number of training epochs. The shaded region represents a 95% confidence interval for the mean Forman–Ricci 
network entropy calculated over multiple experiments. (c) Accuracy versus the Forman–Ricci network entropy. 
(d) Joint distribution of the accuracy values and the Forman–Ricci network entropy.
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results, indicating that analyzing the training process using curvature via the Forman–Ricci network entropy 
is relevant and useful for gaining insights into the performance of neural networks. Therefore, the provided 
network geometry analysis can be a key step towards understanding learning in DNNs. One potential applica-
tion area is the Forman–Ricci network entropy can help find the number of epochs needed to train a DNN (i.e., 
detect when the accuracy/loss functions converges). Hence, this entropic metric that we have presented can be 
a new useful tool to avoid overfitting. Also, the dropout technique used in DNN to prevent overfitting can now 
be performed by ignoring the nodes having a constant Forman–Ricci curvature throughout the training process 
and not contributing to the Forman–Ricci network entropy.

Real‑world dataset: genome‑wide chromosome conformation capture (Hi‑C)
Besides the artificially generated networks, we tested this algorithm on a real-world dataset from biology. For 
this, we analyzed time series corresponding to a genome-wide chromosome conformation capture (Hi-C) matrix 
dataset. Hi-C matrices encode how often two genomic loci contact each other in 3D space at a given time. These 
data can be constructed into a contact matrix A for each chromosome, where the number of contacts between 
locus i and locus j resides in element Aij . For this analysis, Hi-C matrices generated from cell cycle and circadian 
rhythm synchronized human fibroblasts were obtained  from32. The samples of the Hi-C matrices are collected 
every 8 h during the period of 56 h; more details about this dataset can be found  in32,33. These Hi-C matrices are 
interpreted as a representation of a time varying complex network, where the nodes are the genomic loci, and 
the entries of the Hi-C matrix correspond to edges of the network which indicate the contact between genomic 
loci. The goal is to use our framework to analyze these networks, hence, discovering important features in Hi-C 
matrix data. Based on the links and their strength, the Forman-RC helps to identify local properties of the net-
work such as the bridge nodes in a network and to distinguish between different regions. In the context of Hi-C 
matrices, the regions can be seen as active and inactive transcriptional chromatin domains, and the bridge nodes 
can be interpreted as architectural buffers between the regions.

Figure 12 demonstrates that the proposed Forman-RC inspired phase transition detection method can iden-
tify a change in the curvature established between chromosomes during fibroblast proliferation. As we can see 
from the Forman–Ricci network entropy plots, we have two regimes: during the first five time points from t = 0 
h to t = 32 h, the network tends to minimize the Forman–Ricci network entropy. From a biology perspec-
tive, during this period the cells are completing their first synchronized cell cycle. In contrast, during the time 
interval between t = 32 h and t = 40 h, the cells have completed their first cell cycle and start to become un-
synchronized during the remaining time points where the network tends to increase the Forman–Ricci network 
entropy. Interestingly, this result matches perfectly the biological experimentation and observations  in33, where 
the authors demonstrated that a bifurcation point occurs at t = 32 h in the cell state trajectory for fibroblasts 
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(d)

CIFAR-10 dataset

Figure 11.  Results for training NN architecture (1024-256-64-32-10) for the purpose of classifying the CIFAR-
10 dataset: (a) Training accuracy over the number of training epochs. (b) Forman–Ricci network entropy over 
the number of training epochs. The shaded region represents a 95% confidence interval for the mean Forman–
Ricci network entropy calculated over multiple experiments. (c) Accuracy versus the Forman–Ricci network 
entropy. (d) Joint distribution of the accuracy values and the Forman–Ricci network entropy.
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being reprogrammed into the myogenic lineage. Consequently, the proposed framework allows us to detect 
architectural reorganization and changes in the genome architectural dynamics.

Real‑world dataset: roll call data of the US senate
Time-varying CNs can also model the interactions, affinities, similarities or relationships between nodes (politi-
cians) in a social (political) network in order to predict unobserved trends (tendencies) in the political life. In 
this context, we map the voting records of the US Senate from 1979 (96-th Congress) to 2012 (112-th Congress)) 
to time-varying CNs. The networks are constructed in a similar way as  in3. More precisely, the idea is to take 
the records of the 100 Senate members, from the website votev iew, then the yes and no decisions are mapped 
to 1 and 0, respectively. It is obvious that the Senate members cannot be all continuously re-elected during the 
entire period (1979–2012); also some of them retired. This has an impact on the number of nodes within the 
networks. To solve this issue, Roy, et al. proposed  in3 a continuous record of votes, by looking at the voting pat-
tern of each Senate seat. Among the total number of 12, 129 votes during the period we examined, only 7949 
votes are considered to construct the dataset, the remaining votes exhibits a conformity more than 75% in the 
yes/no direction. Note also that the data has some missing values, due to some absentees. The authors of the 
dataset insert a value of 1 or 0 corresponding to the member’s party decision obtained by majority polling on 
that particular vote (more details are provided  in3). It is worth mentioning that these time varying graphs are 
binary (unweighted). We believe that by analyzing these matrices individually, we are capturing the time evolv-
ing voting dependency structure between Senate seats. For this reason, we are analyzing a consecutive block 
of matrices together by looking at the average matrix of different votes. The intuition behind this is to compute 
the probability of having an agreement between any two nodes. Here, we combine each 240 votes into a single 
matrix that measures the probability of agreement. The size 240 is the average number of votes per year during 
33 years. Hence, we have 33 time points (networks).

Figure 13 illustrates the evolution of the Forman–Ricci network entropy of the constructed time-varying 
complex networks that encode the voting records of the US Senate during the period from 1979 to 2012. As we 
can observe, the slope of the Forman–Ricci network entropy is fairly flat during the first eight years (from 1979 
to 1986), then it starts increasing with a significant slope up to the year 1994. After a short stagnation between 
1994 and 1995, the Forman–Ricci network entropy regains in trend and increases at about the same pace up to 
the end of the observations in 2012. Figure 13 also shows the linear regression fit (marked as red dashed lines) 
for the two time periods 1986–1994 and 2000–2012 with slopes 0.0550 and 0.0424, respectively. The brief stagna-
tion between 1994 and 1995 indicates a phase transition in the political network which was also observed  in3,34.

We can also depict the phase transition by looking at the Forman-RC PDF for these TVCNs presented in 
Fig. 14. Here, we provide plots for the estimated Forman-RC distributions corresponding to networks constructed 
from the US Senate dataset in different years (1979, 1984, 1989,1994, 1995, 1996, 1999, 2005, 2010). We observe 
that the support of the Forman-RC distribution gets wider and evolves towards a bimodal distribution while the 
network evolves in time. Furthermore, we remark that the Forman-RC distribution starts exhibiting a bimodal 
behavior after the year 1994 which explains the phase transition. The reason for this phase transition is the 1994 
election where Republicans capture the House of Representatives in the USA for the first time after 1956. This 
observation has also been argued in political science where they claim that the 1994 election was considered as 
the end of the conservative coalition. From a mathematical perspective, this result indicates that the network 
structural and dynamic properties encoded in the weights of the TVCNs change and obey different trends. Con-
trary to the density estimators used to plot Forman–Ricci curvature distributions in Figs. 2e and 3d, the error, 
in this case, is larger. This can be attributed to the network size considered for the US Senate dataset ( N = 100).

Discussion
Although modeling complex interactions is more or less feasible through CNs, it remains difficult to analyze 
and decipher whether these networks are about to experience a phase change especially when their generative 
model is unknown or when access to their evolution snapshots is limited. This task seems harder when it comes 
to the analysis of TVCNs, especially for understanding the properties of a time-varying network that extends 
beyond current sensing capabilities. The influence of leading social network companies, such as Facebook and 
Twitter, has already had far-reaching influence in people’s daily lives, ranging from significant changes like the 
way people consume media to seemingly simple things like getting informed about events that one’s circle of 
friends is attending. To achieve such goals and inspire advanced applications, more innovative approaches need 
to be investigated for analyzing TVCNs.

In this regard, in this paper, we have provided a novel geometric inspired framework for detecting phase 
changes in the topological properties of a CN, hence, a better understanding of the dynamics of such networks. 
This represents a crucial step towards designing sophisticated algorithms for prediction and control of their 
kinetics. Based on experimental studies, we have shown the effectiveness of the proposed Forman-RC algorithm 
to detect different states of a TVCN and determine the transition between the states accurately. In fact, we have 
tested our general framework on artificially generated networks based on different models, where the topology 
changes by varying the model parameters. Through an entropic measure of the Forman-RC distribution, we can 
detect the topological changes induced by the variation of the parameters. Unlike previous methods which rely 
on the network generating models or mechanisms, the Forman-RC approach is model agnostic.

The time complexity of this method is comparable to if not superior to most community detection methods 
when applied directly to each network snapshot just to find the phase transitions. The time complexity of com-
puting the Forman-RC network entropy for one network snapshot is O (km) with k ≪ n , where k is the average 
degree, n is the total number of nodes, and m is the total number of edges (e.g., see “Methods” section for a 
discussion on the time complexity). This is in contrast to modularity-based community identification approaches 
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which require to find the community partition first. For example, the Newman’s spectral method for a sparse 
network has O (n2 log n)35 time complexity to calculate the maximum modularity partitions for each network 
snapshot. Alternatively, the Clauset, Newman and Moore (CNM) method which employs a greedy heuristic 

Figure 12.  Forman–Ricci network entropy of time-varying Hi-C matrices collected from cell cycle- and 
circadian rhythm-synchronized proliferating human fibroblasts of normal karyotype (for each chromosomes 
1–22) collected every 8 h over a 56hr time period. Minimum Forman-RC network entropy matches the 
bifurcation point at t = 32 h in the cell state trajectory for fibroblasts being reprogrammed into the myogenic 
lineage.
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Figure 13.  Forman–Ricci network entropy of the combined US senate data from 1979–2012. Red dashed-lines 
are the linear regression fit lines for the periods 1986–1994 and 2000–2012. The circled region indicates the end 
of the Conservative Coalition starting around 1994.

Figure 14.  Forman–Ricci curvature distribution associated to networks constructed from the US Senate roll 
call dataset in different years. The Forman–Ricci distribution varies in time and starts exhibiting bimodal 
behavior after the year 1994.
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approach to find the maximum modularity partitions has O (n log2 n) time  complexity36; however, this may 
lead to results that differ from the optimal solution and the obtained modularity value is inaccurate compared 
to other  methods35. Hierarchical agglomerative methods tend to have a time complexity of O (n2 log n) . Most 
Bayesian (or semi-Bayesian) inference algorithms have either O (mb2) or O (m) time complexities, where b is 
the number of communities. Notably, a non-parametric Bayesian approach achieves O (m) without explicitly 
dependent on the number of groups being  inferred37.

Finally, we have also applied the developed curvature inspired algorithm to real-world datasets where we 
know a change point has been observed from previous experimental studies: one from biology where we detected 
a bifurcation point in human fibroblasts, and a second one from the roll call data of the US Senate, where we 
detected a change point after the 1994 election which marks the end of the conservative coalition.

We hope that this general framework, with the incorporation of geometry in the network analysis to detect 
its phase transitions, will receive more attention in other domains. Applications where the interaction between 
components is driving the dynamics of the network, such as social networks, neuronal  activities2, and brain 
cognition are promising areas for the use of this framework.

Methods
We consider an undirected time-varying weighted CN modeled as time-dependent graph Gt = {Vt ,Et} , where 
t is the time index, Vt(Gt) designates the set of N nodes and Et represents the set of edges connecting them. The 
connection between two nodes i and j, denoted by wij , represents the interaction or similarity between them 
and it can be determined from a given dataset through information theoretic or artificial intelligence methods. 
Also, one can infer the interactions from the set of observations x1(t), x2(t), . . . , xN (t) where xi(t) describes 
the time evolution of node i in the network Gt . Our goal is to study how the local interactions, encoded in the 
graph’s adjacency matrix, change in time and then deduce the global behavior (i.e., the state) of the network 
under investigation.

Unlike existing work on studying CNs that analyze them using a node-based approach (e.g., node degree 
distribution), we focus on multiscale effects of CNs (i.e., how microscopic or local node to node interactions 
influence the overall macroscopic or global properties encoded in the geometry of networks). With this in 
mind, we develop a mathematical framework that takes into account the weights for analyzing the CN structure 
and retaining the maximum amount of information about the CN dynamics. Consequently, we compute the 
Forman-RC associated to each graph Gt as is described next and investigate when the diversity in the curvature 
profile exhibits a change.

Forman–Ricci curvature
Forman-RC is an edge-based approach that can identify the higher-order connectivity structure between different 
components in  CNs28. Forman’s definition is inspired from the Bochner operator defined in differential geom-
etry. The Forman-RC is computed for every edge in the graph, and its value is determined using an expression 
analogous to Bochner–Weitzenböc formula. For weighted CNs, the Forman-RC for an existing edge e between 
node i and node j in a given graph is calculated as follows:

where w(e) is the weight for the edge e, ei ∼ e and ej ∼ e are all the edges except edge e connected to nodes i 
and j, respectively, and w(i) and w(j) are the weights of nodes i and j, respectively. Equation (1) shows that the 
Forman-RC depends implicitly on node degrees, but it also takes into account the edge weights (node-to-node 
interactions) which helps us to deduce the dominant nodes linked to a node i by investigating the curvature of 
each edge connected to it. Consequently, the time complexity for the edge Forman-RC computation is linear 
O (k) with k ≪ n , where k is the average degree, and n is the total number of nodes. Therefore, we believe that 
this geometric interpretation is a key step to effectively analyze a large CN and better understand its topology.

Consequently, we form a new weighted graph at each time where the weights represent the curvature coef-
ficients associated with each edge in the original TVCN. This new graph is a new representation of the topologi-
cal properties of the given graphs that encapsulates non-trivial characteristics of the network (the curvature of 
the network components). Hence, such a new time-dependent topological representation of the CN allows us 
to understand the causal interdependence between nodes better and to quantify the information propagation 
between major components in CN across time.

Inspired by statistical mechanics and thermodynamics, where the states of a given system are closely related 
to its entropy (i.e., Boltzmann entropy), we link the states of a given network to an entropic measure. The entropy 
can be considered as a measure of the diversity or disorder of a given system (Boltzmann) or the lack of informa-
tion about it which has also been quantified by Shannon entropy that is used in information  theory38. Here, we 
measure the state of the CN Gt by computing the “Forman–Ricci network entropy” that we define as the Shannon 
entropy of the Forman-RC of the CN, i.e.,

where fRC(·) is the probability density function (PDF) corresponding to the random variable Forman-RC in the 
network Gt . The aforementioned probability density function is estimated using a non-parametric wavelet-based 
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 approach39 (more details are provided in the next paragraph). The goal is to use the Forman–Ricci network 
entropy as a metric that will identify the states of the TVCN.

Wavelet‑based estimator for Forman–Ricci curvature distribution
As discussed in our algorithmic strategy for detecting phase changes, we have to estimate the probability density 
function (PDF) corresponding to the Forman-RC curvature in a network Gt . For the sake of accuracy, we employ 
a wavelet-based approach to estimate the PDF and then to evaluate the Forman–Ricci network entropy. Next, we 
provide a brief description of the aforementioned  approach39–46. Let f(x) be the PDF which we wish to estimate 
from N given samples of the Forman–Ricci curvature of edges {xi}Ni=1 . The fundamental idea of wavelets is based 
on the Fourier analysis and expresses the PDF as a series expansion in a set of functions. Initially, we choose two 
functions, ϕ(x) and ψ(x) called scaling and wavelet function, respectively, which satisfy certain orthogonality 
properties. Then, by translating and scaling the aforementioned functions, we construct the families of functions 
{ϕj,n(x) = 2

j
2 ϕ(2jx − n)}n∈Z and {ψj,n(x) = 2

j
2ψ(2jx − n)}n∈Z , where j is an integer parameter that controls the 

accuracy of the approximation. Then, we express the PDF as follows:

where j1 is determined by the number of data samples, fj,n =
∫

R
f (x)ϕj,n(x)dx and f̃j,n =

∫

R
f (x)ψj,n(x)dx 

designate the scaling and wavelets coefficients, respectively. Since f(x) is a PDF, then the coefficients fj,n and 
f̃j,n can be interpreted as the expected value over the samples of the scaling function and the wavelet function, 
respectively. Hence, the coefficients can be calculated from the given samples as follows:

Therefore, the coefficients of Eq. (3) are calculated by averaging the chosen scaling and wavelet functions evalu-
ated on the given samples. There are several families of scaling and wavelet functions and in practice one chooses 
the family based on the expected complexity of the PDF to be estimated. In our framework, we use the Daube-
chies family with parameter 4 (generally denoted as db4).

Transition boundary quantification
As illustrated in the random growing networks example (see Fig. 2), providing an accurate estimation of the 
phase transition boundaries is not trivial. Here, we propose to introduce a hyper-parameter that depends on the 
network size γN that defines the boundaries α1 and α2 that separates the first phase from the second phase and 
the second phase from the third phase, respectively. Given the parameter γN , we define the interval I as 
I = {αt ≥ 0 |

∣

∣

∣

dHR(αt)
dαt

∣

∣

∣ ≤ γN} , and the boundaries are defined as follows:

The choice of the hyper-parameter must be a function of the peak of the first derivative of the entropy associated 
with the Forman–Ricci curvature values of a network (which is indeed a function of the network size). Therefore, 
we can choose the parameter γN to be proportional to the peak value. Note that the coefficient of proportionality 
depends on the application and fixed by the user. As an example, for the random growing network study with 
N = 10,000 nodes, we remark that the peak is large so we choose γN = 1

5 ×maxαt
dHR(αt )

dαt
 and we get α1 = 0.6 

and α = 1.45 . However, we have to choose a smaller coefficient for smaller network sizes.

Time complexity
The overall time complexity of the proposed algorithm can be broken down as follows: (1) the Forman-RC cur-
vature calculation for one network snapshot is O (km) , (2) the density estimation is O (ℓm) , and (3) the entropy 
computation is O (ℓ) with k ≪ n and ℓ ≪ m where k is the average degree, n is the number of nodes, m is the 
number of edges, ℓ is the number of sample points of the density from the binning procedure. Therefore, the time 
complexity for one network snapshot computation of the entropy associated with the Forman-RC curvature of 
a network is O (km)+ O (ℓm).

Preprocessing of the weights in the artificial neural networks experiment
During the training phase, the weights associated with each epoch can assume a range of real values based on the 
gradient. However, in order to compute and evaluate the Forman–Ricci curvature for each edge, it is necessary 
for the weights to be positive. To address this requirement, we employ the Min-Max normalization technique 
for each epoch, which scales the weight values to a range between 0 and 1.

Preprocessing of the roll call data of the US senate
The preprocessing task for the data is done in two steps. First, we take the records of the 100 Senate members, 
then the “yes” and “no” decisions are mapped to 1 and 0, respectively. Since the Senate members cannot be the 
same during the entire period (1979–2012), we solved this issue in a similar way as the technique used by the 
authors  in3. We look at the record of the votes per seat and not per Senate member. For missing values, we insert a 
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value of 1 or 0 corresponding to the member’s party decision obtained by majority polling on that particular vote. 
The result of the first step is an unweighted matrix of size 7949 (i.e., the entries are zeros and ones designating 
disagreements ans agreements, respectively). The second step consists of constructing a probabilistic measure 
that encodes the probability of having an agreement between any two given nodes (i.e., Senate seat). To deter-
mine the probability between two nodes i and j, we compute the average matrix of a block of matrices (votes). 
Since we are analyzing the votes for 33 years from 1979 to 2012, we choose the size of the block to be equal to the 
average annual votes 7949/33 ≈ 240 . Therefore, by computing the average matrix of every 240 votes we get 33 
networks encoding the annual probability of agreement between Senate seats during the entire period of study.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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