
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports

Geographically distributed data
management to support large‑scale
data analysis
Tamer Z. Emara 1*, Thanh Trinh 2,3 & Joshua Zhexue Huang 4,5

Nowadays, several companies prefer storing their data on multiple data centers with replication for
many reasons. The data that spans various data centers ensures the fastest possible response time
for customers and workforces who are geographically separated. It also provides protecting the
information from the loss in case a single data center experiences a disaster. However, the amount
of data is increasing at a rapid pace, which leads to challenges in storage, analysis, and various
processing tasks. In this paper, we propose and design a geographically distributed data management
framework to manage the massive data stored and distributed among geo-distributed data centers.
The goal of the proposed framework is to enable efficient use of the distributed data blocks for
various data analysis tasks. The architecture of the proposed framework is composed of a grid of geo-
distributed data centers connected to a data controller (DCtrl). The DCtrl is responsible for organizing
and managing the block replicas across the geo-distributed data centers. We use the BDMS system as
the installed system on the distributed data centers. BDMS stores the big data file as a set of random
sample data blocks, each being a random sample of the whole data file. Then, DCtrl distributes
these data blocks into multiple data centers with replication. In analyzing a big data file distributed
based on the proposed framework, we randomly select a sample of data blocks replicated from other
data centers on any data center. We use simulation results to demonstrate the performance of the
proposed framework in big data analysis across geo-distributed data centers.

Abbreviations
BDA	� Big data application
BDMS	� Big data management system
DCtrl	� Data controller
GDC	� Geo-distributed data center
GDC-ID	� Identifier of geo-distributed data center
GDCs	� Geo-Distributed Data Centers
GDDM	� Geo-distributed data management framework
HDFS	� Hadoop distributed file system

Cloud computing is getting high attention in the industry and research. Many business organizations and com-
panies have decided to store and process their data in cloud data centers as their collected data is getting bigger
and bigger. As the data volume grows exponentially, storing such data within a single data center is no longer
achievable. Hence, the need for geographically distributed data centers has been increased. However, the pro-
cessing for such large amounts of data is quite challenging and would require sufficient storage and computing
power1–5. More importantly, the development of an intelligent processing method capable of recognizing the
meaningful information to understand this data is required.

Computing clusters are the most commonly used to store and process big data. Hadoop6 and Spark7 are the
most popular computing cluster frameworks that emerged for big data processing and analysis8,9. However, these
frameworks process the big data locally within the same data center10,11.

OPEN

1Faculty of Computers and Artificial Intelligence, Damietta University, New Damietta 34519, Egypt. 2Faculty of
Computer Science, Phenikaa University, Ha Dong, 12116 Hanoi, Vietnam. 3Phenikaa Research and Technology
Institute (PRATI), A &A Green Phoenix Group JSC, Cau Giay, 11313 Hanoi, Vietnam. 4National Engineering
Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China. 5Big
Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060,
China. *email: temara@du.edu.eg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44789-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

Recently, big data processing over geographically distributed data attracts much attention, especially with the
rapid increase of data volumes. It can provide several benefits. For example, Facebook reports in the first quarter
of 2020 that the active monthly users are 2.6 billion and over 1.7 billion people use Facebook daily, sharing over
100 billion messages on a daily basis12. Also, the number of Stories shared on the platform is over 1 billion. In
2018, Uber13 had over 100 petabytes14 data that needs to be stored, cleaned, and analyzed with minimum latency,
in order to make data-driven decisions at every level, from forecasting rider demand during high traffic events
to identifying and addressing the bottlenecks in driver-partner sign-up process.

The traditional method to process large data volumes that are geographically distributed is to copy all the data
to a single data center. Then, it can be processed in a centralized fashion15,16. However, transferring the complete
data to a single data center may not be practically feasible due to the bandwidth limitation, communication and
time cost, and data privacy.

The data replication technique plays an important role in distributed systems to increase data safety and
availability. The general idea of data replication is to store several copies of a data file on different computing
nodes or servers17. Also, replicating data into various locations provides fault tolerance. In case a failure hap-
pened, another copy can be used to retrieve the lost data18. Since availability is improved, the waiting times are
reduced, and consequently, the latency is also reduced. A lot of efforts has been spent on utilizing data replication
in different systems and technologies such as database systems19, parallel and distributed systems20–23, data grid
systems24–29, and mobile systems30,31.

Nowadays, several companies prefer storing their data on multiple data centers with replication for many
reasons. (1) The data that spans various data centers ensure the fastest possible response time for customers and
workforces who are geographically separated32. (2) It also protects the information from the loss in case a single
data center experiences a disaster33. However, the amount of data is increasing at a rapid pace, which leads to
challenges in storage, analysis, and various processing tasks.

Recently, we have proposed a high-level architecture design of a big data management system (BDMS)34.
BDMS stores the big data file as a set of random sample data blocks, each being a random sample of the whole
data file35,36. BDMS was designed to manage big data files on data block-level in a single computing cluster.

Also, we have recently proposed two data distribution strategies to enable big data analysis across geo-
distributed data centers37. Both strategies target at the companies that consider two scenarios to store their big
data in multiple data centers either without replication or with replications. In this paper, we focus on the second
strategy that endeavors to store data with replication. We propose a data management framework to manage
the distributed data among geo-distributed data centers. The proposed architecture is composed of a grid of
geo-distributed data centers (GDCs) connected to a data controller (DCtrl). The DCtrl is responsible for organ-
izing and managing the block replicas across the geo-distributed data centers. We use the BDMS system as the
installed system on the distributed data centers. The goal of the proposed framework is to enable efficient use of
the distributed data blocks for various data analysis tasks.

To demonstrate the performance of big data analysis based on the proposed framework, we built a simulation
environment to simulate a grid of five data centers. We used this environment to conduct several experiments.
The experimental results show that a small set of block samples is enough to get an approximate result of the
whole data.

The remainder of this paper is organized as follows. “Related work” section discusses the related works. The
proposed geo-distributed data management framework is introduced in “Geo-distributed data management
framework (GDDM)” section. “Replication management” section discusses how the proposed framework man-
ages the block replicas. “Geo-distributed ensemble learning application” section introduces the geo-distributed
ensemble learning application to analyze the managed data by the proposed framework. In “Simulation results”
section, we illustrate the results of our experiments. Finally, “Conclusions” section concludes the paper.

Related works
Data replications technique is widely used in current distributed file systems to protect the stored data against
failure or data loss, such as Hadoop Distributed File System (HDFS)38, Google File System (GFS)39,40 and others.
In HDFS, the default replication factor is 3. When a client requests to write a file, the first data block is written in
the same DataNode used by the client. The other two replicas are stored in different DataNodes in different racks.

Due to the rapid increase of cloud computing storage systems, Data replication techniques attract much atten-
tion to achieve high availability and reliability. In Ref.41, an algorithm was proposed to optimize the replication
cost using the concept of the knapsack problem. The main idea of this algorithm is to estimate the replication
cost. When the cost exceeds the user budget, the replicas are transferred to a lower-cost data center. Liu and
Shen42 proposed a popularity-aware multi-failure resilient and cost-effective replication (PMCR) scheme. It
divides the cloud storage system into two tiers, the primary tier and the backup tier. To manage the correlated
and independent failures, the data is replicated on two servers in the primary tier and one server in the backup
tier. Its simulation results showed that PMCR guarantees high data availability and durability.

Data locality is a key factor improving the performance of geo-distributed big data application. The perfor-
mance of accessing remote data is slower than accessing local data. The remote data access may be acceptable
for rarely-accessed data. In contrast, it slows down the performance for frequently-used data. To cope with such
issue, dynamic data replication43 was proposed. Dynamic data replication strategies mainly rely on creating
replicas of frequently accessed data close to the user devices.

Many efforts have been made to propose and develop different dynamic data replication algorithms, such
as17,44–46. A prefetching-aware data replication (PDR) strategy was proposed in Ref.17 to prefetch the most popu-
lar files based on the correlations of the data files in the file access history. It consists of three stages. It first
builds a dependency matrix through calculating the dependencies between all files. Then, it determines the

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

most popular file according to the total average of file accesses. Finally, it replaces the unnecessary replicas with
the more popular replicas to save the storage space of each node. To leverage the decentralized architecture of
decentralized storage systems such as Dynamo47 or Voldemort48, Matri et al.44 proposed a write-enabled dynamic
replication scheme.

In summary, the above works focus on facilitating the creation of data replicas to save the cost and reduce
the execution time. Also, they consider the replication on the file level. In this paper, we propose and design a
geo-distributed data management framework. The proposed framework manages the big data files on the block-
level. Therefore, it is doing replication on the block-level instead of the file-level. Besides, it supports block-level
sampling to approximate the data analysis of the distributed data across geo-distributed data centers.

Geo‑distributed data management framework (GDDM)
In this section, we discuss the proposed architecture of the geo-distributed data management (GDDM) frame-
work. The main objective of the GDDM framework is to enable and manage data replication across geographically
distributed data centers. The proposed architecture is composed of a grid of geo-distributed data centers (GDCs)
connected to a data controller (DCtrl) as shown in Fig. 1.

Data controller (DCtrl)
The DCtrl is responsible for managing the block replicas across the geo-distributed data centers. The main com-
ponent of DCtrl is the replica manager which is composed of three parts: replica placement, replica replacement,
and replica selection. Replica placement builds and stores the replication table; it determines the best possible
location to store data files based on user request and network protocol. Replica replacement determines which
replica to be replaced for a new one when the storage is full or restricted. Replica selection picks the proper GDC
location that has the required data file for the big data application.

DCtrl organizes the data blocks on the geo-distributed data centers using a hierarchy namespace of files and
directories. The namespace tree starts with an identifier of GDC (GDC-ID) followed by the namespace that is
issued by the BDMS system for the data file. The client does not need to know how or where data is stored or
manipulated. In fact, the cloud systems provide the environment that the user does not need to know precisely
the location of a specific file or service and their delivery process while hosting their application at the time that
the cloud service provider controls the entire service.

DCtrl stores the namespace of each data file and the list of blocks belonging to it which comprises the meta-
data of the name system in the replica-image. Besides, DCtrl stores any modifications to the replica-image in a
log file. When a DCtrl restarts, it restores the namespace by reading the replica-image and replaying the log file.

Geo‑distributed data centers (GDCs)
GDC refers to the geo-distributed data center. We use the BDMS system34 to store the data files on different
data centers. BDMS stores data files as random sample data blocks. Suppose a big data application (BDA) needs
to write a big data file. It first requests the location of the closest GDC from the DCtrl. The BDA then writes
the data into the closest GDC which in turn stores the written data as random sample data blocks. After that,
the closest GDC pushes the data in a pipeline which is organized from the replicas’ locations ordered by their
proximity to the first replica.

Furthermore, GDC has an important component named voting table. Clients vote for files at sites close to
them. For instance, an application requests reading a file if this file is not in the closest GDC, the application votes
for this file at the closest GDC. After that, DCtrl uses this table in replicating the files dynamically. Also, GDC
builds another component named frequent table. Frequent table stores the Block-ID and frequent number. The
frequent number refers to the number of times that the replica is requested by a BDA. Replica replacement uses
the frequent table to move the least frequent number replica to another location in case the storage becomes full.

When a GDC starts, it connects first to the DCtrl and performs a handshake. The handshake aims to verify
the GDC-ID and the metadata of the current GDC. If the DCtrl knows the GDC-ID, it joins the grid system.

Figure 1.   Geo-distributed data management framework.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

Otherwise, it will not be able to join the system. When a GDC is newly formatted and initialized, it needs to
register with the DCtrl to associate an ID. Also, the DCtrl classifies the newly connected GDC to a particular
grid cluster.

The GDC sends periodically a block report to the DCtrl. The block report contains information about the
blocks, that the GDC hosts, such as block-id, time generation stamp, and the length of the block replica. After
GDC registration, it sends immediately the first block report. The successive block reports are sent periodically
to provide the DCtrl with an up-to-date view of the location of the block replicas.

During the normal operation, the GDCs send heartbeats to DCtrl in order to confirm that the GDC is being
live and operating well as well as the hosted block replicas by the GDC are available.

Grid clustering
The first step of DCtrl work is to cluster the geographically distributed data centers into γ clusters, where γ is the
replication factor. The produced clusters are used in replica placement where each replica is stored in a separate
grid cluster. The objective of this operation is to ensure that the replicas are distributed in balanced distances
and the user can find the needed data in a near location. Figure 2 shows an example demonstrating the grid
clustering process using γ = 4.

K-means is used in the clustering of GDCs and the separation of the retained clusters based on the length of
their centroids using the Haversine formula (Eq. 1) of the great-circle distance between two points49:

where D is the distance (in km) between two points on the earth identified by latitude φ and longitude � (in
radians) and R is the radius of the earth (in km); here, the geometric mean was used, that is, 6367.45 km.

Balancer
The replica placement strategy, used by the replica manager in GDDM, does not take into account the disk
space utilization of GDCs. Data might not be placed uniformly across different GDCs which causes imbalance.
Furthermore, imbalance occurs when new GDCs are connected to the grid.

The balancer works in a similar way as the HDFS’s balancer tool. It balances disk space usage on every grid
cluster. It considers a threshold value as an input parameter. The threshold value is a fraction between (0, 1).
The balancer moves replicas between the GDCs in the same grid cluster until it is deemed to be balanced, which
means that the utilization of every GDC differs from the utilization of the grid cluster by no more than the given
threshold parameter.

This tool iteratively moves replicas from GDCs with lower free disk space to other GDCs with higher free
disk space in the same grid cluster. In order to maintain data availability, the balancer uses the replica replace-
ment strategy discussed in “Replica replacement” section where the replicas with the least frequent number are
chosen to move. The destination is selected based on the voting number where the location of the highest voting

(1)D = 2R arcsin

(
√

sin2

(

φ1 − φ2

2

)

+ cosφ1 cosφ2 sin
2

(

�1 − �2

2

)

)

,

Figure 2.   An example to demonstrate the grid clustering process.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

number is the recommended location. Moreover, it is worth mentioning that the balancer does not reduce or
increase the number of replicas while it just changes the location of the replicas.

Replica scanner
Replica scanner is a tool on every GDC. It periodically scans all replicas and verifies that the stored checksum
equivalents the replica data. Besides, when a user reads a block replica, it first verifies its checksum. In case that
the verification succeeds, it informs the GDC. In the same time, GDC considers it as a verification of the replica
and no need to run the replica scanner tool on this block replica.

Whenever a replica scanner or a read user detects a corrupt block replica, it notifies the DCtrl. The DCtrl
marks the block replica as a corrupt replica, but it does not remove the block replica immediately. Instead, it
initiates to copy a good replica of the block. When the count of the good replicas reaches the replication factor,
the corrupt replica can be removed. The goal of this restriction is to preserve data as long as possible. Suppose that
all replicas of a block are corrupt; this restriction allows the user to retrieve the data from the corrupt replicas.

Replication management
The main objective of DCtrl is to ensure that each data block has several replicas distributed into different data
centers. The DCtrl receives a report from the different GDCs when a block replica arrives. Using this report, the
DCtrl detects the block that has become over- or under-replicated. When a block becomes over-replicated, the
DCtrl reduces the number of the replicas by selecting a replica to remove. Also, when a block becomes under-
replicated due to a failure happened or data loss, the DCtrl selects the best possible location to store the replica.
The goal is to balance the distance between the different block replicas in order to increase data availability. The
DCtrl manages the replicas through three parts:

Replica placement
When a DCtrl starts, it launches the grid clustering as discussed in “Grid clustering” section to produce separate
GDCs clusters. Replica placement uses these GDCs clusters to transfer the new block replicas where each block
replica is transferred to a separate GDCs cluster. This step guarantees that the distances between the different
replicas of the same block are approximately equal. Therefore, wherever a client is, he can find a close replica
increasing data availability.

When a client requests writing a file, the DCtrl places the first replica at the closest GDC to the client. In this
way, the DCtrl aims to minimize the write cost and increase data availability. The other replicas are distributed to
the other GDCs clusters. DCtrl selects the best possible location inside every GDCs cluster to transfer the replica.
After all target locations are selected, the selected GDCs are organized as a pipeline ordered by their closeness
to the first replica. Figure 3 shows the details of the writing data process. The numbered arrows describe the
execution flow triggered by a top-level read job initiated by a big data application. The main steps to write a big
data file are summarized as follows:

1.	 BDA initializes a connection with the DCtrl and requests DCtrl to nominate a set of γ locations to host the
replicas, where γ is the replication factor.

2.	 The DCtrl replies with a set of γ locations. The first location is the closest GDC to BDA location at all and
then other locations are in the order of their closeness to the first replica.

3.	 BDA transfers the data to the closest GDC.
4.	 The BDMS of the closest GDC converts and stores the data as random sample data blocks, each being a

random sample of the whole data.
5.	 The closest GDC organizes a pipeline of other GDCs in the order of their closeness. Then, the data are pushed

in this order to the other data centers.

For the reading process, the DCtrl sends the block locations to the client ordered by their closeness to the
reader. Figure 4 shows the details of a block replica reading process. The numbered arrows describe the execu-
tion flow triggered by a top-level read job. A big data application (BDA) wanting to read a file first contacts the

Figure 3.   The writing process flow.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

DCtrl to get the best location of data blocks making up the file and then reads block contents from the closest
GDC. The main steps of reading a file by a big data application are summarized as follows:

1.	 BDA initializes a connection with the DCtrl and requests the closest GDC storing the required data.
2.	 DCtrl replies with the information of the closet GDC hosting the block replica ( GDCh ) and the closest GDC

at all ( GDCc).
3.	 If GDCh is not GDCc , the BDA votes at GDCc for the required block replica.
4.	 BDA requests the required data from GDCh.
5.	 GDCh replies with the required block replica. Also, GDCh increments the frequent number of the requested

block replica in the frequent table.

Replica replacement
The DCtrl receives periodically a block report from the different GDCs. If the DCtrl detects that a block replica
becomes over-replicated, it selects a replica to remove. The DCtrl removes the replica with the least frequent
number. When a block replica becomes under-replicated, the missing replicas are copied to the locations of the
highest voting number of the same block.

In case that the storage is full, the DCtrl moves the block replica with the least frequent number to another
location. The other location is determined based on the voting number of the same block in the different GDCS.
The DCtrl selects the location of the highest voting number to increase the availability and reduce the bandwidth
utilization.

Replica selection
When a big data application requests a data file to perform a job execution, the DCtrl chooses the appropriate
replica location to execute the job. The DCtrl estimates the bandwidth between the two places. It selects the
appropriate location based on several parameters such as bandwidth, network protocol, memory usage, and
distance. Besides, BDMS provides the statistical summary of the blocks, such as the number of records, the
number of features, mean, variance, max, min, and among others. For specific analysis tasks, DCtrl can select
particular blocks based on these specific statistical features.

Geo‑distributed ensemble learning application
In machine learning, ensemble learning refers to learning methods that use multiple models built with one or
multiple learning algorithms from multiple component data sets in an ensemble model to gain better perfor-
mance in classification or prediction than any single model built with one algorithm from one training data set.
Random samples are widely used in ensemble learning to obtain multiple component data sets from a given
training data set.

The geo-distributed data analysis framework is illustrated in Fig. 5. Suppose that a big dataset D is distributed
across 5 data centers. Using GDDM, The first operation is to partition the data stored on each data center into
a set of random sample data blocks. Next step is the data replication. When each of them replicates its data on
other data centers, the end result, the stored data on each data center can be considered as a random sample of D.
Next, for each data center, a base learner is created by training a model on a randomly selected subset of the data
from each data center. For instance, four learners π1,π2,π3,π4 are built in parallel, as shown in Fig. 5. Finally,
each data center sends the learner model to the central data center to build the ensemble model �.

The geo-distributed data analysis framework is applicable to many learning tasks, including estimation of
statistics of a big data set D, supervised and unsupervised learning. In future, we will investigate different learn-
ing tasks using the geo-distributed data analysis framework.

Simulation results
In this section, we use simulation results to show the performance of a geo-distributed ensemble model in build-
ing classification models. These experiments were conducted on a cluster consisting of 5 nodes. Each node has
12 cores (24 with Hyper-threading), 128 GB RAM, and 12.5 TB disk storage. The operating system is Ubuntu

Figure 4.   The reading process flow.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

version 14.04.5. Apache Hadoop 2.6.0 and Apache Spark 2.3.0 are installed on this cluster. Scala version 2.11.12
is used for the implementation.

Data generation
In the experiments, we generated two big data sets with the form Zi = (Xi ,Yk) , with the identical and independ-
ent distribution for i = {1, ...,N} , ∀Yk ∈ (Y1, ...,YK) : Xi,m = N(µk,m, σk,m) , where m = {1, ...,M} , µk,m ∈ U(0, 10)
and σk,m ∈ U(0, 10) . We generated both data sets with the following parameters: the number of features (M) =
100, the number of classes (K) = 500, and the number of records (N) = 100, 000, 000. The final generated data
volume was 100 GB, and the data records are sorted in class labels. The difference between both datasets is the
distribution of the class labels. DS1 has 500 classes distributed equally; i.e. all classes have an equal number of
objects. On the other hand, the probability distribution of the class labels of DS2 is unbalanced with classes (from
class label 1 to class label 100) make 70% of the total number of the objects.

We assume that the data are distributed into 5 data centers. Therefore, we divided each data set (DS1, and
DS2) into 5 data subsets, {D1, D2, D3, D4, D5}, equally and randomly and then converted to RSP data blocks
using RRPlib50.

Performance of the geo‑distributed ensemble learning model
In this section, we demonstrate the performances of data analysis across geo-distributed data centers using the
geo-distributed ensemble model. We use three learning algorithms, decision tree, random forest, and logistic
regression, in building the classification models. We recorded the performances of execution time and classifi-
cation accuracy of models built from random samples of the distributed data centers. In order to simulate the
performance of the geo-distributed ensemble learning model on multiple data centers, we use the following steps
to summarize the experiment procedures for DS1 and DS2:

1.	 Suppose that there are five data centers, each having the same configurations as our university’s computing
cluster. Each data center stores a data subset of the generated data {D1, D2, D3, D4, D5}.

2.	 In order to simulate the data replication technique, we build new five subsets {DC1, DC2, DC3, DC4, DC5}.
Each block in old subsets is replicated to a random three new subsets as the replication factor is 3. The new
five data sets simulated the data stored in each data center after data replication.

3.	 We built a classification model for each produced data subset from some samples of the data. We used deci-
sion tree algorithm to build a model from DC1. Random forest algorithm is used to build models from DC2
and DC3. Logistic regression algorithm is used to build models from DC4 and DC5.

4.	 After building the five models, we used the voting method as a consensus function to predict the final class
label.

5.	 We repeated the experiment 20 times and then reported the average of the accuracy and the processing time.

Figures 6 and 7 show the results of the classification tasks using geo-distributed ensemble model. As shown
in both figures, when 20% of the data is used to build the ensemble models, the accuracy is approximately 99%
in DS1 case and 97% in DS2 case. Moreover, the processing time for classifying 20% of the data in both figures is
less than 100 min without including the transferring time between data centers. The increase of the processing
time is due to the processing time used by logistic regression algorithm. In this experiment, we assume the data

Figure 5.   The geo-distributed ensemble learning application: for each data center, a learning algorithm is
applied on a subset of RSP blocks which is selected randomly to build a base learner. After that, the learner
models are sent to the central data center to build the ensemble model.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

is already replicated to the various data centers at generation time; therefore, we neglect the time consumed on
replication.

Conclusions
In this paper, we have proposed a data management framework to mange the distributed data among geo-dis-
tributed data centers. We have discussed the design and architecture of the proposed framework. The proposed
architecture is composed of a grid of geo-distributed data centers connected to a data controller. The data control-
ler manages and organizes the blocks replicas across the geo-distributed data centers. The proposed framework
supports large-scale ensemble model data analysis. The experimental results show that a sample of the data on
each data center is enough to be a representative of the whole distributed data.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 8 September 2022; Accepted: 12 October 2023

References
	 1.	 Marx, V. The big challenges of big data. Nature 498(7453), 255–260 (2013).
	 2.	 Chong, F. T., Heck, M. J. R., Ranganathan, P., Saleh, A. A. M. & Wassel, H. M. G. Data center energy efficiency: Improving energy

efficiency in data centers beyond technology scaling. IEEE Des. Test 31(1), 93–104 (2014).
	 3.	 Pegus, P. et al. Analyzing the efficiency of a Green University Data Center. In Proc. 7th ACM/SPEC on International Conference on

Performance Engineering—ICPE 16 63–73 (ACM Press, 2016).
	 4.	 Labrinidis, A. & Jagadish, H. V. Challenges and opportunities with big data. Proc. VLDB Endow. 5(12), 2032–2033 (2012).
	 5.	 Celesti, A., Galletta, A., Fazio, M. & Villari, M. Towards hybrid multi-cloud storage systems: Understanding how to perform data

transfer. Big Data Res. 16, 1–17 (2019).
	 6.	 https://​hadoop.​apache.​org/ (Accessed 13 December 2018).
	 7.	 Zaharia, M. et al. Apache spark: A unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016).
	 8.	 Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z. & Sadatdiynov, K. A survey of data partitioning and sampling methods to

support big data analysis. Big Data Mining Anal. 3(2), 85–101 (2020).
	 9.	 Fernández, A., Gutiérrez-Avilés, D., Troncoso, A. & Martínez-Álvarez, F. Automated deployment of a spark cluster with machine

learning algorithm integration. Big Data Res. 19–20, 100135 (2020).

Figure 6.   Classification results for the synthesized data set DS1 which is distributed into 5 subsets.

Figure 7.   Classification results for the synthesized data set DS2 which is distributed into 5 subsets.

https://hadoop.apache.org/

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

	10.	 Ji, S. & Li, B. Wide area analytics for geographically distributed datacenters. Tsinghua Sci. Technol. 21(2), 125–135 (2016).
	11.	 Dolev, S., Florissi, P., Gudes, E., Sharma, S. & Singer, I. A survey on geographically distributed big-data processing using mapreduce.

IEEE Trans. Big Data 5(1), 60–80 (2019).
	12.	 https://​inves​tor.​fb.​com/​inves​tor-​news/​press-​relea​se-​detai​ls/​2020/​Faceb​ook-​Repor​ts-​First-​Quart​er-​2020-​Resul​ts/​defau​lt.​aspx

(Accessed 13 July 2020).
	13.	 https://​www.​uber.​com/ (Accessed 13 July 2020).
	14.	 https://​eng.​uber.​com/​uber-​big-​data-​platf​orm/ (Accessed 13 July 2020).
	15.	 Pu, Q. et al. Low latency geo-distributed data analytics. Comput. Commun. Rev. 45(5), 421–434 (2015).
	16.	 Hu, Z., Li, B. & Luo, J. Time- and cost-efficient task scheduling across geo-distributed data centers. IEEE Trans. Parallel Distrib.

Syst. 29(3), 705–718 (2018).
	17.	 Mansouri, N. & Javidi, M. A new prefetching-aware Data Replication to decrease access latency in cloud environment. J. Syst.

Softw. 144, 197–215 (2018).
	18.	 Dabas, C. & Aggarwal, J. An intensive review of data replication algorithms for cloud systems. In Emerging Research in Computing,

Information, Communication and Applications (eds Shetty, N. R. et al.) 25–39 (Springer, 2019).
	19.	 Wolfson, O. & Milo, A. The multicast policy and its relationship to replicated data placement. ACM Trans. Database Syst. 16(1),

181–205 (1991).
	20.	 Bae, M. M. & Bose, B. Resource placement in torus-based networks. IEEE Trans. Comput. 46(10), 1083–1092 (1997).
	21.	 Loukopoulos, T., Lampsas, P. & Ahmad, I. Continuous replica placement schemes in distributed systems. In Proc. 19th Annual

International Conference on Supercomputing, ICS 2005 (eds Rudolph, A. L.) 284–292 (ACM, 2005).
	22.	 Rehn-Sonigo, V. http://​arxiv.​org/​abs/​0706.​3350.
	23.	 Tzeng, N. & Feng, G. L. Resource allocation in cube network systems based on the covering radius. IEEE Trans. Parallel Distrib.

Syst. 7(4), 328–342 (1996).
	24.	 Abawajy, J. H. Placement of file replicas in data grid environments. In: Computational Science—ICCS 2004, 4th International

Conference, Kraków, Poland, June 69, 2004, Proceedings, Part III, Vol. 3038 of Lecture Notes in Computer Science (eds Bubak, M. et
al.) 66–73 (Springer, 2004).

	25.	 Bell, W. H., Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Stockinger, K. & Zini, F. Evaluation of an economy-based file
replication strategy for a data grid. In 3rd IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2003), 12–15
May 2003, Tokyo, Japan 661–668 (IEEE Computer Society, 2003).

	26.	 Rahman, R. M., Barker, K. & Alhajj, R. Replica placement strategies in data grid. J. Grid Comput. 6(1), 103–123 (2008).
	27.	 Ranganathan, K. & Foster, I. T. Identifying dynamic replication strategies for a high-performance data grid. In Grid Comput-

ing—GRID 2001, Second International Workshop, Denver, CO, USA, November 12, 2001, Proceedings, Vol. 2242 of Lecture Notes in
Computer Science (eds Lee, C. A.) 75–86 (Springer, 2001).

	28.	 Stockinger, H. et al. File and object replication in data grids. Clust. Comput. 5(3), 305–314 (2002).
	29.	 Mansouri, N. & Dastghaibyfard, G. H. A dynamic replica management strategy in data grid. J. Netw. Comput. Appl. 35(4), 1297–

1303 (2012).
	30.	 Hara, T. Effective replica allocation in ad hoc networks for improving data accessibility. In Proc. IEEE INFOCOM 2001, the Con-

ference on Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies,
Twenty Years into the Communications Odyssey, Anchorage, Alaska, USA, April 22–26, 2001 1568–1576 (IEEE Computer Society,
2001).

	31.	 Tu, M., Li, P., Xiao, L., Yen, I. & Bastani, F. B. Replica placement algorithms for mobile transaction systems. IEEE Trans. Knowl.
Data Eng. 18(7), 954–970 (2006).

	32.	 https://​www.​datas​tax.​com/​resou​rces/​white​papers/​intro-​to-​multi​dc (Accessed 13 December 2018).
	33.	 Dunning, T. & Ellen, F. Data Where You Want It (O’REILLY, 2017).
	34.	 Emara, T. Z. & Huang, J. Z. A distributed data management system to support large-scale data analysis. J. Syst. Softw. 148, 105–115

(2019).
	35.	 Trinh, T., Duc, L., Tran, C., Duy, T. & Emara, T. A new stratified block model to process large-scale data for a small cluster. Artif.

Intell. Data Big Data Process. Proc. ICABDE 2021, 253–263 (2022).
	36.	 Wei, C. et al. A two-stage data processing algorithm to generate random sample partitions for big data analysis. In Cloud Comput-

ing—CLOUD 2018 (eds Luo, M. & Zhang, L.-J.) 347–364 (Springer, Berlin, 2018).
	37.	 Emara, T. Z. & Huang, J. Z. Distributed data strategies to support large-scale data analysis across geo-distributed data centers.

IEEE Access 8, 178526–178538 (2020).
	38.	 Shvachko, K., Kuang, H., Radia, S. & Chansler, R. The hadoop distributed file system. In Proc. IEEE 26th Symposium on Mass

Storage Systems and Technologies, MSST 26 1–10 (IEEE Computer Society, 2010).
	39.	 Ghemawat, S., Gobioff, H. & Leung, S.-T. The google file system. In Proc. Nineteenth ACM Symposium on Operating Systems

Principles, SOSP 03 29–43 (ACM, 2003).
	40.	 Ghemawat, S., Gobioff, H. & Leung, S.-T. The google file system. ACM SIGOPS Oper. Syst. Rev. 37(5), 29–43 (2003).
	41.	 Gill, N. K. & Singh, S. Dynamic cost-aware re-replication and rebalancing strategy in cloud system. In Advances in Intelligent

Systems and Computing Vol. 328 (eds Satapathy, S. C. et al.) 39–47 (Springer, 2015).
	42.	 Liu, J. & Shen, H. A popularity-aware cost-effective replication scheme for high data durability in cloud storage. In 2016 IEEE

International Conference on Big Data (Big Data) 384–389 (IEEE, 2016).
	43.	 Acharya, S. & Zdonik, S. B. An Efficient Scheme for Dynamic Data Replication (Springer, 1993).
	44.	 Matri, P., Pérez, M. S., Costan, A., Bougé, L. & Antoniu, G. Keeping up with storage: Decentralized, write-enabled dynamic geo-

replication. Futur. Gener. Comput. Syst. 86, 1093–1105 (2018).
	45.	 Mansouri, Y., Toosi, A. N. & Buyya, R. Cost optimization for dynamic replication and migration of data in cloud data centers.

IEEE Trans. Cloud Comput. 7(3), 705–718 (2019).
	46.	 Limam, S., Mokadem, R. & Belalem, G. Data replication strategy with satisfaction of availability, performance and tenant budget

requirements. Clust. Comput. 22, 1199 (2019).
	47.	 DeCandia, G. et al. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007).
	48.	 Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C. & Shah, S. Serving large-scale batch computed data with project voldemort.

In Proc. 10th USENIX Conference on File and Storage Technologies, FAST 12 18 (USENIX Association, 2012).
	49.	 Sinnott, R. W. Virtues of the haversine. Sky Telesc. 68, 158 (1984).
	50.	 Emara, T. Z. & Huang, J. Z. RRPlib: A Spark Library for Representing HDFS Blocks as A Set of Random Sample Data Blocks, Science

of Computer Programming 102301 (2019).

Acknowledgements
The authors express great thanks to the publication support from The Science, Technology & Innovation Funding
Authority (STDF) and The Egyptian Knowledge Bank (EKB).

https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx
https://www.uber.com/
https://eng.uber.com/uber-big-data-platform/
http://arxiv.org/abs/0706.3350
https://www.datastax.com/resources/whitepapers/intro-to-multidc

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:17783 | https://doi.org/10.1038/s41598-023-44789-x

www.nature.com/scientificreports/

Author contributions
T.E. designed, and carried out the experimental work. T.E. and T.T. wrote the manuscript. All authors read and
approved the final manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in coopera-
tion with The Egyptian Knowledge Bank (EKB).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.Z.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Geographically distributed data management to support large-scale data analysis
	Related works
	Geo-distributed data management framework (GDDM)
	Data controller (DCtrl)
	Geo-distributed data centers (GDCs)
	Grid clustering
	Balancer
	Replica scanner

	Replication management
	Replica placement
	Replica replacement
	Replica selection

	Geo-distributed ensemble learning application
	Simulation results
	Data generation
	Performance of the geo-distributed ensemble learning model

	Conclusions
	References
	Acknowledgements

