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Variational quantum metrology 
for multiparameter estimation 
under dephasing noise
Trung Kien Le 1,2, Hung Q. Nguyen 3 & Le Bin Ho 4,5*

We present a hybrid quantum-classical variational scheme to enhance precision in quantum 
metrology. In the scheme, both the initial state and the measurement basis in the quantum part 
are parameterized and optimized via the classical part. It enables the maximization of information 
gained about the measured quantity. We discuss specific applications to 3D magnetic field sensing 
under several dephasing noise models. Indeed, we demonstrate its ability to simultaneously estimate 
all parameters and surpass the standard quantum limit, making it a powerful tool for metrological 
applications.

Quantum metrology is an estimation process that utilizes unique quantum phenomena such as entanglement 
and squeezing to improve the precision of estimation beyond classical  limits1–3. Recent development in quantum 
computing leads to numerous optimal algorithms for enhancing precision in single-parameter estimation, such 
as adaptive  measurements4–7, quantum error  correction8,9, and optimal quantum  control10–12. So far, a vari-
ational algorithm has been demonstrated by combining the advantages of both quantum and classical systems 
for quantum-enhanced  metrology12–15. A similar protocol for spin systems was also  introduced16,17.

Multiparameter estimation is essential in various fields, such as Hamiltonian  tomography18, multiphase 
 sensing19–21, gravitational wave  detection22, and atomic  clocks23,24. However, the estimation is more challenging 
due to the  incompatibility25. In these cases, simultaneous determination of all parameters is impossible, resulting 
in a  tradeoff26. Numerous techniques have been introduced to tackle this challenge, including establishing opti-
mal measurement  strategies27,28, employing parallel  scheme21, sequential feedback  scheme29, and implementing 
post-selection  procedures30. More recently, a variational toolbox for multiparameter estimation was  proposed31, 
which is a generalization from the previous work mentioned  above14.

While using variational schemes is promising, their potential significance in multiparameter quantum metrol-
ogy has yet be fully understood, even in principle. Furthermore, determining the optimal quantum resources 
and measurement strategy to extract maximum information about all parameters is limited by the tradeoffs in 
estimating incompatible  observables26,32,33 and required collective measurements over multiple copies of a probe 
 state32,33. Therefore, finding a suitable and practical strategy for precise estimation of multiple parameters remains 
a thriving area of quantum metrology.

In this work, we propose a variational scheme to enhance the precision of multiparameter estimation in the 
presence of dephasing noise. The basic idea is to use a quantum computer to prepare a trial state (an ansatz) 
that depends on a set of trainable variables. The state is subjected to a series of control operations, representing 
unknown multiparameter and noise, and then is measured through observables determined by other trainable 
variables. The measurement results are used to update the trainable variables and optimize the estimation of the 
unknown parameters.

Optimizing both the initial probe state and the measurement operators allows us to identify suitable condi-
tions for the quantum probe to increase sensitivity and achieve the ultimate quantum limit for all parameters. In 
numerical simulations, we estimate a 3D magnetic field under a dephasing noise model and find that sensitivity 
for all parameters can simultaneously reach the ultimate quantum bound, i.e., the classical bound equals the 
quantum bound. We also examine a time-dependent Ornstein-Uhlenbeck  model34 and observe results surpass-
ing the standard quantum limit by increasing the probe’s number of particles. This approach holds promise for 
a wide range of metrological applications, including external field sensing, precision spectroscopy, gravitational 
wave detection, and others, where the effects of noises cannot be ignored.

OPEN

1Department of Physics, University of California, Santa Barbara, Santa Barbara, USA. 2Present address: 
Department of Applied Physics, Stanford University, Stanford, California 94305, USA. 3Nano and Energy Center, 
University of Science, Vietnam National University, Hanoi 120401, Vietnam. 4Frontier Research Institute for 
Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan. 5Department of Applied Physics, Graduate 
School of Engineering, Tohoku University, Sendai 980-8579, Japan. *email: binho@fris.tohoku.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44786-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17775  | https://doi.org/10.1038/s41598-023-44786-0

www.nature.com/scientificreports/

Results
Variational quantum metrology
The goal of multiparameter estimation is to evaluate a set of unknown d parameters φ = (φ1,φ2, . . . ,φd)

⊺ , which 
are imprinted onto a quantum probe via a unitary evolution U(φ) = exp(−itHφ) = exp(−it

∑d
k=1 Hkφk) , where 

H = (H1,H2, . . . ,Hd) are non-commuting Hermitian Hamiltonians. The precision of estimated parameters 
φ̌ is evaluated using a mean square error matrix (MSEM) V =

∑

m p(m|φ)
[

φ̌(m)− φ
][

φ̌(m)− φ
]

⊺
, where 

p(m|φ) = Tr[ρ(φ)Em] is the probability for obtaining an outcome m when measuring the final state ρ(φ) by 
an element Em in a positive, operator-value measure (POVM). For unbiased estimators, the MSEM obeys the 
Cramér-Rao bounds (CRBs)35–38

where W is a scalar weight matrix, which can be chosen as an identity matrix without loss of generality. The 
classical bound is CF = Tr[WF−1] , where F is the classical Fisher information matrix (CFIM) with elements 
Fij =

∑

m
1

p(m|φ) [∂φi p(m|φ)][∂φj p(m|φ)]39. The Nagaoka–Hayashi bound CNH and Holevo bound CH are given 
via semidefinite programming, i.e., CNH = min

{D,X}
Tr[(W⊗ ρ(φ)) · D]38,40, and CH = min

{X}

(

Tr[WReZ + ||
√
WIm

Z
√
W]||1

)36,41, where D is a d-by-d matrix contains Hermitian operators Dij and satisfies D ≥ XX⊺ , 
X = (X1,X2, . . . ,Xd)

⊺ satisfies Tr[ρ(φ)Xj] = φj and Tr[Xi∂φjρ(φ)] = δij , Z is a positive semidefinite matrix with 
elements Zij = Tr[XiXjρ(φ)] . Finally, CS = Tr[WQ−1] is a symmetric logarithmic derivative (SLD) quantum 
bound where Qij = Re

[

Tr[ρ(φ)LiLj]
]

 is the real symmetric quantum Fisher information matrix (QFIM) that 
defined through the SLD 2∂φjρ(φ) = {Lj , ρ(φ)}39.

Although optimal estimators can achieve CF
42, the CNH can be attainted with separable measurements for 

qubits  probes40, and asymptotic achievement of CH is  possible43–47, it is not always possible to attain CS for mul-
tiparameter  estimation41. In this work, we attempt to reach this bound. In some instances, CH = CS if a weak 
commutativity condition Im(Tr[LjLiρ(φ)]) = 0 is  met41,48. A similar condition for pure states is also applied to 
attain CF = CS

19,49,50. Further discussion on the interplay between CNH,CH, and CS has been  reported37. How-
ever, this condition alone is insufficient to achieve the quantum bounds practically; instead, attaining CS and 
CH also requires entangled measurements (POVM) over multiple  copies45,46. Recently, Yang et al., have derived 
saturation conditions for general  POVMs28. To be more precise, when F ≥ Q > 0 and for any arbitrary full-rank 
positive weight matrix W > 0 , the equally CF = CS implies F = Q.

This paper presents a variational quantum metrology (VQM) scheme following Meyer et al.  toolbox31 as 
sketched in Fig. 1 to optimize both the preparation state and POVM. A quantum circuit U(θ) is used to gener-
ate a variational preparation state with trainable variables θ . Similar quantum circuit with variables µ is used to 
generate a variational POVM E(µ) = {Em(µ) = U

†(µ)EmU(µ) > 0
∣

∣

∑

m Em(µ) = I} . Using classical comput-
ers, a cost function C(θ ,µ) can be optimized to update the variables for quantum circuits, resulting in enhanced 
information extraction. The scheme is repeated until it converges.

To investigate the attainable the ultimate SLD quantum bound, we define the cost function by a relative 
 difference47

which is positive semidefinite according to Eq. (1). The variables are trained by solving the optimization task 
argmin
{θ ,µ}

C(θ ,µ) . As the value of C(θ ,µ) approaches zero, we reach the ultimate SLD quantum bound where 

CF = CS . Notably, we strive for agreement between classical and SLD quantum bounds assuming Tr[WV] = CF , 
and thus, omit discussion on the estimator for achieving Tr[WV] = CF . Moreover, the cost function (2) serves 
as a technical tool to optimize the variational scheme, while the main analyzing quantities are CRBs. A vital 
feature of the VQM is using variational quantum circuits, which allows for optimizing the entangled probe state 
and measurements to extract the maximum information about the estimated parameters. This approach thus 

(1)Tr
[

WV
]

≥ CF ≥ CNH ≥ CH ≥ CS,

(2)C(θ ,µ) = 1− CS

CF

,

Figure 1.  Variational quantum metrology. (1) use quantum circuit U(θ) to prepare a variational state; (2) 
encode multiparameter φ and noise using U(φ) and noise channels; (3) use circuit U(µ) to create a variational 
POVM for measurement; (4) send measurement results to a classical computer to optimize cost function C(θ ,µ) 
using a gradient-based optimizer. Update new training variables and repeat the scheme until it converges.
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does not require entangled measurements over multiple copies. We further discuss various cost functions in the 
Discussion section.

Ansatzes
We propose three variational circuits: a star topology ansatz, a ring topology ansatz, and a squeezing ansatz. The 
first two ansatzes are inspired by quantum graph states, which are useful resources for quantum  metrology51,52. 
A conventional graph state is formed by a collection of vertices V and edges D as G(V ,D) =

∏

i,j∈D CZij|+�V , 
where CZij represents the controlled-Z gate connecting the i and j qubits, and |+� is an element in the basis of 
Pauli σx . The proposed ansatzes here incorporate y-rotation gates ( Ry(θ) = e−iθσy/2 ) at every vertex prior to 
CZ gates (see Fig. 2a,b). The squeezing ansatz in Fig. 2c is inspired by squeezing states, which is another useful 
resource for quantum  metrology53–55. It has x(y)-rotation gates and global Mølmer–Sørensen gates Ux(z) , where 
Ux(z) = exp(−i

∑N
j=1

∑N
k=j+1 σx(z) ⊗ σx(z)

χjk
2 ) for an N-qubit  circuit56. The trainable variables for one layer are 

2N − 2 , 2N, and N(N + 1) for the star, ring, and squeezing ansatz, respectively. Hereafter, we use these ansatzes 
for generating variational preparation states and variational POVM in the VQM scheme.

Multiparameter estimation under dephasing noise
After preparing a variational state ρ(θ) = U(θ)ρ0U(θ) , we use it to estimate a 3D magnetic field under 
dephasing noise. The field is imprinted onto every single qubit via the Hamiltonian H =

∑

i∈{x,y,z} φiσi , where 
φ = (φx ,φy ,φz) , and σi is a Pauli matrix. Under dephasing noise, the variational state ρ(θ) evolves  to13

where we omitted θ in ρ(θ) for short. The superoperator H generates a unitary dynamic Hρ = [H , ρ] , and L(k) 
is a non-unitary dephasing superoperator with γ is the decay rate. In terms of Kraus operators, the dephasing 
superoperator gives

where K1 =
(√

1− � 0
0 1

)

 and K2 =
(√

� 0
0 0

)

 are Kraus operators, and � = 1− e−γ t is the dephasing probability. 

Finally, the state is measured in the variational POVM E(µ) and yields the probability p(m) = Tr[Et(ρ)Em(µ)] . 
Note that p also depends on θ ,φ , and µ.

It is important to attain the ultimate SLD quantum bound, i.e., CF = CS . We thus compare numerical results 
for the cost function, CF , and CS as shown in the top panels of Fig. 3. At each � , the cost function and other 
quantities are plotted with the optimal θ obtained after stopping the training by EarlyStopping  callback57. The 
numerical results are presented at N = 3 , and the number of layers is chosen from their optimal values as shown 
in the Method and Fig. 8. Through the paper, we fixed (φx ,φy ,φz) = (π/6,π/6,π/6).

We find that for small noises, CF reaches CS , which is consistent with earlier numerical  findings46,47. Remark-
ably, different from the previous findings where the convergence of these bounds is not clear, here we show 
that both CF and CS remain small (also in comparison to previous  work31) without any divergence. We further 
compare the performance of the star ansatz to that of the ring and squeezing ansatzes. It saturates the ultimate 
quantum limit for dephasing probabilities � < 0.5 , whereas the ring and squeezing ansatzes only reach the limit 
for � < 0.2 . The reason is that the star graph exhibits a central vertex connected to the remaining N − 1 sur-
rounding vertices, which facilitates robust quantum metrology, as discussed  in51.

Furthermore, we evaluate the tradeoff between the CFIM and QFIM by introducing a function T = Tr[FQ−1]. 
For unknown d parameters, the naive bound is max(T ) = d , leading to simultaneous optimization of all param-
eters. The results are shown in the bottom panels of Fig. 3 and agree well with the CRBs presented in the top 
panels, wherein T → 3 whenever the SLD quantum bound is reached. So far, we observe that T > d/2 for all 
cases, which is better than the theoretical prediction  previously58. This observation exhibits a practical advantage 
of the VQM approach across different levels of noise.

(3)Et(ρ) =
[ N
∏

k=1

eγ tL
(k)
]

e−itHρ,

(4)eγ tL
(k)
ρ = K

(k)
1 ρ[K (k)

1 ]† + K
(k)
2 ρ[K (k)

2 ]†,

Figure 2.  Ansatzes for preparation state and POVM. (a) Star topology entangled ansatz. (b) Ring topology 
entangled ansatz. (c) Squeezing ansatz. In the circuits, Rx(y) : x(y)-rotation gate, Ux(z) : global Mølmer–Sørensen 
gate, •−• : controlled-Z gate.
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Barren plateaus
Variational quantum circuits under the influence of noises will exhibit a barren plateau (BP), where the gradi-
ent along any direction of the variables’ space vanishes exponentially with respect to the noise  level59. The BP 
prevents reaching the global optimization of the training space, thereby reducing the efficiency and trainability 
of the variational quantum circuit. However, BPs can be partially mitigated through carefully designing ansatzes 
and cost  functions60.

The deviation of CRBs shown in Fig. 3 may be subject to the BP raised by noise. We examine such dependent 
and show the results in Fig. 4. We plot |∂θ1C| (Fig. 4a) and Var[∂θ1C] (Fig. 4b), where C is defined in Eq. (2) after 
200 runs with random initialization of θ and µ for each value of � . As predicted, both of them demonstrate an 
exponential decline with an increase in the dephasing probability. Especially, Var[∂θ1C] exponentially vanishes 
with the slope of -2.259, -2.533, and -3.240 for the star, ring, and squeezing ansatz, respectively. The star ansatz 
exhibits slower gradient decay as � approaches 1 due to its smaller trainable variables’ space than the ring and 
squeezing ansatz. This indicates better training and less susceptibility to vanishing gradients, leading to better 
achievement of the ultimate quantum bound.

Figure 3.  Variational quantum metrology under dephasing noise. (Top): plot of the optimal cost function 
C(θ ,µ) , classical bound CF , and SLD quantum bound CS as functions of dephasing probability. From left 
to right: star, ring, and squeezing ansatz. (Bottom): plot of corresponding tradeoff T  . Numerical results are 
calculated at N = 3 , the optimal number of layers in Fig. 8, and the results are averaged after 10 samples.

Figure 4.  Barren plateau. (a) Plot of |∂θ1C| as a function of the dephasing probability � . (b) Plot of the variance 
of gradient Var[∂θ1C ]. The slope of each fit line indicates the exponential decay of the gradient, which is a sign of 
the barren plateau effect. The results are taken average after 200 runs.
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Multiparameter estimation under the Ornstein–Uhlenbeck model
We consider the Ornstein-Uhlenbeck model, where the noise is induced by the stochastic fluctuation of the 
external (magnetic)  field34. The Kraus operators  are61

where q(t) = 1− e−f (t) with f (t) = γ [t + τc(e
−t/τc − 1)] , and τc represents the memory time of the environ-

ment. In the Markovian limit ( τc → 0 ), f (t) = γ t , which corresponds to the previous dephasing case. In the 
non-Markovian limit with large τc , such as t/τc ≪ 1 , we have f (t) = γ t2

2τc
 . In the numerical simulation, we fixed 

γ = 0.1 and τc = 20 (for non-Markovian)

We use this model to study the relationship between sensing time, Markovianity, and ultimate attainability of the 
quantum bound. Figure 5a displays the optimal CRBs for Markovian and non-Markovian noises as functions of 
sensing time t. As previously reported  in20, there exists an optimal sensing time that minimizes the CRBs for each 
case examined here. Moreover, the non-Markovian dephasing (nMar) results in lower metrological bounds as 
compared to the Markovian case (Mar). So far, the minimum CRBs for different N are presented in Fig. 5b. The 
results demonstrate that with an increase in N, the non-Markovian noise attains a better bound than the standard 
quantum limit (SQL) for both classical and SLD quantum bounds. This observation agrees with previous results 
reported using semidefinite  programming62, indicating the potential of variational optimization for designing 
optimal non-Markovian metrology experiments. Finally, we note that in the Ornstein-Uhlenbeck model, the 
SLD quantum bound is unachievable, as indicated by CF > CS . It remains a question for future research on 
whether one can attain the SLD quantum bound CS with probe designs, and the existence of tight bounds in 
the non-Markovian scenario.

Discussion
Concentratable entanglement
We discuss how the three ansatzes create entangled states and the role of entangled resources in achieving the SLD 
quantum bound in VQM. We analyze entanglement using the concentratable entanglement (CE) defined  by63

where P(s) is the power set of s, ∀s ∈ {1, 2, . . . ,N} , and ρα is the reduced state of |ψ� in the subsystem α with 
ρ∅ := I . Practically, ξ(ψ) can be computed using the SWAP test circuit as stated in Ref.63, where ξ(ψ) = 1− p(0), 
with p(0) is the probability of obtaining |00 · · · 0� . The ability of the SWAP test to compute CE is due to the 
equivalence between conditional probability distribution and the definition of CE.

(5)K1(t) =
(
√

1− q(t) 0
0 1

)

, K2(t) =
(
√

q(t) 0
0 0

)

,

(6)q(t) =
{

1− exp(−0.1t) Markovian,

1− exp(− t2

400 ) non-Markovian.

(7)ξ(ψ) = 1− 1

2|s|
∑

α∈P(s)

Tr[ρ2
α],

Figure 5.  Variational quantum metrology under time-dephasing noise. (a) We present the CRBs as functions 
of the sensing time, demonstrating an optimal sensing time for achieving each minimum CRB. The non-
Markovian dephasing (nMar) produces lower metrological bounds in comparison to the Markovian one (Mar). 
(b) Plot of the minimal bounds for cases in (a), comparing them with the standard quantum limit (SQL) and the 
Heisenberg limit (HL). For non-Markovian metrology, the bounds surpass the SQL, as predicted.
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We first train the three ansatzes to evaluate their ability of entangled-state generation. Particularly, the train-
ing process aims to generate quantum states with ξ(ψ) = {ξsep, ξGHZ, ξAME} , where ξsep = 0 for a separable state, 

ξGHZ = 1
2 − 1

2N
 for a GHZ state, and ξAME = 1− 1

2N

∑N
j=0

(

N
j

)

1
2min(j,N−j) for an absolutely maximally entangled 

(AME)  state64,65. The top panels in Fig. 6 display the results for star, ring, and squeezing ansatz, from left to right, 
at N = 4 and (2-2) layers of each ansatz as an example. All the ansatzes examined can reach the separable and 
GHZ state, but hard to achieve the AME state. This observation is consistent with the CEs for conventional graph 
 states65.

We next discuss the role of entanglement in achieving the ultimate SLD quantum bound. In the bottom panels 
of Fig. 6, we graph the corresponding CEs at the optimal CRBs shown in Fig. 3, which apparently do not require 
the maximum entanglement (e.g., GHZ) to achieve the ultimate SLD quantum bound. This phenomenon can 
be explained by the fact that maximum entanglement is not required for high-precision quantum metrology, 
as previously noted in Refs.66–68. Therefore, emphasizing the robustness of easily preparable entangled probe 
states and non-local POVM schemes would be advantageous for quantum metrological applications exposed to 
Markovian and non-Markovian noises.

Cost functions
We address the selection of the cost function used in the variational algorithm. The preference outlined in Eq. (2) 
is not the sole option. An alternative approach could involve adopting the classical bound CF as the cost function 
to maximize the information extraction. However, this way does not guarantee the classical bound can reach the 
quantum bound, a requirement in estimation theory. In Fig. 7a, we present a plot depicting the cost function 
C(θ ,µ) = CF as a function of the number of iterations, considering various noise probabilities � . It demonstrates 
that the cost function reaches its minimum value at a certain iteration. Correspondingly, in Fig. 7b, we provide the 
optimal values for both classical and quantum bounds, denoted as C′

F and C′
S , alongside this optimization. It’s 

important to emphasize that this approach does not guarantee that C′
F equals C′

S . For comparison, we include 
a grayscale representation of these quantities, originally presented in Fig. 3a. Here, optimizing the cost function 
Eq. (2) still ensures small values and convergence for both CF and CS . However, C′

F and C′
S consistently remain 

Figure 6.  Entanglement generation. (Top): from left to right: the distribution of training CEs corresponds 
to the star, ring, and squeezing ansatzes, respectively. All the ansatzes can produce separable and GHZ states, 
but generating an AME state is challenging. The results are shown at N = 4 and (2–2) layers for each ansatz. 
(Bottom): the CEs are ploted at the optimal CRBs in Fig. 3, using the same circuit setup that in the figure. Again, 
� is the dephasing probability.
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below CF and CS . This behavior occurs because the evaluation of CF and CS is based on the state that maximizes 
the figure of merit in Eq. (2), rather than solely minimizing CF or CS.

Furthermore, alternative physical quantities, such as the tradeoff T  and the norm-2, can also be utilized as 
potential cost functions. For instance, a tradeoff cost function is analogous to the one presented in Eq. (2), tak-
ing the form:

where d is the number of estimated parameters. Notably, in scenarios where Q is a diagonal matrix and 
C(θ ,µ) = 0 , it results in a zero tradeoff, i.e., F11Q11

= · · · = Fdd
Qdd

= 1 . Additionally, norm-2 can also function as a 
viable cost  function27.

where ||A||2 =
√
�max(A∗A) represents the norm-2, with �max is the maximum eigenvalue. However, it is worth 

noting that these alternate cost functions might not be convex nor  trainable60. As a result, the selection of the 
cost function in Eq. (2) is indeed appropriate.

Methods
Quantum circuit training
In numerical simulations, we employ the ADAM optimizer to train the VQM  variables69, where the variables 
at step k + 1 are given by

where mk = β1mk−1 + (1− β1)∇θC(θ), vk = β2vk−1 + (1− β2)∇2
θC(θ), m̂k = mk/

(

1− βk
1

)

, v̂k = vk/
(

1− βk
2

)

, 
with the hyper-parameters are chosen as α = 0.2,β1 = 0.8,β2 = 0.999 and ǫ = 10−8 . The gradient ∂θiC(θ) is 
given through the parameter-shift  rule70,71. The simulations are performed in Qiskit Aer  simulator72. The number 
of iterations is chosen using the EarlyStopping  callback57.

To determine the appropriate number of layers for the preparation state and POVM ansatzes, we analyze 
the cost function (2) with different number of layers. We use (⋆, †-‡) to denote the minimum cost function, the 
number of layers for variational state preparation, and the number of layers for variational POVM. The results are 
shown in Fig. 8 with (⋆, †-‡) = (0.057, 2-2), (0.04, 3-2), and (0.054, 2-2) for the star, ring, and squeezing ansatz, 
respectively. Obviously, the metrological performances of these ansatzes demonstrate that deep ansatzes are 
unnecessary, as also noted  in46 where a shallow ansatz was able to saturate quantum bound. For the numerical 
simulations presented in this paper, we keep the number of layers fixed at these values.

(8)C(θ ,µ) = 1− 1

d
Tr[FQ−1],

(9)C(θ ,µ) = ||F − Q||2,

(10)θk+1 = θk − α
m̂k

√

v̂k + ǫ
,

Figure 7.  Optimizing classical bound CF through Variational Quantum Metrology. (a) Plot of the cost function 
C(θ ,µ) = CF versus the number of iterations across various noise probabilities � . (b) Plot of the corresponding 
optimal values of C′

F and C′
S , and their counterparts extracted from Fig. 3a (in grayscale). These numerical 

results pertain to the star-graph configuration.
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Computing Fisher information
Classical and quantum Fisher information matrices can be computed in quantum circuits using the finite dif-
ference approximation. For the CFIM, we first derive an output probability as ∂φi p = p(φi+s)−p(φi−s)

2s , for a small 
shift s. We then compute the CFIM from Fij =

∑

m
1

p(m|φ) [∂φi p(m|φ)][∂φj p(m|φ)] . For the QFIM, we explic-
itly derive Qij = 2vec[∂φiρ(φ)]†

[

ρ(φ)∗ ⊗ I + I ⊗ ρ(φ)
]+

vec[∂φjρ(φ)], where vec[·] is the vectorization of a 
matrix, and the superscript ‘+’ denotes the pseudo-inversion73. Again, we apply the finite difference to compute 
∂φiρ = ρ(φi+s)−ρ(φi−s)

2s , and substitute into the above equations to compute the QFIM.

Data availability
Data are available from the corresponding authors upon reasonable request.

Code availability
All codes used to produce the findings of this study are incorporated into tqix74,75 and available at: https:// 
github. com/ echkon/ tqix- devel opers. See also the Supplementary Material for tutorial codes.
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