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Attentive pairwise interaction 
network for AI‑assisted clock 
drawing test assessment of early 
visuospatial deficits
Raksit Raksasat 1, Surat Teerapittayanon 2, Sirawaj Itthipuripat 3,4, Kearkiat Praditpornsilpa 5, 
Aisawan Petchlorlian 5, Thiparat Chotibut 6, Chaipat Chunharas 7,8* & Itthi Chatnuntawech 2*

Dementia is a debilitating neurological condition which impairs the cognitive function and the 
ability to take care of oneself. The Clock Drawing Test (CDT) is widely used to detect dementia, but 
differentiating normal from borderline cases requires years of clinical experience. Misclassifying 
mild abnormal as normal will delay the chance to investigate for potential reversible causes or slow 
down the progression. To help address this issue, we propose an automatic CDT scoring system that 
adopts Attentive Pairwise Interaction Network (API-Net), a fine-grained deep learning model that 
is designed to distinguish visually similar images. Inspired by how humans often learn to recognize 
different objects by looking at two images side-by-side, API-Net is optimized using image pairs in 
a contrastive manner, as opposed to standard supervised learning, which optimizes a model using 
individual images. In this study, we extend API-Net to infer Shulman CDT scores from a dataset of 
3108 subjects. We compare the performance of API-Net to that of convolutional neural networks: 
VGG16, ResNet-152, and DenseNet-121. The best API-Net achieves an F1-score of 0.79, which is a 3% 
absolute improvement over ResNet-152’s F1-score of 0.76. The code for API-Net and the dataset used 
have been made available at https://​github.​com/​cccnl​ab/​CDT-​API-​Netwo​rk.

Dementia affects millions of people worldwide1, and early detection is essential for deterring disease progres-
sion since there is currently no curative treatment available2,3. Standard neuropsychological screening tests such 
as the Mini-Mental State Examination (MMSE)4 and the Montreal Cognitive Assessment (MoCA)5 have been 
developed for early detection, but they are time-consuming and require trained personnel to administer and 
interpret, making them difficult to administer in remote areas.

The clock-drawing test (CDT) is a classic bedside test for cognitive screening and monitoring the severity of 
dementia with high test-retest and inter-rater reliability6–8. While CDT is relatively easy to administer, evaluat-
ing and interpreting the clock drawing is not straightforward and typically requires clinical expertise. Several 
scoring systems have been developed and adopted to aid clock drawing image evaluation8–10, including the 
well-accepted Shulman scoring system7,11,12. According to the Shulman scoring rubric7, a clock drawing image 
receives a score ranging from zero to five, with higher scores representing fewer drawing errors and, hence, 
potentially inferring better cognitive function. Nevertheless, the same clock drawing image may still receive 
different scores from different scorers, depending on how they interpret the rubric, especially between normal 
clock drawings and drawings with minor errors. Consequently, experienced scorers with clinical expertise are 
typically required, which is often impractical in many circumstances, necessitating the development of a more 
consistent and objective alternative.
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To enable more consistent and less subjective CDT assessments, several studies have proposed machine learn-
ing pipelines that digitize clock drawing data, extract geometrical and/or temporal features from the data, and 
train models in a supervised manner13–18. While such pipelines have demonstrated promising performance on 
the tasks, they heavily rely on human-designed features, which have been shown to be suboptimal in a wide range 
of tasks such as the ImageNet large-scale visual recognition19,20. Consequently, deep learning, which does not 
require human-designed features and has significantly produced cutting-edge outcomes in image classification 
tasks19,21–24, has been adopted for improved CDT assessments25–32. Despite their ability to make accurate predic-
tions, these deep-learning-based techniques still make errors in difficult cases. For instance, for the Shulman 
scoring task, the majority of the errors were due to the misclassification of adjacent clock scores where the clock 
images were visually similar27, limiting a direct application of such methods to the detection of early dementia 
and milder neurocognitive disorders such as mild cognitive impairment (MCI).

In this work, we reformulated the clock drawing image scoring task as fine-grained image classification and 
proposed a deep learning framework that aims to alleviate the adjacent clock score misclassification problem, 
especially between normal clock drawings and drawings with minor errors. In particular, we extended the train-
ing scheme proposed in the Attentive Pairwise Interaction Network (API-Net)33 to the Shulman clock scoring 
task7. Under the proposed training scheme, which draws inspiration from how humans frequently compare two 
images side-by-side to detect subtle differences34, we present image pairs to a deep learning model and encour-
age the model to come up with data representation that can later be used to provide clock scores, based on the 
information from both images in a pair in a contrastive manner. This is in contrast to all prior works which only 
train their models to make predictions without any comparative interactions25–31. To assess the performance 
gained from the proposed training scheme, we compared API-Net to widely-used models consisting of VGG1621, 
ResNet-15222, and DenseNet-12123, which have established state-of-the-art performance in the Shulman scoring 
task27. API-Net has shown an improvement in F1-score of 3% over traditional methods. Specifically, API-Net 
with ResNet-152 backbone achieves an F1-score of 0.79, which is higher than ResNet-152’s F1-score of 0.76. In 
the spirit of reproducibility, we have made our dataset and accompanying code available at https://​github.​com/​
cccnl​ab/​CDT-​API-​Netwo​rk.

Methods
Data acquisition and evaluation
Clock drawing images were collected as part of the paper-based MoCA assessments during 2019–2021 at the 
healthy aging cohort and neurology outpatient clinic of the King Chulalongkorn Memorial Hospital, Bangkok, 
Thailand, with institutional ethics committee approval (0926/64). The participants’ ages ranged from 29 to 90 
with the median age of 67, and the female-to-male ratio was 3:1. For the clock drawing part of the MoCA assess-
ment, we instructed the participants to draw a circular clock with all the numbers and the clock hands specifying 
the time of 11:10. The MoCA results were scanned, anonymized, and cropped to include only the clock drawing 
part using an in-house software. All the images with extra information not provided by the participants, such 
as clinical notes from the test administers, were excluded, resulting in a total of 3108 images. Then, the images 
were given scores according to the Shulman scoring rubric7 by a majority vote between three experienced neu-
ropsychologists/neurologists, which were then used for model training. The Shulman score classifies each clock 
drawing into 6 groups depending on the types of abnormality and readability of the drawing (5 = normal, 4 = 
minor visuo-spatial deficits, 3 = incorrect representation of the correct time, 2 = moderate visuo-spatial deficits, 
1 = severe visuo-spatial deficits, 0 = No reasonable depiction of a clock)7. The number of images for each score 
and example images are shown in Fig. 1.

Image preprocessing and augmentation
The acquired clock drawing images were resized to 256 × 256 pixels. Image augmentation was then applied to 
increase the diversity of the data used for more effective model training. Specifically, we transformed the acquired 
images by varying image brightness, contrast, shift and scale. Unlike previous works27,31, we did not rotate or 
flip any clock images in our augmentation pipeline since these transformations could corrupt the semantics of a 
clock, which are essential for accurate clock scoring. After the augmentation process, the images were standard-
ized using the mean and standard deviations from the ImageNet dataset19.

Clock drawing API‑Net architecture
We reformulated the clock drawing image scoring task as fine-grained image classification and solved it using 
API-Net33, in contrast to a previous work that relies on the conventional non-contrastive classification pipeline27. 
Inspired by how humans often compare image pairs to detect subtle differences in images that appear similar34, 
API-Net is trained using image pairs in a contrastive manner. API-Net consists of three components: a backbone, 
an API component, and a classifier. For the training phase, the backbone, the API component, and the classifier 
are connected sequentially as shown in Fig. 2, whereas the API component is not included in the test phase.

The backbone component is a convolutional neural network (CNN) with the final classification layer(s) 
removed. The backbone acts as a feature extractor that takes in a pair of visually similar clock drawing images as 
input and generates two embedding vectors, x1 and x2 , one for each image in the pair. The API component then 
processes the two embedding vectors based on attentive pairwise interaction and output four feature vectors that 
are used by the classifier to produce the final clock scores for the pair. In particular, the two embedding vectors 
are concatenated and processed by a multilayer perceptron (MLP) that consists of two fully connected layers 
with a dropout layer35 in between, producing the mutual vector xm that potentially contains contrastive details 
of the image pairs. The gate vector is then computed as follows:

https://github.com/cccnlab/CDT-API-Network
https://github.com/cccnlab/CDT-API-Network
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Figure 1.   Example clock drawing images with the Shulman scores ranging from zero to five with lower scores 
indicating more severe cognitive impairment. The number of images in each score is shown below the score 
label.

Figure 2.   The API-Net architecture. The model consists of three components. The backbone component is used 
to extract the embedding vector of each input image. The Attentive Pairwise Interaction (API) component takes 
the embedding vectors of the image pair as its inputs, creates a mutual vector xm , and uses xm to generate the 
gate vectors. Then, it computes four attentive feature vectors, xself

1
 , xother

1
 , xself

2
 , and xother

2
 . Finally, the classifier 

component uses the resulting vectors to predict the Shulman scores. These predicted scores are used to compute 
the loss function L for optimizing the model’s parameters.
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where ⊙ is the Hadamard (element-wise) product. Using both the gate and original embedding vectors, four 
attentive feature vectors are calculated through the residual attention mechanism,

Each embedding vector xi exploits discriminative clues obtained from both images in the pair by taking 
into account its own gate vector and the other image’s gate vector, resulting in two attentive feature vectors, xselfi  
and xotheri  , respectively. Finally, each attentive feature vector, xji , is fed to the classification layer that predicts the 
probability of being in a particular class (i.e., a particular clock score). Mathematically, we have

Model training
To optimize the model’s parameters, the loss function described in Eq. (4) is minimized with respect to the 
parameters based on the pairwise batch construction procedure demonstrated in Fig. 3.

Loss function
The four prediction vectors, pself1  , pother1  , pself2  , and pother2  , are used to compute the following loss function:

(1)gi = sigmoid(xm ⊙ xi), i ∈ {1, 2},

(2)

xself1 = x1 + x1 ⊙ g1,

xself2 = x2 + x2 ⊙ g2,

xother1 = x1 + x1 ⊙ g2,

xother2 = x2 + x2 ⊙ g1.

(3)p
j
i = softmax(Wx

j
i + b), j ∈ {self,other}, i ∈ {1, 2}.

Figure 3.   Embedding pairwise batch construction. The backbone model embeds images from all scores and 
uses them to calculate the Euclidean distance between the image embedding vectors from the same or adjacent 
scores. The final pairwise batches consist of intra-class and inter-class image pairs that will be used to train API-
Net.
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where LCE is the cross entropy loss, LRK is the score ranking loss, � is a regularization parameter balancing the 
two losses, yi is the one-hot encoded ground-truth label vector of image i, T denotes the transpose of a matrix, 
ci is the correct class for image i, and ǫ is the score-ranking-loss margin.

The cross entropy loss, defined in Eq. (5), is employed to make sure that the model can predict accurate 
clock-drawing scores using any of the four attentive feature vectors. The score ranking loss is used to encourage 
the model to prioritize xselfi  over xotheri  since xselfi  is activated by its own gate vector and should intuitively be able 
to give a more accurate clock score to image i, compared to xotheri  , which is activated by the gate vector of image 
j. In particular, the score ranking loss does not penalize the model if the predicted probability of the correct 
class, ci , of image i obtained from xselfi  is larger than that obtained from xotheri  by at least ǫ , as shown in Eq. (6).

Embedding pairwise batch construction
We randomly partitioned the whole training set in a stratified manner into K batches. For each image mi in a 
batch, we generated two types of image pairs: intra-class and inter-class pairs. Considering only the images within 
the same batch, to create an intra-class image pair, we combined mi with the most dissimilar image within the 
same class, and, to create an inter-class image pair, we combined mi with the most similar image that is in an 
adjacent class. For instance, for a clock drawing image with a score of four, we generated three image pairs: one 
intra-class pair that included the most dissimilar image with a score of four, one inter-class pair that included 
the most similar image with a score of three, and one inter-class pair that included the most similar image with 
a score of five. The motivation behind this design is that we want to encourage the model to be able to not only 
recognize a wide variety of images within the same clock score, but also distinguish visually similar images from 
different scores. We measured the similarity between two images based on the Euclidean distance between the 
embedding vectors of the two images, which were generated by the backbone. An example of pairwise batch 
construction is shown in Fig. 3.

Model inference
To make a prediction on a new image, we pass the image by itself as the input to the backbone to get an embed-
ding vector and then pass the embedding vector directly to the trained classifier to produce the final clock score. 
This is in contrast to the training phase where we provided a pair of images and the resulting embedding vec-
tors are passed to the API component, followed by the classifier. This procedure is the same as the conventional 
CNN classification pipeline except that the backbone of API-Net has been specifically trained to be suitable for 
fine-grained image classification.

Consent statement
The study was conducted in accordance with the Declaration of Helsinki, The Belmont Report, CIOMS guideline 
and International Conference on Harmonization in Good Clinical Practice (ICH-GCP) and was approved by 
the Ethics Committee of Chulalongkorn University (no. 383/2022) on 18th March 2022. For this study, the raw 
data were first extracted from the hospital information system, All data were collected as a part of routine clinical 
service, and patients’ identities, including names, patient IDs, and personal information, were de-identified. This 
approach ensured privacy throughout the research process. No specific consent is needed for statistical analyses 
of aggregated deidentified data.

Experiments and results
Experiment settings
To assess the performance of API-Net on the Shulman clock scoring task, we conducted four main experiments. 
First, we performed a pairwise batch construction strategy experiment to investigate the effects of different batch 
construction approaches on the model’s performance. Then, we benchmarked API-Net with the best-performing 
pairwise-batch-construction strategy to several strong CNN-based baselines including those that have established 
state-of-the-art performance in the Shulman scoring task27. After that, we assessed the performance of the models 
on a fine-grained binary classification task that only used images with scores of 4 and 5, which were all visually 
similar. Finally, we performed an interpretability experiment using Score-CAM36, one of the most widely-used 
visualization methods, to generate visual explanations that can be used to support the model’s decision.

All experiments were conducted five times, each with different stratified random training-validation-test split: 
50% as training data, 25% as validation data, and 25% as test data. According to Fig. 1, only 3% of all acquired 
clock images have a score of three or below. To mitigate the class imbalance problem, we relabeled them as hav-
ing a score of 3. The relabeling process does not prevent our method from being used as a cognitive screening 
tool for early detection of neurocognitive disorders because such conditions correspond to a Shulman clock 
score of four (sensitivity 90% and specificity 39%), while Shulman clock scores of less than four correspond to a 
more severe neurocognitive disorders (with sensitivity 86% and specificity 72–100%)11. The data preprocessing 
and model training pipeline have been implemented in Python and executed on a computer workstation with 
an NVIDIA TITAN RTX. The parameters of a model were optimized using the adaptive moment estimation 

(4)L = LCE + �LRK ,

(5)LCE = −
∑

i∈{1,2}

∑
j∈{self,other}

yTi log(p
j
i),

(6)LRK =
∑

i∈{1,2}
max(0, potheri (ci)− pselfi (ci)+ ǫ),
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(Adam) optimizer37. The performance of the models was evaluated using four metrics: classification accuracy, 
F1-score, precision, and recall.

Pairwise batch construction strategy experiment
We compared the proposed Embedding pairwise batch construction strategy as described in the “Methods” 
section to two other strategies: the Raw and Random strategies. The Raw strategy used the same procedure as 
the Embedding strategy, except that we changed how we measured the similarity between two images. Specifi-
cally, the Raw strategy measured the similarity based on the Euclidean distance between the raw pixels of the 
images, whereas the Embedding strategy measured the similarity based on the Euclidean distance between the 
embedding vectors of the images that were generated by the backbone. For the Random strategy, we simply 
paired an image with another image within the same batch at random, regardless of the clock scores. In addition 
to the three different batch construction strategies, we also experimented with two different sets of backbone’s 
parameters. The first set was pretrained solely on ImageNet19, referred to as the ImageNet-pretrained backbone. 
The second set was initially pretrained on ImageNet and later finetuned on the clock images from our train-
ing dataset for 40 epochs, termed the CDT-finetuned backbone. Given a combination of a batch construction 
strategy and a trained backbone, we froze the parameters of the backbone and trained the API component and 
classifier using a learning rate of 0.00005 and a batch size of 60, which contained 20 images from each class, for 
100 epochs. � in Eq. (4) and ǫ in Eq. (6) were set to 1 and 0.005, respectively (see Supplementary Table S.1 for 
more information on the effect of � and ǫ on the model’s performance). Finally, to evaluate the influence of the 
presence of intra-class pairs, we compared the proposed method that used both intra-class and inter-class pairs 
to that using only the inter-class pairs.

The performance of different batch construction strategies is summarized in Table 1. We conducted an analysis 
of variance (ANOVA) test at a significance level of 0.05 to compare the mean accuracy of different strategies. 
With the obtained p-value of 0.0248, we rejected the null hypothesis, which stated that there was no statisti-
cally significant difference in the mean accuracy of the different strategies, implying that at least one strategy’s 
performance is different from the others. After that, we used a paired two-sample t-test to compare the mean 
accuracy of the proposed strategy, the Embedding strategy with the CDT-finetuned backbone, to each of the 6 
remaining strategies listed in Table 1, one at a time, resulting in a total of 6 tests being performed. For each test, 
the null hypothesis was that the mean accuracy of the proposed strategy was less than or equal to that of the other 
strategy being compared, and the alternative hypothesis was that the mean accuracy of the proposed strategy 
was higher than the other’s. The p-values for the Random strategy with the ImageNet-pretrained backbone and 
CDT-finetuned backbone cases were 0.006 and 0.0113, respectively. The p-values for the Raw strategy with the 
ImageNet-pretrained backbone and CDT-finetuned backbone cases were 0.0105 and 0.0064, respectively. These 
p-values have enabled us to reject the null hypothesis, implying that the Embedding strategy with the CDT-
finetuned backbone significantly yielded higher mean accuracy compared to the Random and Raw strategies.

The p-value for the Embedding strategy with the ImageNet-pretrained backbone case was 0.0345, which 
was also less than the significance level of 0.05, implying that the proposed Embedding strategy that uses the 
CDT-finetuned backbone significantly achieved higher mean accuracy than that using the ImageNet-pretrained 
backbone. The p-value was 0.841 for the Embedding strategy with the CDT-finetuned backbone that were trained 
without the intra-class pairs case. Consequently, we failed to reject the null hypothesis, implying that there was 
not enough evidence to support that there was a significant difference between the mean accuracy of the proposed 
method when the intra-class pairs were included or excluded. Then, we conducted an F-test to assess the variances 
of the accuracies obtained. The null hypothesis was that the variance obtained from the proposed method with 
the intra-pairs included was greater than or equal to that trained without using the intra-pairs. According to the 
obtained p-value of 0.0396, we rejected the null hypothesis, implying that we have enough evidence to conclude 
that the presence of the intra-class pairs enabled the proposed method to have more consistent performance, as 
measured by the reduced variance of the accuracy.

In light of these statistical analyses, it is evident that the optimal batch construction strategy is the Embedding 
pairwise batch construction strategy with the CDT-finetuned backbone trained using both intra-class and inter-
class pairs. This method attained a peak mean classification accuracy of 0.78, complemented by an F1-score of 
0.77, precision of 0.77, and recall of 0.77. Consequently, we used the Embedding strategy with the CDT-finetuned 
backbone trained using both the intra-class and inter-class pairs for the remaining experiments.

Table 1.   The means and standard deviations of the Shulman score classification accuracies, F1-scores, 
precisions, and recalls obtained from API-Net with different pairwise batch construction strategies and 
backbones over 5 different stratified random training-validation-test data splittings.

Batch construction strategy Accuracy F1-Score Precision Recall

Random (ImageNet-pretrained) 0.7660 ± 0.0069 0.7546 ± 0.0110 0.7640 ± 0.0058 0.7660 ± 0.0069

Random (CDT-finetuned) 0.7606 ± 0.0104 0.7444 ± 0.0135 0.7640 ± 0.0107 0.7606 ± 0.0104

Raw (ImageNet-pretrained) 0.7712 ± 0.0035 0.7645 ± 0.0073 0.7680 ± 0.0027 0.7712 ± 0.0036

Raw (CDT-finetuned) 0.7701 ± 0.0048 0.7613 ±  0.0062 0.7665 ± 0.0044 0.7701 ± 0.0048

Embedding (ImageNet-pretrained) 0.7668 ± 0.0110 0.7564 ± 0.0175 0.7622 ± 0.0057 0.7668 ± 0.0110

Embedding (CDT-finetuned) 0.7802 ± 0.0030 0.7653 ± 0.0084 0.7727 ± 0.0057 0.7743 ± 0.0054

Embedding (CDT-finetuned without the intra-class pairs) 0.7786 ± 0.0121 0.7764 ± 0.0146 0.7780 ± 0.0128 0.7786 ± 0.0121
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Shulman score fine‑grained classification experiment
We benchmarked API-Net, which is designed for fine-grained classification, to several ImageNet-pretrained 
CNN models consisting of VGG1621, ResNet-15222, and DenseNet-12123, which are widely used for general 
image classification tasks. As these CNN models have established state-of-the-art performance on Shulman 
score classification27, we considered these models as strong baselines for our task. For the baseline models, we 
used the same data, image preprocessing, and image augmentation, as those used by API-Net for fair compari-
sons. For API-Net, we experimented with three backbone architectures consisting of VGG16, ResNet-152, and 
DenseNet-121, reflecting what we have selected as the baseline models. We compared two different settings for 
the API-Net training process as shown in Supplementary Fig. S.1: backbone freezing and gradual unfreezing. 
With backbone freezing, the model training is exactly the same as that used in the pairwise batch construction 
strategy experiment. In other words, we optimized the API-Net’s parameters for 100 epochs while keeping the 
CDT-finetuned backbone fixed. For the gradual unfreezing case, we updated the API and classifier components 
without modifying the CDT-finetuned backbone for 10 epochs. After that, we unfroze the backbone and then 
simultaneously updated all the three API-Net components for 90 epochs.

We assessed the performances of the methods under consideration on the Shulman clock score classification 
task. Particularly, each clock drawing image had to be classified by the models as having one of the three pos-
sible scores: score 3, score 4 and score 5. As shown in Table 2, for the baseline models, DenseNet-121 slightly 
outperformed VGG16 and ResNet-152, which has also been observed in a prior work27. Incorporating the API 
component to the baseline models along with the gradual unfreezing strategy improved the models’ performances 
by approximately 2–3%. API-Net with ResNet-152 as the backbone that was trained with the gradual unfreezing 
strategy outperformed all the methods, achieving a classification accuracy of 0.79, an F1-score of 0.80, a preci-
sion of 0.79, and a recall of 0.79.

Shulman score 4 and score 5 fine‑grained binary classification experiment
To assess the effectiveness of API-Net in classifying visually similar images, we focused on images with the scores 
of 4 and 5. For this experiment, ResNet-15222 was chosen as both our benchmark and the backbone for API-Net. 
API-Net was trained with two different settings: backbone freezing and gradual unfreezing. As shown in Table 3, 
API-Net with backbone freezing achieved a mean classification accuracy, F1-score, precision, and recall of 0.80, 
outperforming other methods examined. To compare the performance of each API-Net setting to the benchmark, 
we conducted paired two-sample t-tests. In particular, for each API-Net setting, the null hypothesis was that the 
mean accuracy of API-Net was less than or equal to that of the benchmark, and the alternative hypothesis was 
that the mean accuracy of API-Net was higher than the benchmark’s. While we failed to reject the null hypothesis 
(p-value = 0.7483) for the gradual unfreezing case, we were able to reject the null hypothesis (p-value = 0.0451) 
for the backbone freezing case, implying that API-Net with backbone freezing significantly yielded higher mean 
accuracy than the benchmark’s. In this experiment, the gradual unfreezing method’s underperformance might 
stem from unintentional alterations in the expertly tuned feature extraction layers of the backbone, especially 
when restricted to a dataset of only scores 4 and 5. The potential lack of comprehensive representation of the Shul-
man dataset’s intricacies might have played a role. As layers were progressively unlocked, some vital pretrained 

Table 2.   The means and standard deviations of the three-class Shulman score classification accuracies, 
F1-scores, precisions, and recalls over 5 different stratified random training-validation-test data splittings.

Model Accuracy F1-score Precision Recall

ResNet-152 0.7668 ±  0.0074 0.7581 ±  0.0079 0.7654 ±  0.0080 0.7668 ±  0.0074

VGG16 0.7668 ±   0.0139 0.7608 ±  0.0159 0.7628 ±  0.0151 0.7668 ±  0.0139

DenseNet-121 0.7740 ± 0.0160 0.7708 ±  0.0142 0.7764 ±  0.0183 0.7740 ±  0.0160

API-Net (ResNet-152) with backbone freezing 0.7802 ± 0.0030 0.7653 ±  0.0084 0.7727 ±  0.0057 0.7743 ±  0.0054

API-Net (VGG16) with backbone freezing 0.7799 ±  0.0096 0.7691 ±  0.0130 0.7819 ±  0.0070 0.7799 ±  0.0096

API-Net (DenseNet-121) with backbone freezing 0.7763 ±  0.0070 0.7677 ±  0.0092 0.7750 ±  0.0058 0.7763 ± 0.0070

API-Net (ResNet-152) with gradual unfreezing 0.7892 ± 0.0104 0.7964 ± 0.0120 0.7871 ± 0.0108 0.7892 ± 0.0104

API-Net (VGG16) with gradual unfreezing 0.7807 ± 0.0118 0.7745 ± 0.0104 0.7779 ± 0.0127 0.7807 ± 0.0118

API-Net (DenseNet-121) with gradual unfreezing 0.7828 ± 0.0025 0.7782 ± 0.0016 0.7821 ± 0.0029 0.7828 ± 0.0025

Table 3.   The means and standard deviations of the clock drawing images classification between Shulman 
scores 4 and 5.  Accuracies, F1-scores, precisions, and recalls are calculated over 5 different stratified random 
training-validation-test data splittings.

Model Accuracy F1-score Precision Recall

ResNet-152 0.7877 ± 0.0087 0.7855 ±  0.0079 0.7931 ± 0.0029 0.7835 ± 0.0094

API-Net (ResNet-152) with backbone freezing 0.8033 ± 0.0106 0.8013 ± 0.0096 0.8028 ± 0.0011 0.8033 ± 0.0106

API-Net (ResNet-152) with gradual unfreezing 0.7901 ± 0.0117 0.7980 ± 0.0218 0.7899 ± 0.01 0.7901 ± 0.0117
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knowledge could have been compromised, leading to decreased performance. Nevertheless, the choice between 
gradual unfreezing and backbone freezing for training fundamentally rests on dataset characteristics used for 
training. Essentially, this is a hyperparameter that requires tuning to best align with the dataset in use.

Interpretability experiment
Presently, clinicians sometimes encounter challenges when scoring clock drawing images that have closely related 
Shulman scores. This ambiguity also presents in the model decisions, consequently impacting overall perfor-
mance of the model. To navigate this challenge and make model decisions more transparent, we used a visualiza-
tion technique called Score-CAM36. In this section, we compared Score-CAM visualizations from ResNet-152 
and API-Net (ResNet-152) with gradual unfreezing to highlight the superior capability of API-Net in identifying 
and prioritizing irregularities in clock drawing images, showcasing its enhanced model interpretability. In Fig. 4, 
Score-CAM visualizations from both ResNet-152 and API-Net are displayed. Though both models accentuate 
regions exhibiting most of the irregularities in the clock drawing images, the manner in which these areas are 
highlighted differs significantly between the two. ResNet-152’s Score-CAM, for instance, brings a large expanse 
around the clock hands into focus for each score, obfuscating a clear understanding of the model’s decision-
making process. In contrast, the Score-CAM from API-Net, although highlighting a more confined area, offers 
a much clearer and intuitive understanding of the model’s rationale. This disparity is particularly pronounced 
in images bearing a Shulman score of less than 2 (bottom row). In such instances, while API-Net’s Score-CAM 
adeptly emphasizes areas with notable irregularities and anomalies, the ResNet-152’s version remains fixated on 
the inner clock circle area. Furthermore, for clock drawing images in the Shulman scores 3 and 4 range (middle 
and top rows), ResNet-152’s Score-CAM indistinctly highlights both regular and anomalous zones near the clock 
hands. Contrastingly, API-Net’s Score-CAM specifically zeroes in on the main irregularities, as indicated by the 
white arrow markers. A striking illustration of this is seen in the image from the 5th column under Shulman 
score 3 (middle row). Here, the API-Net’s Score-CAM emphasizes a region encompassing the minute hand’s 
arrow head and a specific number. On the other hand, ResNet-152’s Score-CAM broadly accentuates the clock 
hands. This nuanced distinction underscores API-Net’s advanced capacity to differentiate between closely similar 
images, a capability honed through contrastive learning using image pairs.

Discussion
Deep learning models trained with a standard supervised classification procedure have demonstrated impressive 
performances on Shulman clock score classification27. However, these models sometimes struggle to accurately 
classify images that are visually alike but have different scores. This challenge becomes especially significant in 
real-world scenarios where precise differentiation between normal (score 5) and mild (score 4) visuospatial 
impairment is crucial, given its prevalent occurrence in the general population. Drawing inspiration from human 
learning patterns, where recognition often arises from comparing two images to discern subtle differences34, we 
applied a contrastive approach to train our model using image pairs.

A crucial aspect of the successful application of API-Net is an effective batch construction strategy. In our 
experiments, the model using the Embedding pairwise batch construction strategy and CDT-finetuned back-
bones outperformed all other methods that adopted different strategies (Table 1). As the backbone architecture 
is purely convolutional, gauging distances in the embedding space, as opposed to the raw pixel space, offers a 
more resilient metric for image similarity, especially concerning image translation. This underpins the superior 
performance of the Embedding strategy relative to the Raw strategy (Table 1). Under the Embedding strategy 
framework, the quality of the backbone used to extract the image embedding vectors greatly affects the model’s 
performance. Expectedly, the CDT-finetuned backbone, trained using the clock drawing images, yielded better 
performance compared to the ImageNet-pretrained backbone. While delving into designing an optimal pairwise 
batch construction strategy with theoretical guarantees is a compelling avenue for future research, it falls outside 
the purview of this study.

Despite our method’s superiority over the baselines, potential enhancements remain. Since our main focus 
is on the early detection of neurocognitive disorder such as MCI, we collected the data from a relatively healthy 
population. As a result, there are fewer individuals who score three or below, resulting in a data scarcity for these 
lower score categories. Most individuals tend to score within the 4 and 5 range. To address the inherent class 
imbalance in real-world data, in our study, we consolidated clock drawing images with scores of three or lower 
under the category of score 3, indicative of severe neurocognitive disorders. It is imperative to amass more data 
for the under-represented score classes (0–3) to broaden our method’s application across all six Shulman score 
classes, especially for monitoring purposes.

It is not easy to directly compare our quantitative results to those reported in other studies because of several 
factors. First, the research goals are different. For instance, while a previous study27 has proposed to use Shulman 
scores for dementia screening, our work used the scores as part of a cognitive screening tool for early detection 
of neurocognitive disorders, resulting in different score-cutoffs being used for the screening purpose. In par-
ticular, a drawn clock must receive a score of 5 (perfect score) to pass our early visuo-spatial deficits screening, 
whereas a score of 4 would be sufficient to pass the dementia screening test proposed in the study27. Since it is 
much harder to distinguish between images that are scored as 4 and 5 than between images that are scored as 3 
and 4, it would be inappropriate to directly use a quantitative metric such as the screening accuracy to compare 
the methods. Moreover, the studies involved different groups of people with potentially different demographic 
information and methods of recruitment, making it challenging to compare the results across studies fairly. To 
facilitate better benchmarking and allow other researchers to directly compare their methods to ours, we have 
made our codes and dataset publicly available at https://​github.​com/​cccnl​ab/​CDT-​API-​Netwo​rk.

https://github.com/cccnlab/CDT-API-Network
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Our study underscores the significance of modeling strategy that resonates with the clinical inquiry. To 
build an effective screening tool for early detection, it is essential to use a modeling strategy that focuses on the 
nuanced differences distinguishing normal from clinical populations. From the vantage point of API-Net, har-
nessing contrastive learning to distinguish visually similar images appears to be a promising avenue, especially 
when dealing with cases that exhibit marginal variations. This perspective can be broadened to encompass other 
modalities such as speech sounds, fluid biomarkers, and brain imaging. This raises intriguing possibilities for 
future work in optimizing detection across various medical modalities.

Figure 4.   Score-CAM visualization comparisons between (a) ResNet-152 and (b) API-Net (ResNet-152) with 
gradual unfreezing. The white arrows in each image pinpoint regions deemed influential to the Shulman score 
according to physician observations. The Score-CAM visualization from API-Net offers a sharper visual clarity 
and aligns more closely with the regions indicated by the white arrows. Conversely, the Score-CAM visualization 
from ResNet-152 seems unfocused, appearing more spread out and farther from the indicated regions. A 
notable illustration of this is in the 5th column under Shulman score 3 (middle row): The Score-CAM from 
API-Net distinctly emphasizes the problematic region around the clock’s minute hand, while the Score-CAM 
from ResNet-152 highlights the entire clock hands. This underscores the superior precision of the API-Net 
visualization in identifying specific problematic areas.
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Data availability
To foster such a direction and enable a direct benchmarking for interested researchers, we have made our dataset 
and implementation publicly available at https://​github.​com/​cccnl​ab/​CDT-​API-​Netwo​rk.
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