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Heart rate (HR) is a crucial physiological signal that can be used to monitor health and fitness. 
Traditional methods for measuring HR require wearable devices, which can be inconvenient 
or uncomfortable, especially during sleep and meditation. Noncontact HR detection methods 
employing microwave radar can be a promising alternative. However, the existing approaches in 
the literature usually use high‑gain antennas and require the sensor to face the user’s chest or back, 
making them difficult to integrate into a portable device and unsuitable for sleep and meditation 
tracking applications. This study presents a novel approach for noncontact HR detection using 
a miniaturized Soli radar chip embedded in a portable device (Google Nest Hub). The chip has a 
6.5 mm × 5 mm × 0.9 mm dimension and can be easily integrated into various devices. The proposed 
approach utilizes advanced signal processing and machine learning techniques to extract HRs from 
radar signals. The approach is validated on a sleep dataset (62 users, 498 h) and a meditation dataset 
(114 users, 1131 min). The approach achieves a mean absolute error (MAE) of 1.69 bpm and a mean 
absolute percentage error (MAPE) of 2.67% on the sleep dataset. On the meditation dataset, the 
approach achieves an MAE of 1.05 bpm and a MAPE of 1.56% . The recall rates for the two datasets 
are 88.53% and 98.16% , respectively. This study represents the first application of the noncontact HR 
detection technology to sleep and meditation tracking, offering a promising alternative to wearable 
devices for HR monitoring during sleep and meditation.

Sleep is essential for overall well-being, having a significant impact on physical and mental health. Research indi-
cates that poor sleep quality and inadequate sleep can lead to various health issues, including obesity, diabetes, 
cardiovascular disease, and  depression1. Additionally, meditation has been found to have multiple benefits, such 
as reducing stress, anxiety, and depression and enhancing attention and cognitive  function2. Therefore, accurately 
tracking sleep and meditation patterns is crucial for individuals to improve their practice and maintain optimal 
health and  wellness3.

The integration of smart beds/mattresses, equipped with advanced sensing technologies such as pressure 
 sensors4,5, presents a promising avenue for systematic, preventive, personalized, and non-invasive assessment 
of sleep quality. These technologies enable the measurement of critical parameters like respiration rate (RR) and 
heart rate (HR). However, their limitations, including bulkiness, high cost, and immobility, pose challenges to 
widespread adoption and deployment in diverse settings. On the contrary, wearable devices like smartwatches 
have gained popularity for sleep and meditation tracking. They can collect data on movement and HR using 
sensors like accelerometers and Photoplethysmography (PPG)6. Nevertheless, wearing a device during sleep 
or meditation can be uncomfortable and inconvenient, potentially leading to incomplete or inaccurate  data6. 
Remote photoplethysmography (rPPG)7–10 has also emerged as a compelling alternative to wearable devices. It 
offers valuable insights, including heart rate (HR) measurement, by detecting changes in reflected light intensity 
from a user’s skin. However, rPPG’s applicability is limited by its requirement to “see” the user’s skin, making it 
unsuitable for comprehensive sleep and meditation tracking due to constraints related to varying light conditions, 
sleep postures, and concerns regarding user privacy.
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Portable devices like the Google Nest  Hub11, equipped with microwave radar technology, introduce an inno-
vative approach to monitoring sleep and meditation quality. These devices eliminate the discomfort and incon-
venience associated with wearing tracking devices by providing valuable insights through motion tracking and 
respiratory rate (RR)  monitoring12. In comparison to their  rPPG7–10 counterparts, radar systems offer several 
advantages, including enhanced privacy protection, independence from light conditions, and reduced power 
consumption. They can also penetrate clothing and blankets, and are suitable for various postures during sleep 
and meditation. Yet, it’s important to acknowledge that current portable devices, including the Google Nest 
Hub, lack the ability to monitor heart rate (HR), a crucial biometric for comprehensive sleep and meditation 
tracking, due to existing technical challenges. The implementation of HR measurement in portable devices is 
an area of great interest.

Related work
Noncontact HR detection using microwave  radar13–17 represents a promising technology to integrate HR moni-
toring into portable sleep- and meditation-tracking devices. This approach emits electromagnetic waves toward 
the target subject. It measures the reflected signals, which exhibit periodic variations related to the HR due to 
changes in blood flow with each heartbeat. HR information can be extracted from the reflected signals using 
advanced signal processing (SP) and machine learning (ML) techniques without physical contact. Although 
significant efforts have been dedicated to this field over the past few decades, two challenges still need to be 
solved for using radar in portable sleep and meditation-tracking devices.

Firstly, most existing systems rely on high-gain antennas to amplify signal-to-noise ratio (SNR) and dimin-
ish environmental interference by directing the radiating energy onto the user’s body. Nonetheless, this method 
necessitates larger antenna sizes and produces a narrower field of view (FOV), limiting the user’s positioning to 
typically being right in front of the radar sensor.

Secondly, the weak micro-motion of the heartbeat is often overshadowed by respiration motion and random 
body motion, which are typically much stronger than the heartbeat by one or two orders of magnitude. In the 
frequency domain, the weak heartbeat signal can be easily masked by the harmonic components and sidelobes of 
these two interfering motions. Thus, traditional spectral analysis techniques, such as Fourier transform (FT) and 
band-pass filter (BPF)17, fail to perform satisfactorily. Various methods have been developed to address this issue, 
including ensemble empirical mode decomposition (EEMD)18,  wavelet19,  RELAX20, Kalman  filter21, independent 
component analysis (ICA)22, and  ML23. However, the authors of these papers have primarily focused on cases 
where the radar sensor is directed straight at the user’s chest or back. Detecting HR from the sides presents an 
even more significant challenge due to the smaller magnitude of heartbeat micro-motion and the obstruction of 
the arms and shoulders. In fact, a recent  study23 discovered that “ the left and right orientations are unsuitable for 
monitoring HR and RR” when examining the HR performance for different user orientations. Unfortunately, users 
may assume various poses during sleep. The most common sleep position, supine, leads to the side orientation, 
making it difficult to acquire reliable HRs using a portable device at the bedside. More advanced techniques are 
required to overcome this challenge.

This article introduces an innovative approach for continuously monitoring a user’s HR during sleep and 
meditation, utilizing a Google Nest Hub placed on a bedside table (Fig. 1a). The Google Nest Hub incorporates a 
miniaturized radar chip named Soli, which operates at the 60 GHz frequency band and includes a transit antenna 
and 3 receive antennas, all on the package, with a small dimension of 6.5 mm × 5 mm × 0.9 mm (Fig. 1b). We 
propose a combined SP and ML approach to address the challenges of weak heartbeat micro-motion and inter-
ference from respiration and random body motion (as depicted in Fig. 1c). The approach involves using three 
SP blocks to detect the user’s presence and extract micro-motion waveforms from different body parts. Then, an 
ML-based pulse extraction block is used to extract the heart pulse waveform and associated pseudo-spectrum 
from the micro-motion waveforms, from which we detect the HR. Finally, a post-processing block is employed 
to smooth the HR sequence.

We have tested the proposed method on a sleep dataset (62 users, 498 h) and a meditation dataset (114 
users, 1131 min), which results in mean-absolute-error (MAE) of 1.69 bpm (beat-per-minute) and 1.05 bpm, 
mean-absolute-percentage-error (MAPE) of 2.67% and 2.0% , and recall rates of 88.53% and 98.16% , respectively. 
We provide a sleep-tracking example in Fig. 1d, which shows the overnight Soli HR sequence compared to its 
electrocardiogram (ECG) counterpart and the user’s sleep position. Soli’s HR estimates precisely track gradual 
HR changes across different sleep positions, and they closely match with ECG HRs.

To the best of our knowledge, this article represents a significant contribution to three areas of research: (1) 
the use of a miniaturized radar chip in a commercial portable device for noncontact HR detection; (2) the study 
of noncontact HR detection for sleep and meditation tracking, including challenging sleep positions where the 
radar sensor views users from their sides; and (3) the evaluation of this technology on large-scale datasets, includ-
ing 62 users’ overnight sleep data and 112 users’ meditation data under various practical conditions. Overall, 
it introduces the novel application of noncontact HR detection technology to sleep and meditation tracking, 
providing a promising solution for noncontact HR monitoring in these domains.

Results
Below, we present the HR results on the sleep and meditation datasets.

Sleep tracking
To collect sleep data, we used a Google Nest Hub placed on a bedside table (refer to Fig. 1a) to record Soli radar 
data. The distance between the Soli sensor and the user’s torso varied from 0.3 to 1.5 m. We also attached an 
ECG sensor to the user’s body to record ECG signals as a reference. For each session, a user was brought in to 
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sleep overnight, ranging from 6 to 9 h. We had a proctor present to record the user’s sleep positions and events 
(such as apnea, hypopnea, and arousal).

A total of 232 sessions of data have been collected. Of these, 66 sessions do not have ECG data files, 41 sessions 
have a timestamp misalignment issue between Soli and ECG data, and 3 sessions have poor-quality ECG signals. 
After removing these sessions, 122 sessions with valid ECG data were identified. These sessions correspond to 
122 unique users and a total of 975 h. We randomly partitioned the 122 sessions into two groups, 60 sessions 
(477 h) for ML training and 62 sessions (498 h) for performance evaluation. As shown in Fig. 2a, five different 
sleep positions were recorded from these 62 test sessions: supine (204 h, 41% of total data), left lateral (123 h, 
25% ), right lateral (128 h, 26% ), prone (24 h, 5% ), and sitting-up (19 h, 4% ). The reference ECG HRs, derived by 

Figure 1.  (a) A Google Nest Hub monitors a user’s HR contactlessly on a bedside table. The device integrates a 
radar chip called Soli, operating at the 60 GHz frequency band. (b) The Soli radar chip is 6.5 mm × 5 mm × 0.9 
mm and comprises one transit antenna and 3 receive antennas on the package. (c) The proposed HR detection 
approach includes three signal processing blocks to detect the user’s presence and extract micro-motion 
waveforms, a machine learning block to extract pulse waveform and related pseudo-spectrum, and a post-
processing block to smooth HRs. (d) An overnight sleep example is shown in this plot. The upper plot illustrates 
the user’s sleep position, while the lower plot shows the HRs estimated by the proposed method (i.e., Soli HR) 
and the ECG HRs as the ground truth. The Soli HR can accurately track slow HR fluctuations over time under 
various sleep positions.
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applying FFT to the ECG waveforms, range from 40 to 100 bpm, with 95% of the samples falling within the range 
of 45−85 bpm (Fig. 2b). The sleep-tracking HR performance below is based on the 62 test sessions.

During data processing, the overnight data is segmented into 60 s overlapping samples with a step size of 15 s. 
Each 60 s sample is processed through SP and ML blocks, as illustrated in Fig. 1c, to obtain an HR estimate. The 
post-processing block then smooths the HR estimates over time. Thus, the first HR estimate is obtained in 60 s 
and updated every 15 s. The performance metrics are evaluated based on the smoothed HR estimates.

To provide a benchmark for comparison, we evaluate the conventional BPF  approach17 on the sleep dataset. 
This comparison with BPF, a widely accepted reference method, serves to establish a familiar baseline for 
evaluating the effectiveness and novelty of our approach. The ML block in Fig. 1c is replaced by several SP 
blocks, including a BPF block (with BPF passing frequency band being 40–200 bpm) to extract heart pulse 
waveforms, an FT block to obtain the related spectrum, and a block to select the best HR over various micro-
motion waveforms based on the peak-to-average ratio (PAR). As shown in Table 1, the BPF approach yields 
MAE and MAPE values of up to 21.0 bpm and 31.2% , respectively. The 95th percentile absolute error (AE) and 

Figure 2.  (a) The distribution of sleep data for different sleep positions: supine, left lateral, right lateral, prone, 
and sitting-up, which account for 41% , 25% , 26% , 5% , and 4% of the total data, respectively. (b) The ECG HR 
histogram ranges from 40 to 100 bpm.

Table 1.  Sleep-tracking HR accuracies of the proposed approach and the conventional BPF method. The 
proposed approach achieves significantly better HR accuracy than its BPF counterpart.

Method MAE AE ( 95%) MAPE APE ( 95% ) R2 Recall

BPF 21.0 bpm 67.3 bpm 31.2% 98.5% − 73%

Proposed 1.69 bpm 5.50 bpm 2.67% 8.49% 89.92% 88.53%

Figure 3.  (a) The HR error histogram of the proposed approach during sleep, and (b) the related AE CDF. The 
histogram indicates that the majority of HR errors are small. The AE cumulative density function shows that the 
95th percentile AE is less than 5.50 bpm.
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absolute percentage error (APE) of the BPF approach are up to 67.3 bpm and 98.5% , respectively. The recall rate 
is 73% , indicating that the BPF approach can not determine the HRs in 27% of the samples. Furthermore, the 
R-squared value, also known as the determination coefficient and defined in Eq. (6), returns a negative value 
because the mean squared error (MSE) exceeds the HR variance. These performance metrics indicate that the 
BPF approach failed to perform on the sleep data.

In contrast, our proposed method achieves good HR accuracy, as evidenced by its MAE and MAPE values 
of 1.69 bpm and 2.67% , respectively. The 95th percentile AE and APE are 5.50 bpm and 8.49% , indicating that 
our method achieves good HR accuracy in 95% of the samples. The R-Squared value is 89.92% . Moreover, the 
method has a recall rate of 88.53% , with the remaining 11.47% of samples (not sessions or users) undetermined. 
Detailed visual representations, Fig. 3a,b, depict the distribution of HR errors through the error histogram and 
the corresponding AE cumulative density function (CDF). Note that the recall rate in the sleep study is relatively 
low compared to its meditation counterpart, a topic to be elaborated upon in the following section. This dis-
crepancy can mainly be attributed to environmental factors. The sleep data collection occurred overnight in an 
uncontrolled environment, leading to increased body motion of participants due to the noisy surroundings and 
discomfort caused by ECG attachment. These factors negatively impacted both the recall rate and HR accuracy.

The HR accuracies are further analyzed in Fig. 4a–c for various sleep positions, HR bands, and data sessions. 
In each figure, blue bars indicate MAEs, red bars indicate the 95th percentile AE, and green curves represent 
recall rates. The y-axes on the left and right sides show HR errors in bpm and percentage recall rates, respectively. 
The results in Figure 4a demonstrate that the four lying sleep positions (supine, left lateral, right lateral, and 
prone) yield similar HR accuracies with an MAE of less than 1.7 bpm and a 95th percentile AE of less than 5.6 
bpm. The sitting-up position performs slightly worse than the lying positions, with an MAE of 3.48 bpm and a 
95th percentile AE of 9.81 bpm.

Similarly, in Fig. 4b, we observe good HR accuracy when the true HR is between 40 and 90 bpm, with an 
MAE of less than 2.4 bpm and a 95th percentile AE of less than 5.8 bpm. The HR accuracy degrades slightly when 

Figure 4.  (a) The HR accuracy of the proposed approach is shown for various sleep positions. The proposed 
approach achieves an MAE of less than 1.7 bpm for all sleep positions except for the sitting-up pose, which is 
3.48 bpm. (b) The HR accuracy of the proposed approach is shown for various actual HR bands. The proposed 
approach achieves an MAE of less than 2.4 bpm for all HR bands except for the 90–100 bpm band, where the 
MAE is 5.65 bpm. (c) The HR accuracy of the proposed approach is shown for various sessions. The proposed 
approach achieves an MAE of less than 3 bpm for 59 out of 62 sessions ( 95.2%).
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the true HR is between 90 bpm and 100 bpm, with an MAE of 5.65 bpm and a 95th percentile AE of 14.60 bpm. 
The lower HR accuracy for the sitting-up position and high HR bands can be traced back to the small data size 
available for these two categories (Fig. 2a,b). The insufficient data size causes the ML model to be inadequately 
trained for these categories, leading to worse performance.

The HR accuracy over different sessions (i.e., users) is shown in Fig. 4c, where sessions are sorted based on 
their MAEs from the smallest to the largest. As per the figure, 59 sessions ( 95.2% ) have MAEs less than 3 bpm, 
58 sessions ( 93.6% ) have the 95th percentile AE less than 10 bpm, and 60 sessions (which is 96.8% ) have a recall 
rate greater than 50% . Overall, 57 sessions ( 91.9% ) perform satisfactorily with MAE less than 3 bpm, the 95th 
percentile AE less than 10 bpm, and a recall rate greater than 50%.

Figures 1d, 5a,b exhibit three examples of overnight sleep tracking, with the user sleep position in the upper 
plot and the proposed Soli HR and ECG HR (ground truth) displayed in the lower plot. The Soli HR estimates 
align well with the ECG HR, accurately tracking slow HR fluctuations over time. Fig. 5a illustrates Soli’s ability 
to track oscillating HR variations during overnight sleep, while Fig. 5b demonstrates its capability to detect HR 
in a sitting-up position. We remark that the proposed approach cannot track rapid HR changes reflecting heart 
rate variability (HRV), contributing to the discussed HR errors. We also observe from Fig. 5a that Soli fails to 
detect HR in the first half hours for this example. Enhancing the recall rate of sleep tracking and investigating 
the feasibility of monitoring HRV using Soli technology could be of great interest.

Meditation tracking
The meditation data collection (DC) platform is a modification of the sleep-tracking platform, with the ECG 
sensor replaced by a fingertip PPG for convenience. To evaluate the performance of this approach, we conducted 
24 test cases (outlined in Table 2) with users in the supine position. Categories A, B, and C represent the primary 
cases with users lying still at two different distances (0.6 m and 1.0 m) from the sensor to the chest, two blanket 
conditions (with and without blanket), and three breathing patterns (regular, deep, and rapid breathing). Users 
were asked to perform jumping jacks before DC for rapid breathing cases. Cases of Category D are used to test 
the approach’s robustness against various body motions. Cases of Category E are used to test the approach’s 
robustness against a second-person aggressor lying, standing, or walking around the DC environment. It is 

Figure 5.  Overnight sleep-tracking examples using the Soli radar chip. (a) shows the oscillating HR variation 
tracked by the proposed approach during overnight sleep, while (b) demonstrates its capability to detect HR in a 
sitting-up position.
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worth mentioning that the objective of this study is not to track the user’s HR while in motion. Instead, the HR 
monitoring is temporarily halted when substantial body movements are detected by the presence detection block 
depicted in Fig. 1c and resumed when the user is motionless again. As a result, the motion duration in Cases of 
Category D is not factored into the performance assessment. Additionally, this study does not aim to detect the 
HR of the second person in cases of Category E.

In this meditation study, each data session lasts 2 to 3 min, with each user performing 5 to 7 sessions from 
different test cases. We have collected 1131 min of data from 114 users, with the data sizes for each test case 
presented in Table 2. Figure 6 displays the distribution of ground-truth HR obtained from the PPG data, which 
shows slightly higher HRs (45 to 115 bpm) compared to its sleep counterpart (Fig. 2b). It is important to note that 

Figure 6.  The meditation PPG HR histogram ranges from 45 to 115 bpm.

Table 2.  The meditation test cases and related data size. 1131 min of data were collected for 24 test cases from 
114 distinct users.

Cases Distance (m) Blanket Breathing Motion 2nd person aggressor Users Time (min.)

A1 0.6 No Regular Still No 34 84

A2 0.6 Yes Regular Still No 33 72

A3 1.0 No Regular Still No 26 52

A4 1.0 Yes Regular Still No 36 88

B1 0.6 No Deep Still No 26 54

B2 0.6 Yes Deep Still No 29 58

B3 1.0 No Deep Still No 14 30

B4 1.0 Yes Deep Still No 30 61

C1 0.6 No Rapid Still No 24 50

C2 0.6 Yes Rapid Still No 31 63

C3 1.0 No Rapid Still No 14 30

C4 1.0 Yes Rapid Still No 30 60

D1 0.6 No Normal Getting into bed No 31 63

D2 1.0 No Normal Getting into bed No 30 60

D3 1.0 Yes Rapid Getting into bed No 9 28

D3 0.6 No Normal Reaching device No 9 25

D4 0.6 No Normal Turning head No 9 25

D5 0.6 No Normal Adjusting body No 35 76

D6 1.0 No Normal Adjusting body No 30 61

D7 0.6 No Normal Shifting location No 30 61

E1 0.6 No Normal Still Walking along bed foot 2 6

E2 0.6 No Normal Still Lying still on non-device side 2 6

E3 0.6 No Normal Still Walking around device side 2 6

E4 0.6 No Normal Still Getting into bed from non-device side 2 6

E5 0.6 No Normal Still Standing still behind device 2 6

All 114 1131
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a separate dataset has been collected for ML training for this meditation study. Thus, all data in Table 2 were used 
for performance evaluation. The data collection for ML training followed the same protocol outlined in Table 2, 
albeit with a distinct set of subjects. We gathered approximately 876 min of data from a cohort of 60 participants.

For the meditation application, we employ the same SP algorithm and ML model utilized in sleep tracking. 
However, we make specific adjustments to the sample length and step size, setting them to 16 and 4 s, respec-
tively, to ensure compliance with the latency requirements of the meditation application. Consequently, in this 
meditation study, our proposed approach delivers the initial heart rate measurement within a timeframe of 16 s, 
followed by subsequent updates every 4 s.

Table 3 presents the HR accuracy achieved by our proposed approach on the meditation dataset, and Figs. 7a,b 
show the related HR error histogram and CDF of HR AE, respectively. The proposed approach achieves good 
HR accuracy, with MAE and MAPE values of 1.05 bpm and 1.56% , respectively, and the corresponding 95th 
percentiles of AE and APE being 3.24 bpm and 4.69% . The recall rate is 98.16% , with only 1.84% of samples 
remaining undetermined. The R-Squared value is around 95.26% . All of these performance metrics outperform 
their sleep counterparts.

Figure 8 presents the HR accuracies for various test cases. The proposed approach achieves high accuracy 
across all cases, with the MAE of all cases except Case C4 being less than 1.5 bpm and the corresponding 
95th percentile AE being less than 6.5 bpm. Case C4 is slightly worse than the others, with MAE and the 95th 
percentile CI being 3.0 bpm and 11.1 bpm, respectively. Interestingly, Cases C4 and D3 perform differently even 
under similar conditions, possibly due to outliers. Overall, the figure shows the resilience of the proposed method, 
showcasing its ability to operate effectively up to 1.0 m with a blanket and successfully handle various breathing 
patterns, body motions, and even second-person aggressors (despite the limited data size of Category E).

Figures 9a,b illustrate two examples of meditation in test cases C3 and E2, respectively. In Fig. 9a, a decrease 
in HRs is observed from both the Soli and PPG sensors, which can be attributed to the jumping jack exercise 
performed before data collection. On the other hand, Fig. 9b depicts a scenario where a second person lies still 
on the non-device side. In both cases, the Soli HRs exhibit strong alignment with the PPG HRs, indicating a 
high level of agreement between the two measurements. The MAEs for Figs. 9a is around 1.4 bpm, while Fig. 9b 
, it is 0.8 bpm.

Discussion
Detecting HR without physical contact is a valuable yet challenging task, especially for sleep and meditation 
tracking. This study presents a novel solution that leverages a miniaturized Soli radar chip integrated into a 
portable device (Google Nest Hub). The proposed approach harnesses advanced SP and ML techniques to 
extract HR information from radar signals, enabling precise measurements during sleep and meditation ses-
sions. The effectiveness of the proposed approach is validated using two datasets: a sleep dataset comprising 
data from 62 users and 498 h and a meditation dataset with data from 114 users and 1131 min. The results 
show that the proposed approach achieves an MAE of 1.69 bpm and a MAPE of 2.67% on the sleep dataset and 
an MAE of 1.05 bpm and a MAPE of 1.56% on the meditation dataset. The recall rates for the two datasets are 

Table 3.  The Soli HR accuracy of the meditation data. The proposed approach achieves MAE and MAPE 
around 1.05 bpm and 1.56% , respectively.

Method MAE AE ( 95%) MAPE APE ( 95%) R2 Recall

Proposed 1.05 bpm 3.24 bpm 1.56% 4.69%  95.26% 98.16%

Figure 7.  (a) HR error histogram of the proposed approach during meditation, and (b) the related AE CDF. 
The HR error histogram shows that most of the HR errors are small. The AE CDF shows that the 95th percentile 
AE is less than 3.24 bpm.
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88.53% and 98.16% , respectively. Furthermore, the proposed method is robust against various sleep positions, 
HR bands, body motions, and even the presence of a second-person aggressor. These results suggest that non-
contact HR monitoring technology has promising potential for continuous and convenient monitoring of sleep 
and meditation.

Future work will focus on enhancing the sleep-tracking recall rate and improving Soli’s capability to track 
rapid HR changes for HRV detection, another critical biometric for meditation. Another interesting research 
area is RF-Seismocardiogram (SCG), which aims to extract more comprehensive heartbeat information beyond 
HR and HRV for monitoring various cardiovascular conditions of the user, especially during  sleep24. With 
further developments, noncontact heart monitoring technology enabled by Soli and other radar technologies 
may become essential for continuously and conveniently monitoring sleep and meditation.

Methods
Hardware
The second-generation Soli radar chip, illustrated in Fig. 1b, is utilized in our investigation. The chip is integrated 
into the Google Nest Hub, as depicted in Fig. 1a. This compact chip measures 6.5 mm × 5 mm × 0.9 mm and 
operates at 60 GHz with one transmit antenna and three receive antennas. Its diminutive size allows for integra-
tion into various portable devices and smartphones. The receive antennas are configured in an L shape, with 2.5 
mm spacing between them. The chip employs frequency-modulated continuous wave (FMCW)  waveforms25, 
also known as chirps, with a transmit power of 5 mW. These chirps sweep frequencies from 58 GHz to 63.5 
GHz, resulting in a bandwidth of B = 5.5 GHz and a range resolution of approximately c2B = 2.7 cm, where c 
denotes the speed of light. The received signals are sampled at an ADC sampling rate of 2 MHz, with each chirp 

Figure 8.  HR accuracy of the proposed method for various meditation test cases. The proposed approach 
achieves high accuracy across all cases, with the MAE of all cases except Case C4 less than 1.5 bpm and the 
corresponding 95th percentile AE less than 6.5 bpm.

Figure 9.  Two meditation HR examples using our proposed approach. (a) shows an example in Case C3, where 
the user performed jumping jacks before data collection, and (b) shows an example in Case E2, where a second 
person lay still on the non-device side. In both cases, the Soli HR matches well with the PPG ground truth, 
indicating the accuracy of our proposed approach.
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comprising 256 samples. Chirps are repeated at a rate of 3000 Hz, with 20 chirps organized into a burst that 
repeats at a burst rate of 30 Hz. The chip enters an idle mode between chirps and bursts, resulting in an active duty 
cycle of roughly 256 ∗ 20

2×106
∗ 30 = 7.68% within 33 ms, compliant with the FCC  wavier26. The essential operational 

parameters of the Soli radar chip are presented in Table 4. For a more comprehensive understanding of the Soli 
radar chip and the FMCW principle, interested readers may refer to the related  papers16,27–29.

Preprocessing
The ADC samples from the three receivers are initially directed to the preprocessing block, as shown in Fig. 1c. 
Within the preprocessing block, the chirps within each burst are first averaged. Then the bursts are decimated 
from 30 to 15 Hz by merely averaging two adjacent bursts, enhancing the SNR. Consequently, the data is 
decimated to one chirp every 0.067 s. FFT is then applied to the decimated data along the fast-time, i.e., the 256 
samples of each chirp, generating complex-valued range profiles. An example of decimated data from the three 
receivers of 60 s duration is illustrated in Fig. 10a, with the x-axis representing time and the y-axis representing 
the ADC sample index with a chirp.

Presence detection
The presence detection block in this study serves three functions: firstly, to determine whether a user is present; 
secondly, to determine whether the user is still; and thirdly, to determine the distance of the user from the sensor. 
When the presence detection block detects a still user, it will activate the subsequent HR monitoring blocks to 
measure the user’s HR. Conversely, it pauses the HR detection process until a still user is detected again. By 
including these functionalities in the presence detection block, the system can optimize HR monitoring, ensuring 
accurate and reliable readings are obtained.

In the presence detection stage, we first apply a clutter filter to complex-valued range profiles to eliminate 
strong stationary clutter originating from the background and the interplay between transmit and receive 
antennas. The clutter filter first calculates the average range profile over time (or chirps) and subtracts it from 
the original ones. It assumes that these clutter signals remain unvaried over time. The power of the so-processed 
range profiles is then computed and combined over receivers to form a power range profile image. As shown in 
Fig. 10b, the bright line in the power range profile image signifies user presence. A simple constant false alarm 
(CFAR)30 detector is used to detect the user and determine the associated distance. Upon user detection, the 
peak range bin signal is extracted from the complex-valued range profiles (after the clutter filter). An FFT is then 
executed to obtain a Doppler spectrum. Given that Doppler indicates the user’s motion speed, the ratio of low 
Doppler energy to high Doppler energy is calculated to determine the user’s stillness.

Micro‑motion extraction
Once a still user is detected, 16 range bin signals are extracted from the complex-valued range profiles around 
the detected user distance. The micro-motion extraction algorithm is applied to each range bin independently, 
resulting in a micro-motion waveform.

The micro-motion extraction process involves two main steps: beamforming and phase extraction. In the 
first step, signals from the three receivers are combined using a maximum ratio combining (MRC) method to 
filter out the desired reflection signal. To perform the MRC beamforming, we first stack the signals from the 
three receivers into a 3× 1 vector, denoted by x(l) ∈ C

3×1 , where l denotes the chirp index. A 3× 3 covariance 
matrix Q is then computed using the formula:

In (1), x̂ = 1
L

∑L
l=1 x(l) represents the stationary clutter at the current range bin, (·)H denotes the Hermitian 

matrix transpose, and L is the number of chirps (in the example in Fig. 10, this is 900). The dominant eigenvector 
of Q , denoted by w , is computed using a power iteration  method31. Finally, the three channels are combined 
using w to produce a complex-valued scalar sequence y(l) = wHx(l).

(1)Q =
1

L

L∑

t=1

[x(l)− x̄][x(l)− x̄]H .

Table 4.  Soli radar chip operation parameters. Low transmit power (5 mW) and active duty cycle ( 7.58% ) 
were used to meet the FCC waiver.

Parameters Values

Frequency band 58-63.5 GHz

Transmit power 5 mw

ADC sampling rate 2 MHz

Number of samples per chirp 256

Number of chirps per burst 20

Chirp rate 3000 Hz

Burst rate 30 Hz

Active duty cycle 7.68%
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The objective of the second step is to extract phase information from the combined signal y(l). Note that the 
conventional phase extraction technique is ineffective in this problem due to the small heartbeat and respiration 
micro-motion magnitude compared to the wavelength. Instead, a circle-fitting  technique25,32 is used. This 
technique assumes that the desired reflection signal has a constant modulus over time. Thus, it can be formulated 
in the following optimization problem:

where η ∈ C and r ∈ R represent the center and radius of the fitted circle, respectively. The optimization problem 
of (2) can be solved using a closed-form  solution25.

Once we estimate the circle center η , we can extract the micro-motion waveform using the following equation:

with f0 denoting the center frequency. Here, unwrap (·) denotes the unwrap function, which corrects the radian 
phase angles by adding multiples of ±2π such that the phase change from the previous sample is less than π.

Figure 10c displays the 16 micro-motion waveforms extracted from the sleep data example. While some 
waveforms exhibit respiration motion, the heart pulse signal is scarcely discernible. We employ an ML technique 
below to extract the pulse waveform and its associated pseudo-spectrum from the micro-motion waveforms.

ML‑based pulse waveform and pseudo‑spectrum extraction
A neural network (NN) has been designed to extract the heart pulse waveform and its corresponding pseudo-
spectrum from the micro-motion waveforms. The NN comprises two blocks, depicted in Fig. 11. The first block 
focuses on extracting the pulse waveform from the 16 micro-motion waveforms, as shown in Fig. 10c. The so-
obtained pulse waveform is illustrated in the upper plot of Fig. 10d. The second block takes this pulse waveform 
as input and generates a pseudo-spectrum, visualized in the lower plot of Fig. 10d.

(2)min
η,r

∑

l

[∣∣y(l)− η
∣∣2 − r

]2
,

(3)d(l) =
c

4π f0
unwrap

[
angle (y(l)− η)

]
,

Figure 10.  An example of noncontact HR detection for sleep tracking includes (a) ADC samples over 60 s of 
the three receivers, (b) combined power range profiles for presence detection, (c) extracted 16 micro-motion 
waveforms, and (d) pulse waveform and associated pseudo-spectrum at the NN output.
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At the bottom of Fig. 11, we present a modified residual neural network (ResNet)  layer33, which is utilized 
in both neural network (NN)  blocks33. The modified ResNet layer comprises a 1D convolution (Conv) layer, 
followed by a separable convolution (Separable-Conv)34 layer. We use Separable-Conv for the second stage to 
reduce the number of parameters. A shortcut, two batch normalizations, and two rectified linear units (ReLu) 
are included, similar to the standard ResNet.

As shown in Fig. 11, in the first block, each of the 16 micro-motion waveforms is processed through three 
ResNet layers before being passed to a summation layer. The output of the summation layer is then processed 
through a ResNet and a standard 1D Conv layer, ultimately producing the pulse waveform output. The number 
of filters and their corresponding kernel size for each ResNet layer is illustrated in the figure. The ResNet weights 
across various input branches are enforced to be equal.

The second NN block begins by processing the pulse waveform through a ResNet layer. The resulting output 
is then passed through a full-size FFT layer, two half-size FFT layers, and four quarter-size FFT layers in parallel. 
In the half-size FFT layers, the input signal is divided into two segments, and FFT is applied to each segment 
independently. A similar process is used for the quarter-size FFT block. This design enhances the robustness 
of HR detection against random body motion, which is usually non-stationary and thus with different spectra 
at different time intervals. By examining the spectra at different FFT outputs, the NN can better reject the 
interference of random body motion. Zero-padding is applied to all 7 FFTs resulting in the same output length 
(1024) and the same output frequency granularity (0.88 bpm). The FFT outputs are then cropped to the frequency 
band of interest (35–200 bpm, N = 189 ) and concatenated. The concatenated data is processed by two ResNet 
layers and one SoftMax layer, generating a pseudo-spectrum of the pulse waveform. The HR and associated 
confidence level can be determined by detecting the peak of the pseudo-spectrum and comparing its amplitude 
with that of the second peak.

The designed NN is very lightweight, with only 10,248 parameters, of which 9815 are trainable. As a result, 
the entire pipeline, including the NN model, data acquisition/transmission, signal processing, and virtualization, 
can run in real time on a laptop (e.g., MacBook Pro with 2.6 GHz 6-Core Intel Core i7) or a portable device (e.g., 
Google Nest Hub with Amlogic S905D3 quad-core Cortex-A55 processor), updating the HR estimate every 4 s. 
The NN was implemented using TensorFlow 2.13.035,36 and trained in the Google Colaboratory  environment37. 
We used 477 h of sleep data and 478 min of meditation data for training. The training data were collected from 
different users using the same DC protocols as the test data. The neural network (NN) model was trained 
separately for sleep and meditation tracking applications due to the differences in input data lengths.

During the NN training, we utilized both the ECG and PPG waveforms, along with their respective pseudo-
spectra, as ground truth labels. To facilitate ML training, we pre-processed and normalized both the ECG/PCG 
waveforms and their pseudo-spectra. Initially, we detected individual peaks from the raw ECG/PCG waveforms, 
which were then modulated by Gaussian pulses. This process effectively replaced the heartbeat pulses with 
standard Gaussian pulses, preserving the timing information of the heartbeats while removing other unrelated 
features. A similar approach was applied to process the spectrum labels. For the waveform output, a mean square 
error (MSE) loss function was employed, while a cross-entropy loss function was used for the pseudo-spectrum 
output. By combining these two loss functions, we optimized the overall performance of the NN. The Adam 
 optimizer38 was utilized to facilitate the optimization process.

Post‑processing
The HR sequence obtained from the signal processing (SP) and machine learning (ML) blocks undergoes further 
refinement in the post-processing block. Initially, HRs with low confidence levels are discarded, and a simple 

Figure 11.  A lightweight NN for HR detection. The NN consists of two blocks. The first block extracts the pulse 
waveform from the 16 micro-motion waveforms, while the second block generates a pseudo-spectrum from the 
pulse waveform. The designed NN has 10,248 parameters, 9815 of which are trainable.
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linear interpolation technique is employed to recover these rejected HR samples using neighboring samples as 
reference. However, if the consecutive number of rejected samples exceeds the subsequent median filter length, 
the HRs during that period are considered as undetermined.

A median filter is applied to ensure smoothness in the HR sequence, followed by a Gaussian smoothing filter. 
For sleep tracking, the median filter length is set to 10 min, while the Gaussian smoothing filter has a length 
of 1 min. The median and Gaussian filter lengths for meditation tracking are set to 20 s. These filter lengths are 
chosen to optimize the balance between preserving accurate HR information and reducing noise in the respective 
tracking scenarios.

Performance metrics
The accuracy of Soli HR is evaluated using five performance metrics: recall rate, MAE, MAPE, 95th percentile 
AE, and 95th percentile APE. The recall rate measures the percentage of data samples with determined HR values. 
It is calculated by dividing the number of samples with determined HRs by the total number of samples. AE 
and APE are computed for each determined HR sample to quantify the differences between the Soli HR and the 
ground-truth HR. The MAE is then determined by averaging the AEs over the investigated sample set, providing 
a measure of the average absolute error, i.e.,

with hrn and ĥr n representing the reference and estimated HRs, respectively. Similarly, the MAPE is calculated 
by averaging the APEs, indicating the average percentage error, i.e.,

Additionally, the 95th percentile AE and 95th percentile APE are calculated from the distribution of AEs and 
APEs, respectively. These metrics represent the value below which 95% of the absolute or percentage errors fall, 
providing insight into the performance at higher error levels.

In Tables 1 and 3, we have also included the R-squared value, denoted as R2 , as an additional metric to offer 
insights into the model’s performance. This statistical measure quantifies the proportion of HR variation that 
the model can predict compared to the total variation in HR. It is calculated as:

with h̄r = 1
N

∑N
n=1 hrn representing the averaged HR over all data samples.
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(5)MAPE =
1

N

N∑

n=1

∣∣∣ hrn − ĥr n
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