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RGB‑D salient object detection 
via convolutional capsule network 
based on feature extraction 
and integration
Kun Xu 1,2,3 & Jichang Guo 1*

Fully convolutional neural network has shown advantages in the salient object detection by using 
the RGB or RGB-D images. However, there is an object-part dilemma since most fully convolutional 
neural network inevitably leads to an incomplete segmentation of the salient object. Although the 
capsule network is capable of recognizing a complete object, it is highly computational demand and 
time consuming. In this paper, we propose a novel convolutional capsule network based on feature 
extraction and integration for dealing with the object-part relationship, with less computation 
demand. First and foremost, RGB features are extracted and integrated by using the VGG backbone 
and feature extraction module. Then, these features, integrating with depth images by using 
feature depth module, are upsampled progressively to produce a feature map. In the next step, 
the feature map is fed into the feature-integrated convolutional capsule network to explore the 
object-part relationship. The proposed capsule network extracts object-part information by using 
convolutional capsules with locally-connected routing and predicts the final salient map based on the 
deconvolutional capsules. Experimental results on four RGB-D benchmark datasets show that our 
proposed method outperforms 23 state-of-the-art algorithms.

With the popularity of Microsoft Kinect, Intel RealSense and some modern smartphones (e.g. iPhone X, and 
Samsung Galaxy S20), depth images can be obtained easily and conveniently. As a result, Salient Object Detection 
(SOD) by using RGB images and depth images (RGB-D images) has become a hot research topic. Benefiting from 
its stable geometry and additional contrast cues, depth images can provide important complementary informa-
tion for SOD. Especially, the emergence of Fully Convolutional Neural Networks (FCNs) makes it possible to 
capture multi-level and multi-scale features, thereby boosting the performance of RGB-D SOD1–9.

Most FCNs predict the salient object by assembling multi-level features. However, there is an object-part 
dilemma under the mechanism of FCNs, which is demonstrated in Fig. 1 with four representative examples. 
As shown in Fig. 1d, some parts of the predicted salient object from FCNs are immersed in the background 
or disturbed by the background, they may be easily mislabeled as non-salient regions. It results in incomplete 
segmentation. In other words, the relationships between an object and its parts are not taken into consideration 
by existing FCNs. Ideally, a salient object is a complete entity, which is composed of several associated parts. If a 
large proportion of the object were predicted as the salient region, the complete object would be determined as 
a salient object. As shown in Fig. 1e, the salient objects are segmented as a whole with a high probability when 
the object-part relationship is taken into consideration by the Capsule Network (CapsNet).

Recently, the CapsNet10–12 has been proposed to preserve vector quantity, rather than scalar quantity, by 
replacing max-pooling operation with convolutional strides and dynamic routing. The vector quantity is capable 
of preserving object-part relationships, which is the basic element of a capsule. A capsule encapsulates a group 
of neurons whose outputs are vector quantity, representing different properties of an entity, including position, 
size, sharp and orientation, which preserve enough information to explore the object-part relationship. Further-
more, associated parts of an object are represented by child capsules. Then, children capsules are clustered by the 
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dynamic routing algorithm to generate parent capsules. Unfortunately, despite the great performance, CapsNet 
is known for its high computational demand, both in terms of memory and run-time, even for a very simple 
image classification task. Especially, child capsules store all intermediate representations and parent capsules 
are clustered by the dynamic routing algorithms, which determines coefficients between every child capsule and 
every parent capsule. A large amount of GPU memory required, when the dynamic routing algorithms occurs. 
Therefore, it is impractical for CapsNet to deal with SOD.

Inspired by these observations, we introduce object-part relationship for RGB-D SOD in this paper, which 
provides a solution to incomplete salient object segmentation. A Convolutional Capsule Network based on 
Feature Extraction and Integration (CCNet) for RGB-D SOD is proposed to explore the object-part relationship 
with low computation demand. Our system consists of two key parts. One is proposed to extract and integrate 
features based on VGG, Global Context Module(GCM)13, attention mechenism14, 15 and FDM(Feature Depth 
Module). The other one is the Feature-integrated Convolutional Capsule Network (FiCaps), whose structure is 
composed of the convolutional part and deconvolutional part, similar to SegCaps16. Specifically, in our proposed 
FiCaps, child capsules are only routed to parent capsules within a defined local kernel. Besides, the transforma-
tion matrices are shared for each member of the grid within a capsule.

Our contributions are summarized as follows:

(1)	 We introduce the object-part relationship into RGB-D SOD by using the CCNet. To the best of our knowl-
edge, this is an earlier attempt to apply CapsNet to explore object-part relationships for RGB-D SOD.

(2)	 A novel FiCaps is proposed to integrate external multi-level features with internal capsules. As demon-
strated in Fig. 1e, our proposed method can recognize and segment the salient object as a whole with a 
high probability, compared with the methods based on FCNs.

(3)	 We compare our approach with 23 state-of-the-art RGB-D SOD. The experimental results demonstrate 
that our CCNet outperform other state-of-the-art algorithms.

Related works
The utilization of RGB-D images for SOD based on FCNs has been extensively explored for years. Based on 
the goal of this paper, we review the RGB-D SOD methods as well as the CapsNet and illustrate the differences 
between our proposed methods and related works.

RGB‑D salient object detection
The pioneering work was produced by Niu et al.17 based on traditional methods. After that, various hand-
crafted features originally applied for RGB SOD were extended to RGB-D SOD, such as18, 19. In this paper, we 

Figure 1.   The examples of object-part relationship for SOD. For the first row, the tail wing of an aircraft is 
not recognized as the salient object by FCNs while our proposed method predicts the aircraft as a whole. In 
the second row, there is an incoherence in the right arm of the cartoon figure predicted by the FCNs while the 
proposed method regards the right arm and the cartoon figure as an integral whole. In third line, the salient 
object predicted by FCNs misses the stem of the plants while the flower and the stem are predicted by our 
CCNet. For the last row, the flame of the satellite is misidentified as the salient object by the FCNs. However our 
proposed method suppresses the interference by identifying the satellite as a complete object. Note: Reproduced 
with permission of references 25, Copyright of ©2017 IEEE, references 26, Copyright of ©2016 IEEE, references 
27, Copyright of ©2018 IEEE, references 28, Copyright of ©2015 IEEE.
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pay much attention to the RGB-D SOD based on deep learning algorithms. For example, Xu et al.20 propose a 
lightweight SOD for real-time localization which is composed of lightweight feature extraction network based 
on multi-scale attention, the jump connections and a residual refinement module. Chen and Fu20 propose an 
alternate refinement strategy and combine a guided residual block to predict refined features and salient maps, 
simultaneously. Lei22 proposes SU2GE-Net. Firstly, the CNN-based backbone is replaced by the transformer-
based Swin-TransformerV2. Besides, an edge-based loss and training-only augmentation loss are introduced 
to enhance spatial stability. Zhao et al.23 build a real single-stream network by combining RGB-D images at the 
starting point, taking advantage of the potential contrast information provided by depth images. Compared 
with the above algorithms, there are similarities and differences. For the similarities, the design idea between 
our proposed algorithms and SU2GE-Net in the related work is the same. Both of them try to replace the CNN-
based backbone with a novel backbone, such as Swin-TransformerV2 or CapsNet. Furthermore, the structure of 
salient object detectors is the same as well, including the encoders and decoders. For the differences, the CCNet 
predicts the salient object mainly based on CapsNet, whose basic elements are vector quantity. However, other 
salient detectors are scalar quantity.

Capsule network
Recently, a novel deep learning network, named CapsNet, was developed by Hinton et al. 10. A capsule is essen-
tially a group of neurons, which represent a specific type of the entity, such as position, size, orientation, deforma-
tion, texture and etc. The CapsNet is totally different with the FCNs in two aspects. On the one hand, neurons of 
FCNs are scalars while that of CapsNet are vectors. On the other hand, the FCNs extract and integrate multi-level  
features by encoder and decoder while the CapsNet matches associated active child capsules into parent capsules 
by dynamic routing algorithm. Then, Sabour et al.11 proposes the vector CapsNet. An iterative dynamic routing 
algorithm was proposed to assign child capsules to corresponding parent capsules via transformation weights. 
The spatial relationship between a part and a object is encoded and learned by the dynamic routing algorithm 
and transformation weights. One year later, Hinton et al.12 consolidated the vector CapsNet by proposing a 
matrix CapsNet, whose capsule is composed of a pose matrix and an activation probability. The coefficients 
between the child capsule and the parent capsule are calculated by the iterative Expectation–Maximization (EM) 
algorithm, by finding the tightest clusters of capsules. Compared with the vector CapsNet, the transformation 
matrix of the matrix CapsNet has much less parameters. Furthermore, the matrix CapsNet use the iterative EM 
to measure the similarities between capsules, while the vector CapsNet uses the cosine similarity. In the view 
of its advances, some attempts have been made to apply CapsNet for several computer vision tasks, including 
the object segmentation and SOD. To reduce the high computational demand, LaLonde and Bagci design the 
SegCap16 based on the vector Capsules to solve the object segmentation. It extends the idea of convolutional 
capsules with the locally-connected routing and the concept of deconvolutional capsules. Liu and his colleague24 
propose the Two-Stream Part-Object Relational Network (TSPORTNet) to implement the matrix CapsNet for 
SOD, whose activation map is the final salient map. Both methods try to reduce the computation demand, which 
make them possible to be used in large-scale image tasks. In this paper, the structure of our proposed method is 
the similar to that of SegCaps. Different from the SegCaps, our proposed method in the encoder excavate cap-
sules and concatenates them with corresponding multi-level features. However, the encoder and decoder of the 
SegCaps are enclosed environment. Furthermore, the TSPORTNet prefers to explore the object-part relationship 
based on the matrix Capsules and use the activation map as the salient map. The predicted salient map is coarse 
and needs to be refined. On the contrary, our proposed FiCaps uses extracted features from FCNs as the input. 
Subsequently, a refined salient map is predicted directly by FiCaps, without post-processing.

Methodology
This paper begins by demonstrating an overall architecture of CCNet, which is depicted in Fig. 2. It will then go 
on to introduce their principles and detail information of modules.

Overall architecture
Figure 2 shows the overall architecture of CCNet. Our system begins with a VGG backbone, extracting multi-level 
features. Then, these features are input into GCM to further exploit. The depth image is downsampled by the max 
pooling to shrink it by a corresponding multiply, including 2, 4, 8, 16, respectively. In the next step, depth images 
are integrated with features from GCM by FDM directly, based on attention mechanism14, 15. After that, the out-
puts of FDM are integrated by FFM progressively, whose outputs are further input into FiCaps to fuse external 
multi-level features with capsules ulteriorly. The structure of FiCaps is similar to U-Net. In the encoder, these 
capsules are processed by convolutional capsule layers, which map the child capsules to the parent capsules by 
the dynamic routing algorithms in defined local connections. Besides, the concatenation module in the encoder 
is proposed to integrate external features with internal capsules. When it comes to the decoder, the capsules are 
processed by the deconvolutional capsule layers which are mainly composed of transposed convolution with 
stride 2. Finally, the output of FiCaps is the predicted salient map.

Feature depth module
The FDM is used to reweight features from GCM based on depth images. The structure of GCM is introduced 
in13 in details. In Fig. 3, we multiply features with the depth image which is downsampled to the corresponding 
size. Then, the product are processed by two convolutions with batch normalization and Relu operation. Con-
sequently, these features are concatenated with downsampled depth images and are processed by two convolu-
tions. Next, we facilitate the attention mechanism, including the channel attention and the spacial attention, 
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to generate a reweighted map and multiply it with input features gi, following convolutions. The procedure is 
formulated as follows:

where gi and di refers to the ith feature from GCM and depth image with 2i times downsampling. The convbr 
and conv indicates the 3 × 3 convolution with and without the batch normalization and relu operation. The CA 
and SA means the channel attention and the spacial attention. The parameter i ranges from 1 to 4. The symbol ∗ 
means the multiplication operation in the pixel level.

(1)gdi = convbr
(

convbr
(

gi ∗ di
))

(2)cdi = conv
(

conv
(

cat
(

gdi , di
)))

(3)fdi = conv
(

convbr
(

gi ∗ CA(cdi) ∗ SA(cdi)
))

Figure 2.   The framework of CCNet. The features are extracted by the VGG backbone, which is denoted as 
(

f0, f1, f2, f3, f4
)

 . The features 
(

g0, g1, g2, g3, g4
)

 refer to the outputs of the GCM. The depth image is downsampled 
directly which is labeled as (d0, d1, d2, d3, d4) . Then, the features from GCM and depth images are integrated by 
FDM, whose outputs are 

(

fd0, fd1, fd2, fd3, fd4
)

 . In the next step, the outputs of FDM are aggregated by Feature 
Fusion Module(FFM) progressively, denoted as 

(

ff01, ff12, ff23, ff34
)

.In FiCaps, the conv means the traditional 
convolution with 1 × 1 kernel size. The convCaps means the convolution capsule layer, whose stride and padding 
is equal to 1 or 2. The deconvCaps refers to the deconvolution capsule layer, implemented by transposed 
convolution with stride 2 and padding 2. The concatenation indicates a series of operations, including 
concatenation, reshape and convolution, for integrating internal capsules and external features.

Figure 3.   The structure of FDM. The convbr refers to the 3 × 3 convolution with batch normalization and relu 
operation while the conv means the 3 × 3 convolution. The symbol X and [.] indicates the multiplication and the 
concatenation operation in the pixel level. The pool refers to the pooling operation, whose multiple is 2 to i.
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Feature fusion module
The FFM integrates adjacent two features from high-level to low-level, generating the feature map. As showed in 
Eq. (4), two input features first undergo the convolution layers, respectively. Then, the relative high-level feature 
is upsampled and concatenated with the low-level feature, which is further processed by two convolution layers.

where fdi and fdi−1 refers to the relative high-level feature and low-level feature, respectively. The conva , convb 
and conv all indicate the convolution with batch normalization and relu operation. The up indicates the 2-times 
upsample operation and the cat means the concatenation operation. The i ranges from 1 to 4.

Feature‑integrated convolutional capsule network
Figure 4 shows the details of FiCaps. We first introduce the structure of FiCaps and then elaborate the detail, 
including the convolutional capsule layer, the deconvolutional capsule layer and the concatenation layer. The 
FiCaps shares the same architecture with the U-Net. For the encoder, it contains two basic modules, the convolu-
tional capsule layer and the concatenation layer. In the decoder, it is composed of the convolutional capsule layer 
and the deconvolutional capsule layer. First of all, the feature map from FFM is transformed into the capsule. 
Then, the capsule (1 × 16 × 256 × 256) is downsampled by a convolutional capsule layer with stride 2, which is 
further put into a convolutional capsule layer with stride 1, for mapping the child capsule to the parent capsule 
by using the dynamic routing algorithm. Subsequently, the concatenation layer first transforms the capsule 
(4 × 16 × 128 × 128) back to feature map (64 × 128 × 128) via reshape operation. Then, the transformed feature 
map is concatenated with the corresponding external features (32 × 128 × 128), which is then processed by the 
convolution and reshaped into the capsule (4 × 16 × 128 × 128). Such procedure is executed three times until the 
capsule (8 × 32 × 32 × 32) is obtained. In the decoder, the capsule is first upsampled by a deconvolution capsule 
layer with stride 2. Then, the upsampled capsule (8 × 32 × 64 × 64) and the corresponding capsule in the encoder 
are concatenated by the bridge connection to generate the capsule (8 × 32 × 64 × 64), which is then processed by 
the convolutional capsule layer. As well, such procedure is repeated three times to predict the final salient map.

Convolutional and deconvolutional capsule layer
Both convolutional and deconvolutional capsule layer contain two parts. One is the transformation module of the 
capsule and the other one is the dynamic routing algorithm. There are seven parameters in a capsule layer, which 
can be described as capsulelayer

(

in, inv, op, s, on, onv, rt
)

.The in and inv means the number of input capsule and 
the number of vector of input capsule while the on and onv means the number of output capsule and the number 
of vector of output capsule, respectively. There are two options of op, including ‘conv’ and ‘deconv’. When the op 
is ‘conv’, it means the convolution capsule layer. When the op is ‘deconv’, it means the deconvolutional capsule 
layer. The s refers to the number of stride in the convolution, cooperating with the op to accomplish different 
operations. If op is ‘conv’ and s is 2, it means a convolution with 2 times downsampling. Furthermore, if op is 

(4)ffi,i−1 = conv
(

conv
(

cat
(

up
(

conva
(

fdi
))

, convb
(

fdi−1

))))

Figure 4.   The structure of FiCaps. The conv0 represents the traditional 1 × 1 convolution. The convCaps(2) 
indicates the convolutional capsule layer with stride 2 while the convCaps(1) means the convolutional capsule 
layer with stride 1. The deconvCaps represents the deconvolutional capsule layer based on the transposed 
convolution. The red dash arrow refers to the bridge connection between the capsule in the encoder and the 
corresponding capsule in the decoder. The black arrow is the data flow whose data size is described by the text 
near it. The concatenate layer means the concatenation operation for integrating the internal capsules with the 
external features. The f01, f12, f23 and f34 means the corresponding external features.
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‘deconv’ and s is 2, it means a convolution with 2 times upsampling. The rt means the iteration time of dynamic 
routing algorithm, which is set to 3 in this paper.

The convolutional capsule layer decides how to assign active child capsules to parent capsules. This is similar 
to the process of clustering. Each relatively parent capsule corresponds to a cluster center and each relatively 
child capsule corresponds to a data point, which can be solved by an EM algorithm. This mapping is measured 
by a transformation matrix, called voting in EM routing and defined as:

 where c(l)i  and c(l+1)
i  refers to the child capsule and the parent capsule. V (l)

ij  means the voting result from capsule i 

at layer l for capsule j at layer l + 1. T(l)
ij  is a transformation matrix. Next, a Gaussian mixture model is introduced. 

Supposing Gaussian distribution N(x;µ,�)c
(l)
i  has a diagonal covariance matrix diag(σ 2). The posterior prob-

ability of a V (l)
ij  belonging to the jth Gaussian is defined as:

 where activation aj for capsule j is a mixture coefficient of Gaussian mixture model and Vij is treated as a k*d’-
dimensional vector. As a result, the child capsules vote for the parent capsule j, the contribution coefficient rij of 
capsule i when calculating cluster center (capsule) j should consider its activation value ai as follows:

Finally, the procedure of the convolutional and deconvolutional capsule layer is discussed as follows. First 
and foremost, we transform capsules to feature maps, by reshaping capsules [n, in, inv, h, w] into feature maps 
[n, in * inv, h, w], following the convolution layer. Then, we transform feature maps back to capsules, reshaping 
feature maps [n, on * onv, h, w] into capsules [n, on, onv, h, w]. Finally, the capsules execute the dynamic routing 
by using the EM algorithm with r times.

Concatenation layer
The concatenation layer includes two reshape operations, a concatenation operation and a convolution. Sup-
posing the size of capsule from convolutional capsule layer is [b, c, v, h, w] and the size of external feature map is 
[b, n, h, w]. The procedure of the concatenation layer can be discussed as follow. In the first stage, we transform 
capsules to feature maps, by reshaping capsules [b, c, v, h, w] into feature maps [n, c * v, h, w]. Therefore the 
shape of capsules and features maps is the same. Furthermore, we concatenate the transformed feature maps 
with the external features, following the convolutional layer. Lastly, the concatenated result transforms back to 
the capsules, by reshaping the feature maps [n, c * v, h, w] back into capsules [b, c, v, h, w].

Loss function
The parameters of our proposed method are supervised by the cross-entropy loss and the margin loss, which  
are described as:

 where CE and ML represents the cross entropy loss and margin loss, respectively. The gt and pred indicates the 
ground truth and the prediction of salient object. The m+ and m- refers to the constant parameter in this paper, 
which is set to 0.9 and 0.1, respectively. The α,β are set to 1.

Experiment and analyze
In this section, numerous experiments are conducted to verify the effectiveness and superiority of CCNet and 
modules, evaluating by four evaluation metrics.

Benchmark datasets and evaluation metrics
We evaluate the performance of our model on four public RGB-D benchmark datasets. NJU2K25 (1985 samples), 
NLPR26 (1000 samples), STERE27 (1000 samples) and SIP28 (929 samples). We choose the same 700 samples 
from NLPR and 1500 samples from NJU2K to train our algorithms. The remaining samples are used for testing.

Four widely-used metrics are used to evaluate the performance, including Mean Absolute Error (MAE), 
F-measure ( Fβ−max)29, S-measure ( Sα)30, E-measure ( Eξ)31.

(5)V
(l)
ij = c

(l)
i T

(l)
ij

(6)Rij =
aiN

(

Vij;µj , diag
(

σ 2
j

))

∑

j aiN
(

Vij;µj , diag
(

σ 2
j

))

(7)rij =
aiRij

∑

i aiRij

(8)Loss = α · CE + β ·ML

(9)CE = −(gt · log
(

pred
)

+
(

1− gt
)

· log
(

1− pred
)

(10)ML = gt ·max
(

0,m+
− pred

)

+ 3 ·
(

1− gt
)

·max
(

0, pred −m−
)
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Implementation details
Our proposed CCNet is implemented in Pytorch, which is trained for 300 epochs on a single NVIDIA Tesla 
T4 GPU. The Adam optimizer is used with default values. The initial learning rate is set as 1e−4 for Adam opti-
mizer and the batch size is 10. The poly learning rate policy is used, where the power is set to 0.9. For the data 
augment, every input data batch in the training session are resized to 256 × 256 with random flipping, rotation, 
color enhance and random pepper. In the training session, the RGB images, depth images and GT are combined 
together as data batch. During the inference session, RGB-D images are put into the trained model to predict 
the salient map, without any other post-processing.

Comparison with the state‑of‑the‑art methods
In this section, we compare our proposed networks with 23 state-of-the-art methods, including PCF5, MMCI32, 
CPFP33, DRMA8, D3Net9, UCNet4, SSF34, S2MA24, CoNet35, cmMS36, DANet23, A2dele37, PAGR​20, DFM38, 
DSA2f39, HAINet40, SSL41, DisenFuse42, ICNet43, CMWNet44, BBSNet1, CDNet45 and DCF246. Quantitative and 
visual comparisons are taken into accounts for fair comparisons.

Quantitative comparisons
Table 1 shows quantitative comparisons with 23 salient detectors from three perspectives. First and foremost, 
evaluation scores of all methods on four benchmark datasets present as columns. It is obviously that our models 
achieve the top-3 performance on NLPR, STERE and SIP for four evaluation metrics. More importantly, our 
proposed method possesses the least MAE on NLPR and STERE, with approximately 8.7% and 2.7% promotion, 
respectively. Secondly, we count on the top-3 number of every method. The statistical result is demonstrated in 
the column named Top 3. It is remarkable that our proposed method occupy the largest number, with 11/16. 
Finally, we calculate the average value of the evaluated metric on four datasets, which is listed in the row named 
“Average-Metric”. Our model reach the top-3 performance on all datasets And rank 1st in the average MAE.

Visual comparisons
Figure 5 shows visual comparisons. These examples reflect various scenarios, including complex scenes (1st and 
2nd rows), multi-objective salient object (3rd and 4th rows), small objects (5th and 6th rows) and low contrast 
between salient object and background (7th and 8th rows). All images come from downloading the experimen-
tal result from Github directly or training the source codes from the Github and predicting salient object. For 
complex scenes, the compared approaches mostly predict a blurry salient object and recognize some non-salient 
part around the salient object as salient part. For the multi-objective detection, several methods miss some salient 
objects or predict the salient object with noises. When it comes to the small object, the compared methods cannot 
predict a clear and complete salient object whose size is very small in the image. Lastly, for the scenario of low 
contrast, the existing salient detectors mostly get poor object smoothness and poor details of the salient object. 
Besides, some compared methods miss important parts of salient object. To sum up, our proposed method can 
consistently produce accurate and complete salient maps with sharp edges in various cases.

Ablation study
In this section, we validate the effectiveness of proposed structures. First and foremost, we evaluate the per-
formance of our proposed FiCaps by comparing it with the U-Net47. Furthermore, we testify the strategy of 
integrating external features with internal capsules in FiCaps. Next, our proposed FDM is evaluated. Finally, 
the performance of GCM is verified by replacing it with the traditional convolutions. All experimenal results 
are demonstrated in Table 2.

Effectiveness of FiCaps
We evaluate the performance of FiCaps in two aspects. On the one hand, we use the U-Net as the compared 
structure to evaluate the performance of FiCaps. The FiCaps is replaced with the U-Net and other modules and 
the parameters remain unchanged. The experimental results in Table 2, the row ① and the row ‘our’, show that 
our FiCaps outperforms the U-Net. In addition, we evaluate the effectiveness of integrating internal capsules with 
external features in FiCaps. To verify it, we train our method with and without integrating external features. It 
is obviously that, from row ② and row ‘our’ in Table 2, the integration of external features is an effective way to 
improve the performance, with approximately 0.1–9.8% promotions.

Effectiveness of integration way of depth images
To evaluate the performance of integrating depth images directly, in this section, we try to integrate depth fea-
tures which are extracted from depth images by VGG, MobileNet48 or RESNET1849, instead of integrating the 
depth images directly. In this section, another independent VGG backbone is used to extract depth features from 
depth images and predict the salient map based on depth images. The extracted depth features are integrated 
with features from RGB images. The experimental result ③ in Table 2 demonstrates that our proposed method 
is a more effective way, with about 15.2–50% promotion in MAE and approximately 0.8–2.2% improvement in 
other evaluation metrics.

Effectiveness of GCM
To evaluate the contribution of GCM, we replace the GCM with traditional convolutions with batch normaliza-
tion and Relu operation. The experimental result ④ in Table 2 demonstrates that GCM is an more effective way 
to integrate features.
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Table 1.   Quantitative comparisons. For MAE, the lower, the better. On the contrary, for FM, SM and EM, the 
higher, the better. The second row from the bottom refers to the evaluated scores of our proposed method and 
the last row refers to the rank of our proposed method.

NJUD datasets NLPR datasets STERE datasets SIP datasets

MAE FM SM EM MAE FM SM EM MAE FM SM EM MAE FM SM EM

PCF 0.059 0.872 0.877 0.924 0.044 0.841 0.874 0.925 0.064 0.86 0.875 0.925 0.071 0.838 0.842 0.901

MMCI 0.079 0.852 0.858 0.915 0.059 0.815 0.856 0.913 0.068 0.863 0.873 0.927 0.086 0.818 0.833 0.897

CPFP 0.053 0.877 0.879 0.926 0.036 0.867 0.888 0.932 0.051 0.874 0.879 0.925 0.064 0.851 0.85 0.903

DMRA 0.051 0.886 0.886 0.927 0.031 0.879 0.899 0.947 0.066 0.847 0.835 0.911 0.085 0.821 0.806 0.875

D3Net 0.041 0.9 0.9 0.95 0.025 0.897 0.912 0.953 0.046 0.891 0.899 0.938 0.063 0.861 0.86 0.909

UCNet 0.043 0.895 0.897 0.936 0.025 0.903 0.92 0.956 0.039 0.899 0.903 0.944 0.051 0.879 0.875 0.919

SSF 0.043 0.896 0.899 0.935 0.026 0.896 0.914 0.953 0.044 0.89 0.893 0.936 0.053 0.88 0.874 0.921

S2MA 0.053 0.889 0.894 0.93 0.03 0.902 0.915 0.95 0.051 0.882 0.89 0.932 0.054 0.884 0.878 0.92

CoNET 0.047 0.892 0.895 0.937 0.031 0.887 0.908 0.945 0.04 0.904 0.908 0.948 0.063 0.867 0.858 0.913

cmMS 0.044 0.897 0.9 0.936 0.027 0.896 0.915 0.949 0.042 0.891 0.895 0.937 0.061 0.871 0.867 0.091

DisenFuse 0.052 0.897 0.889 0.914 0.035 0.895 0.9 0.933 0.054 0.887 0.883 0.915 0.068 0.866 0.859 0.899

ICNet 0.051 0.903 0.895 0.901 0.028 0.919 0.922 0.945 0.054 0.897 0.891 0.911 0.063 0.882 0.864 0.903

CMWNet 0.046 0.913 0.903 0.923 0.029 0.913 0.917 0.941 0.043 0.911 0.905 0.93 0.062 0.89 0.867 0.909

BBSNet 0.039 0.926 0.916 0.937 0.026 0.921 0.923 0.948 0.046 0.901 0.896 0.928 0.056 0.892 0.874 0.912

CDNet 0.038 0.919 0.913 0.94 0.024 0.925 0.93 0.954 0.041 0.909 0.903 0.938 0.06 0.888 0.862 0.905

DCF2 0.038 0.917 0.903 0.941 0.023 0.917 0.921 0.956 0.037 0.915 0.905 0.943 0.052 0.9 0.873 0.921

DANet 0.048 0.88 0.891 0.932 0.029 0.903 0.915 0.953 0.048 0.881 0.892 0.93 0.054 0.884 0.878 0.92

A2dele 0.052 0.872 0.868 0.914 0.031 0.875 0.89 0.937 0.043 0.885 0.885 0.935 0.07 0.834 0.829 0.889

PGAR​ 0.045 0.905 0.906 0.94 0.028 0.898 0.918 0.948 0.044 0.893 0.903 0.936 0.059 0.877 0.875 0.914

DFM-Net 0.042 0.91 0.906 0.947 0.026 0.908 0.923 0.957 0.045 0.893 0.898 0.941 0.051 0.887 0.883 0.926

DSA2F 0.039 0.917 0.904 0.937 0.024 0.916 0.918 0.952 0.039 0.91 0.897 0.942 0.057 0.891 0.862 0.911

HAINet 0.038 0.92 0.909 0.931 0.025 0.917 0.921 0.952 0.038 0.919 0.909 0.938 0.048 0.916 0.886 0.925

SSL 0.038 0.923 0.909 0.939 0.025 0.923 0.922 0.96 0.039 0.914 0.904 0.939 0.046 0.909 0.888 0.927

Ours 0.039 0.914 0.902 0.936 0.022 0.922 0.924 0.958 0.036 0.914 0.905 0.941 0.046 0.904 0.886 0.926

Rank 5 7 10 10 1 3 2 2 1 3 3 5 1 3 2 2

TOP3

Average metrics

MAE FM SM EM

PCF 0/16 0.060 0.853 0.867 0.919

MMCI 0/16 0.073 0.837 0.855 0.913

CPFP 0/16 0.051 0.867 0.874 0.922

DMRA 0/16 0.058 0.858 0.857 0.915

D3Net 1/16 0.044 0.887 0.893 0.938

UCNet 1/16 0.040 0.894 0.899 0.939

SSF 0/16 0.042 0.891 0.895 0.936

S2MA 0/16 0.047 0.889 0.894 0.933

CoNET 2/16 0.045 0.888 0.892 0.936

cmMS 0/16 0.044 0.889 0.894 0.728

DisenFuse 0/16 0.052 0.886 0.883 0.915

ICNet 0/16 0.049 0.900 0.893 0.915

CMWNet 1/16 0.045 0.907 0.898 0.926

BBSNet 3/16 0.042 0.910 0.902 0.931

CDNet 5/16 0.041 0.910 0.902 0.934

DCF2 7/16 0.038 0.912 0.901 0.940

DANet 0/16 0.045 0.887 0.894 0.934

A2dele 0/16 0.049 0.867 0.868 0.919

PGAR​ 0/16 0.044 0.893 0.901 0.935

DFM-Net 4/16 0.041 0.900 0.903 0.943

DSA2F 1/16 0.040 0.909 0.895 0.936

HAINet 9/16 0.037 0.918 0.906 0.937

SSL 10/16 0.037 0.917 0.906 0.941

Ours 11/16 0.036 0.914 0.904 0.940

Rank 1 1 3 3 3
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Conclusion
In this paper, we pay much attention to solving the object-part relationship dilemma in the SOD. Therefore, we 
propose a novel CCNet based on CapsNet with less computation demand, which makes explore the object-part 
relationship available and applicable. Our proposed method includes two main steps. In the first step, the RGB-D 
features are extracted and integrated. In the second step, the object-part relationship can be explored fully by 
using FiCaps. Subsequently, the final salient map is predicted by FiCaps. Extensive experiments on four datasets 
demonstrate our proposed method outperforms 23 SOTA methods.

Figure 5.   Visual comparisons of different methods. The 1st and 2nd row indicate the complex scenes. The 
multi-objective object is included in the 3rd and 4th rows. The 5th and 6th mean the scenes of small targets. The 
low contrast between the background and the object is displayed in 7th and 8th rows. Note: Reproduced with 
permission of references 25, Copyright of ©2017 IEEE, references 26, Copyright of ©2016 IEEE, references 27, 
Copyright of ©2018 IEEE, references 28, Copyright of ©2015 IEEE.

Table 2.   Ablation study. The ‘ours’ in Table 2 means our proposed method. The ① refers to the experimental 
results by replacing the structure of FiCaps with U-Nets. The ② means the experimental results, which FiCaps 
does not integrate with external features. The ③ indicates the experimental results, extracting and integrating 
the features of depth image by using the VGG backbone. The ④ refers to the experimental results by replacing 
the GCM with the traditional convolutions.

Datasets NJUD NLPR STERE SIP

Metrics MAE FM SM EM MAE FM SM EM MAE FM SM EM MAE FM SM EM

① 0.041 0.910 0.899 0.906 0.023 0.920 0.921 0.957 0.035 0.911 0.905 0.925 0.049 0.900 0.879 0.918

② 0.041 0.909 0.901 0.906 0.026 0.91 0.916 0.948 0.039 0.903 0.9 0.915 0.051 0.894 0.878 0.916

③ 0.046 0.907 0.895 0.916 0.031 0.903 0.906 0.941 0.073 0.86 0.82 0.869 0.056 0.897 0.869 0.907

④ 0.040 0.911 0.901 0.936 0.022 0.922 0.923 0.957 0.035 0.912 0.903 0.937 0.047 0.902 0.883 0.925

Ours 0.039 0.914 0.902 0.936 0.022 0.922 0.924 0.958 0.036 0.914 0.905 0.941 0.046 0.904 0.886 0.926
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More importantly, the FiCaps is transferable for any RGB-D SOD. The FiCaps can be used as a complementary 
branch for any architecture in the area of SOD to explore the object-part relationship. A feature map is input into 
the FiCaps and a attention map considering the object-part relationship is predicted. The attention map can be 
integrated with other features to predict the final map.

In the future, we may focus on two aspects to improve the performance of CCNet. On the one hand, the 
FiCaps is a convolutional capsule network, to some extent, it is not a pure capsule network. Therefore, as dis-
cussed in the related work, the vector CapsNet or the matrix CapsNet may be introduced to explore the object-
part relationship in true sense. On the other hand, for reducing the computational demand of CapsNet, mutual 
learning such as knowledge distillation50, 51 may be introduced.

Data availability
The data that support the findings of this study are openly available in RGB-D benchmark datasets, including 
NJU2K30, NLPR31, STERE32 and SIP33. They are available on the website https://​mmche​ng.​net/​socbe​nchma​rk/ 
or https://​www.​githu​bs.​cn/​proje​cts/​27238​3101-​rgbd-​sodsu​rvey.
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