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An adaptive categorical effect size 
method based on intuitionistic 
meta fuzzy functions
Ayşegül Yabacı Tak 

There are several categorical effect size methods in the literature. It is not clear which method 
performs better for a given dataset and it is a challenging task to select the correct method for a given 
dataset. In this sense, to overcome the questions like “Which method should we choose?” and “Which 
categorical effect size method is more reliable for a given dataset?”, an adaptive categorical effect 
size method based on intuitionistic meta fuzzy functions is introduced in the paper. Thus, the main 
motivation of the proposed method is to obtain more accurate outcomes by combining the results 
of better performing methods instead of relying on only one method. In the study, the intuitionistic 
fuzzy c-means clustering algorithm is adapted to meta fuzzy functions by incorporating not only 
membership degrees but also non-membership degrees to improve the clustering accuracy of meta 
fuzzy functions. Meta fuzzy functions are the linear combination of seven categorical effect size 
methods and the weights, which are calculated from membership grades from intuitionistic fuzzy 
c-means algorithm. Among the functions, the one with the lowest mean absolute percentage error 
is selected as the best. To evaluate the performance of the proposed method, 2 × 3, 2 × 4, and 3 × 4 
contingency tables were simulated. Additionally, the performance of the proposed method is also 
assessed by applying it to a real-time dataset. Experimental results show that the proposed method 
outperforms compared to the evaluated seven categorical effect size methods in terms of mean 
absolute percentage error. Also, the calculated effect sizes are within the range of ±10% in terms of 
bias. Thus, the results verified that proposed method achieves greater reliability.

Statistical significance (p-value) is the probability that the observed difference between two groups is due to 
chance. If the p-value is greater than the chosen alpha level, it is assumed that any observed difference can be 
explained by the variability of the sample size. When conducting statistical comparisons with exceptionally large 
sample sizes, it is highly likely that the p-value will consistently indicate a significant difference. However, statisti-
cally significant differences that arise due to the large number of data points do not always represent meaningful 
differences in  reality1. A statistically significant result may sometimes arise simply from using a large sample. 
Statistical significance depends on both the sample size and effect size (ES) but the effect size is generally inde-
pendent of the sample  size2. Therefore, reporting only the p-value, especially in large samples, is not sufficient 
for readers to fully understand the  implications3,4. Effect size (ES) is substantial of quantitative research, and it 
indicates the real magnitude of the effect. In addition to statistical significance, it enables researchers to under-
stand the practical significance of the findings. Statistical hypothesis tests can be misleading due to type 1 and 
type 2 errors made depending on the sample size. For this reason, it is necessary to report the effect size as well 
as the p-value in many disciplines. The seven categorical effect size methods, which is used for r × c contingency 
tables in statistics in the study, are explained in section “Categorical effect size methods”. The Cramer′sV  effect 
size measure has some disadvantages. First, Cramer′sV  is a symmetric measure of  association5–7. Second, it is 
zero under the assumption of independence. Third, interpretation of Cramer′sV  effect size measures is  difficult8. 
Tschuprow′sT measure is closely related to Cramer′sV  measure but less well-known9. Since it is a simple function 
of the Pearson chi-square statistic, it is among the commonly used effect sizes. Barely, the bias of the measure is 
large in data with small samples and it is difficult to  interpret8. Cohen′sw is more appropriate for larger contin-
gency  tables10. Uncertaintycoefficient(U)  is also commonly used effect size to measure the validity of a statistical 
classification  algorithm11.

Considering the disadvantages of the ES methods, it is important to select the correct ES method for a given 
dataset. To overcome the aforementioned disadvantages, selected 7 ES methods are aggregated in functions 
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based on their performances for a given dataset. In this sense, the motivation of this paper is to combine dif-
ferent categorical effect sizes methods in functions with Meta Fuzzy Functions (MFF) based on Intuitionistic 
Fuzzy C-Means Clustering (IFCM) algorithm. Fuzzy c-means (FCM) clustering algorithm is used in MFF. FCM, 
proposed by Bezdek et al.12, stands out as one of the frequently employed methods because of its simplicity and 
the benefits it offers compared to the k-means clustering algorithm. Nevertheless, it has certain drawbacks, 
including its susceptibility to initial settings and sensitivity to noise. In this sense, IFCM that accounts for hesi-
tancy of an object belonging to a cluster is employed in MFF. Intuitionistic Fuzzy Sets (IFSs) are introduced as 
a modification of Zadeh’s fuzzy set theory by  Atanassov13,14. The main difference between fuzzy sets and IFSs is 
that fuzzy sets only consider membership degree while IFSs consider both membership and non-membership 
degrees. That is, IFSs account also for the hesitancy of membership grades in clusters. Thus, the centers of the 
clusters are obtained more accurately. It has been determined by the studies that IFSs are more effective than 
traditional fuzzy set theory by overcoming  uncertainty15. IFSs have been commonly used for forecasting and 
engineering problems. In addition to time series and forecasting methods, IFSs are widely used in the field of 
medicine for clustering images and  diagnostics16–18. Numerous studies employing IFSs have been proposed by 
Fan et al.19, Kumar and  Gangwar20, Lei, et al.21,  Tak22, Gwak et al.23.

Because aforementioned advantages of IFCM in the literature, it is employed in MFF. The MFF was proposed 
by  Tak24. The purpose of the MFF is to combine methods or definitions used for the same purpose. Its logic is 
simply based on meta-analysis. Meta-analysis is a method that combines the outcomes of multiple studies to 
yield stronger results for a specific purpose. For example, Tak and Gök25 and Gök and  Tak26 utilized the MFF to 
merge different definitions of currency crisis. By employing this approach, they aimed to enhance the accuracy 
and reliability of their analysis. Similarly, Tak et al.27 employed the MFF to combine various time series methods. 
Their objective was to improve the forecasting performance by integrating multiple forecasting techniques within 
the framework. Cevik et al.28 used the MFF approach to forecast the number of immigrants within the maritime 
line.  Tak29 used the MFF approach to forecast combination. These studies have shown that combining different 
methods with the MFF has better estimation accuracy.

Yabacı Tak and  Ercan30 ensembled some ES definitions for two independent groups with MFF to obtain a 
more accurate effect size value. Yabacı Tak and  Ercan30 combined six effect size methods for numerical variables 
with the MFF approach by using classical fuzzy c-means algorithm (FCM), which can be used with or without 
the assumption of normal distribution. The combined methods in the previous study were not used for categori-
cal variables. Thus, numerous categorical ES methods are combined in this study. Besides, the FCM clustering 
method only uses membership degrees while calculating the cluster centers. Thus, the MFF approach with the 
IFCM , which provides a more accurate estimation of the cluster centers, has been developed in the study.

In the light of this information, we will introduce intuitionistic meta fuzzy categorical effect size functions 
(I −MFCESF) approach. The aim of the study is to obtain better outcomes by combining seven categorical 
effect size measures in functions. The purpose of combining the ES is the assumption that each measure might 
have much or partial information for a given dataset. Therefore, while the methods that perform better will be 
gathered into one function, the methods that perform worse will be gathered into another. In the remainder of 
the paper, we will describe the IFCM and the meta fuzzy functions briefly in the  section “Preliminaries”. The 
proposed method (I −MFCESF) is discussed in section “Intuitionistic meta fuzzy categorical effect size func-
tions (1-MFCESF)”. The performance of the proposed method is evaluated with some applications for simulated 
and real datasets in section “Evaluation”. Finally, the results of the proposed method are discussed in section 
“Conclusion”.

Preliminaries
The methods (effect sizes, intuitionistic fuzzy c-means and meta fuzzy function) that are used in the paper are 
detailed in this section.

Categorical effect size methods
Short descriptions of seven types of ES measures are provided for  r × c  contingency tables. Cramer′sV  is pro-
posed in 1946 and it is an effect size measure that is generally used with nominal variables in r × c contingency 
 tables7,31–34. It is calculated in Eq. (1) based on Pearson’s chi-square statistic. It takes values between 0 and + 1.

where, χ2 is the Pearson’s chi-squared statistics, n is the total observations number, c is the number of coloumns 
and r is the number of rows. In the Eq. (1), numerator of formula is based on the observed frequencies, denomina-
tor of formula is based on an unobserved frequencies. Therefore, when Cramer′sV = 1 , the marginal frequencies 
are not zero and r or c has not zero cell frequencies.

Tschuprow′sT is a ES which measures the association between two nominal variables in rxc contingency 
 tables35. It takes values between 0 and +1, and calculated in Eq. (2).

where, χ2 is the Pearson’s chi-squared statistics, c is the number of coloumns and r is the number of rows.
Another measure of categorical effect size is the Pearson′scontingencycoefficient ( Pearson′sc ). It takes values 

between 0 and + 1. Pearson′sc can be calculated in Eq. (3)36.

(1)V =

√
ϕ2

min (c − 1, r − 1)
=

√
χ2/

n
min (c − 1, r − 1)

(2)T =

√
ϕ2

(c − 1)× (r − 1)
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where, χ2 is the Pearson’s chi-squared statistics, and n is the total number of observations.
Cohen′sw effect size is proposed by  Cohen37.Cohen′sw should be used for larger contingency tables. Cohen’s 

w effect size measure is obtained in Eq. (4).

where, m is the number of cells, p0i is the value of the ith cell under the null hypothesis, p1i is the value of the 
ith cell under the alternative hypothesis.

Goodman− KruskalTau(G − KTau) is another ES measure of nominal variables. It measures the predictabil-
ity of the column or row variable given the value of other variables, in percentage. The measure varies between 
0 and  138,39. G − KTau is calculated in Eq.(5)40.

where, n is the total number of observation, aij is the value of number of observation in ith row and jth column, 
a.j is the total number of observation in jth column and ai. is the total number of observation in ith row.

Uncertaintycoefficient(U) is first introduced by  Theil41. It is also called Proficiency, Entropy Coefficient or 
Theil’s U. It is often used as a measure of the ES of nominal variables in statistics and takes the value between 0 
and + 1. This measure is defined in Eq. (6)

where, H(X) is the entropy of a single distribution, H(XY) is the conditional entropy and U(XY) is the uncertainty 
coefficient. PX,Y

(
x, y

)
 is the conditional distribution.

Goodman− KruskalLambda(�) statistic is an effect size proposed to measure the strength of the relationship 
between two nominal variables by evaluating the proportional reduction of error (PRE)39. Also, � is the asym-
metrical measure. The � statistic takes value between 0 and 1. How to calculate the � statistic is given in Eq. (8).

where, E1 is the number of prediction errors made when the independent variable is ignored, E2 equal to the 
number of prediction errors made when the prediction is based on the independent variable.

IFCM
Over the past decades, the fuzzy set theory proposed by  Zadeh14 has been expanded with different approaches. 
Among these, intuitionistic fuzzy set theory, which has been commonly used in the literature and has many 
applications in different fields, was developed by  Atanassov13. While only the membership degree is taken into 
account in the FCM, non-membership degree is also taken into account in IFCM. So that, the centers of the 
clusters are calculated more accurately. Algorithm are given  below22:

Step-1.  Determine the number of clusters (c) , the fuzziness index (f), and initialize the cluster centers (vi) 
randomly.

Step-2.  Calculate the degrees of membership ( µ ) and non-membership ( u ). Formulas are given in Eqs. (9–11):

where d(.) is the Euclidean distance between kth data in the ith cluster center:

Step-3.  Update the cluster centers by using Eq. (12):
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ik = 1− uik



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17403  | https://doi.org/10.1038/s41598-023-44691-6

www.nature.com/scientificreports/

Step-4.  Algorithm is ended if the difference between two iterations are dropped under some given threshold 
ε; otherwise, repeated Step-2 and Step-3.

Meta fuzzy functions
Tak24 proposes MFF to combine different methods or definitions, such as prediction and forecasting. The MFF 
consists of three components: functions, weights, and the best meta fuzzy function. Functions; the linear com-
bination of weights and the findings of the selected methods. Weights: the membership grades that are obtained 
from FCM clustering algorithm are used to compute weights. The best meta fuzzy function: the function that has 
the best evaluation criteria. Meta fuzzy functions begin with obtaining the outcomes of the methods chosen for 
a purpose as the input matrix. After that, the input matrix is clustered using fuzzy c-means clustering algorithm 
to separate the categorical ES methods based on how well they predict outcomes. As a result, each method will 
be assigned to a cluster with a membership grade. Then, using membership grades for each cluster, the weights 
of the methods are calculated. In this case, there will be an equal number of functions as the cluster number. 
Finally, the best meta fuzzy function is selected based on its evaluation criteria.

Intuitionistic meta fuzzy categorical effect size functions (I −MFCESF)
Cramer′sv, Tschuprow′sT , Pearson′sc, Cohen′sw, G − KTau, U  and � methods can be used to calculate 
effect size measures for a dataset. However, there is no definite information in the literature about which method 
is better or in which situations it should be used. Therefore, the performance of the methods may change accord-
ing to the type of datasets. Because the performance of the ES measures in the proposed method is uncertain, 
we are looking for the optimum weights of the ES measures in the combination function. For this purpose, 
I −MFCESF method is proposed in this paper. The ES measures are clustered based on their performances by 
using the IFCM. There will be as many functions as the number of clusters. Functions are obtained by multiplying 
each method by its weight in the clusters. The ES measures that perform better for the dataset will be in a function 
with a higher membership degree, while the ES measures that perform worse will be in another function with 
a higher degree of membership. Finally, the function with the minimum model evaluation criterion is selected 
as I −MFCESFbest and new effect size value will be calculated for the dataset. So, I −MFCESF method is an 
adaptive combination of categorical effect size measures. Step-by-step algorithm, pseudocode and flowchart are 
given below for I −MFCESF approach.

Algorithm 1

Step 1.  Determine m categorical ES measures and simulated data randomly for t iterations. Obtain input 
matrix (Z) by applying m measures to the simulated dataset for t repeats.

where, Zij is the ES value of ith repeat for jth measure.

Step 2.  The input matrix is clustered by using intuitionistic fuzzy c-means.

  Step 2.1.  The number of fuzzy clusters (c) is determined and fuzzy index value 
(
f
)
 

and center of clusters (v) are initialized.
Step 2.2.  The degrees of membership ( µ ) and non-membership value are calculated in each cluster 

with Eqs. (9–11).

Step 2.3.  The new clusters center is calculated by using Eq. (12).
Step 2.4.  If the difference between two iterations drops under some threshold, stop the algorithm; otherwise, 

repeat Step 1 and Step 2.

Step 3.  Intuitionistic meta categorical effect size functions are obtained. I −MFCESF is given in Eq. (14).
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∑n
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ik

)f
xk
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)f , i = 1, 2, . . . , c

(13)Z = [Zij], i = 1, 2, . . . , t; j = 1, 2, . . . ,m

Z =
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... . . .
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where, c is the number of clusters, µ∗
ij is the membership grades of jth method in i th cluster,I −MFCESFi is the 

ith intuitionistic meta categorical effect size functions, and wij is weight of j.th method in i th cluster.
Step 4.  Select the best intuitionistic meta categorical effect size functions that has the minimum Mean absolute 

percentage error (MAPE).

MAPE values are calculated for select I −MFCESFbest . Mape formula is given in Eq. (16).

where, yi is the mean of the ES value calculated from each method for the population and ŷi is the predicted ES 
value obtained from 1000 simulated samples. The pseudo code and the flow chart of  I −MFCESF based on MFF 
is given Algorithm 2 and Fig. 1, respectively.

(16)MAPE =
1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣

Figure 1.  Flowchart of I −MFCESF
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Intuitionistic Meta Categorical Effect Size Functions ( − )
Determine the categorical effect size measures

Input: Outcomes of the selected categorical effect size measures for × contingency tables ( )

Output: Ensembles of the categorical effect size measures

Initialize the number of clusters and fuzzy index parameter

while ( < max number of functions or clusters (c)) do
Use I-FCM to determine the weights of the categorical effect size measures in functions

Obtain the I-MFCESF by using Eq. (14) and Eq. (15)
Calculate MAPE values of I-MFCESF
i=i+1

end while
Return the function best of I-MFCESF that has the minimum MAPE
Calculate the new categorical effect size value by using − .

Evaluation
The estimation performance of the proposed I-MFCESF method is evaluated through both simulation stud-
ies and the use of real-world datasets. In the simulation study, random generation of two categorical variables 
(x and y) is performed to create contingency tables of different sizes (2 × 3, 2 × 4, and 3 × 4). These tables are 
generated for a sample size of N = 1000 and repeated for t = 1000 iterations. Real-world datasets are obtained 
from the UCI Machine Learning  Repository42, and 1000 different samples are taken with replacement from these 
datasets. By applying the selected categorical effect size methods to each dataset, an input matrix (Z) is obtained. 
The I-MFCESF method incorporates two crucial parameters: the number of clusters (c) and the fuzziness index 
parameter (m). To determine the optimal number of clusters (c), the minimum mean absolute percentage error 
(MAPE) for the I-MFCESF is calculated iteratively between 2 and 5. Due to the lack of consensus on the optimal 
value for the fuzziness index parameter of IFCM (intuitionistic fuzzy c-means algorithm), a value of 2 is selected 
for this study. The performance of the proposed method is evaluated using the MAPE, which measures the aver-
age percentage difference between the estimated values and the true values.

The simulation study and real-world dataset applications of the I-MFCESF method are conducted using R Stu-
dio. Various R package namely “ppclust,” “effectsize,” “DescTools,” “fclust,” “rcompanion, ” “remotes,” “githubin-
stall,” and “Metrics, ” are  utilized43–47. As an application, seven different selected categorical ES measures are com-
bined by using the MFF based on the intuitionistic fuzzy c-means to obtain more accurate results for all datasets.

Simulated 2 × 3, 2 ×4 and 3 × 4 contingency tables for the datasets of categorical variables
Two categorical variables x and y ( 2× 3 , 2× 4 and 3× 4 contingency tables) are simulated randomly for N = 1000 
sample size and t = 1000 iterations. Selected measures: Cramer′sv (Metasure 1), Tschuprow′sT (Measure 2), 
Pearson′sc(Measure 3), Cohen′sw (Measure 4), G − KTau(Measure 5), U  (Measure 6) and � (Measure 7) are 
applied to all datasets. The input matrix  (Z) consists of the outcomes of the ES measures for the simulated data 
set. The proposed method utilizes the IFCM clustering algorithm, where the fuzziness index parameter (m) is set 
to 2. After obtaining the input matrix, the IFCM algorithm is applied. In this method, the number of functions 
is equal to the optimal number of clusters. Functions are obtained by multiplying the weights of the methods 
with the actual value and sum them (Eq. 14) up. The weights of each method in each function are obtained as in 
Algorithm 1 (Step 3). Finally, the MAPE values are calculated for each from obtained I −MFCESF functions. 
When calculating the MAPE values, the actual value is considered as the average of the values calculated from 
the dataset of the selected seven ES measures. The function with the lowest Mean Absolute Percentage Error is 
chosen as I −MFCESFbest and the new ES value is computed based on this selection.

The first dataset is simulated for 2 × 3 contingency table and the input matrix ( Z ) is obtained by applying the 
selected categorical ES methods. The first five and last five prediction values of the input matrix are summarized 
in Table 1.

Table 1.  Input Matrix for 2 × 3 contingency table

[Z] t1 t2 t3 t4 t5 t996 t997 t998 t999 t1000

Cramer’s v 0.0382 0.0353 0.0507 0.0223 0.0112 … 0.0350 0.0215 0.0363 0.0202 0.0266

Pearson’s c 0.0587 0.0569 0.0674 0.0499 0.0460 … 0.0567 0.0496 0.0575 0.0490 0.0519

Tschuprow’s T 0.0495 0.0479 0.0568 0.0420 0.0387 … 0.0477 0.0417 0.0484 0.0412 0.0437

Cohen’s w 0.0588 0.0570 0.0676 0.0500 0.0461 … 0.0568 0.0496 0.0576 0.0491 0.0520

G-K Tau 0.0034 0.0032 0.0045 0.0025 0.0021 … 0.0032 0.0024 0.0033 0.0024 0.0027

U 0.0019 0.0018 0.0025 0.0013 0.0011 … 0.0018 0.0013 0.0018 0.0013 0.0015

� 0.0175 0.0304 0.0152 0.0222 0.0217 … 0.0225 0.0176 0.0194 0.0018 0.0220
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For the first simulated dataset, the optimal cluster number, which is set to 2, is determined by selecting the 
minimum MAPE value for I −MFCESFs . As a result, two functions are obtained by multiplying each method 
with their respective weights. The weights for the  I −MFCESF are computed using intuitionistic membership 
grades, as outlined in Table 2. The functions of the proposed method are obtained using the following equations 
(Eqs. 17, 18).

Table 2 provides a clear depiction that I −MFCESF2 exhibits the lowest MAPE. Therefore, I −MFCESF2 is 
identified as the best I-MFCESF. The MAPE values are computed and presented in Table 3, to assess the perfor-
mance of the proposed method.

Table 3 clear that the I-MFCESF outperforms the other categorical ES methods in terms of the MAPE values. 
According to the Li et al.48 a parameter prediction is considered acceptable when the bias is within ± 10%. The 
bias value of the proposed method was determined as − 1% in Table 3. Thus, the accuracy of the method is also 
sufficient in terms of bias.

A subsequent dataset is simulated for a 2 × 4 contingency table, and the input matrix (Z) is obtained by 
applying the chosen categorical ES methods. Table 4 provides a summary of the first five and last five prediction 
values found in the input matrix.

The weights for the I −MFCESF are calculated by using intuitionistic membership grades as in Table 5, and 
the functions of the proposed method are obtained as in Eqs. (19, 20).

(17)
I −MFCESF1 = Cramer′sv × 0.2117+ Pearson′sc × 0.2352+ Tschuprows′T × 0.2388

+ Cohen′sw × 0.2349+ G − KTau× 0.0082+ U × 0.0133

+ �× 0.0578

(18)
I −MFCESF2 = Cramer′sv × 0.0866+ Pearson′sc × 0.0143+ Tschuprows′T × 0.0057

+ Cohen′sw × 0.0150+ G − KTau× 0.3022+ U × 0.2985

+ �× 0.2777

(19)
I −MFCESF1 = Cramer′sv × 0.239+ Pearson′sc × 0.2386+ Tschuprows′T × 0.2335

+ Cohen′sw × 0.2380+ G − KTau× 0.0039+ U × 0.0116

+ �× 0.0395

Table 2.  Weights of the I−MFCESF for 2 × 3 contingency table Significant values are in [bold].

I −MFCESF1 I −MFCESF2

Cramer′sv 0.2117 0.0866

Pearson′sc 0.2352 0.0143

Tschuprows′T 0.2388 0.0057

Cohen′sw 0.2349 0.0150

G − KTau 0.0082 0.3022

U 0.0133 0.2985

� 0.0578 0.2777

MAPE 0.8126 0.4168

Table 3.  MAPE and BİAS values of the proposed and selected effect size methods for 2 × 3 contingency table 
Significant values are in [bold].

Categorical effect size methods MAPE BİAS

Cramer′sv 0.9021 − 0.0559

Pearson′sc 0.8455 − 0.083

Tschuprows′T 0.8171 − 0.068

Cohen′sw 0.8462 − 0.0835

G − KTau 0.8896 0.0038

U 2.1825 0.0083

� 0.7056 − 0.0238

I-MFCESF 0.4168 − 0.0106
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Table 5 clearly shows I −MFCESF2 has the lowest MAPE. Thus, the best I-MFCESF is I −MFCESF2 . The 
MAPE values of the methods are computed, and the results are presented in Table 6 to assess the performance 
of the proposed method.

Based on the information provided in Table 6, it is evident that the I-MFCESF method demonstrates superior 
performance compared to the individual categorical effect size methods in terms of MAPE. The bias of the pro-
posed method is determined as respectively − 1.9%. Because bias is between ± 10%, the accuracy of the proposed 
method is also sufficient in terms of bias.

Lastly, a dataset is simulated for a 3 × 4 contingency table, and the input matrix (Z) is generated by applying 
the selected categorical ES methods. Table 7 provides a summary of the first five and last five prediction values 
found in the input matrix.

The weights for the I −MFCESF are calculated by using intuitionistic membership grades as in Table 8.

(20)
I −MFCESF2 = I −MFCESFbest = Cramer′sv × 0.0386+ Pearson′sc × 0.0144

+ Tschuprows′T × 0.0252+ Cohen′sw × 0.0156+ G

− KTau× 0.3088+ U × 0.3036+ �× 0.2938

Table 4.  Input matrix for 2 × 4 contingency table

[Z] t1 t2 t3 t4 t5 t996 t997 t998 t999 t1000

Cramer’s v 0.1029 0.1116 0.0593 0.0247 0.1466 … 0.0635 0.0895 0.0762 0.0642 0.0497

Pearson’s c 0.1277 0.1346 0.0971 0.0811 0.1635 … 0.0997 0.1175 0.1080 0.1001 0.0917

Tschuprow’s T 0.0978 0.1032 0.0741 0.0618 0.1259 … 0.0761 0.0899 0.0826 0.0764 0.0699

Cohen’s w 0.1288 0.1358 0.0976 0.0813 0.1658 … 0.1002 0.1184 0.1087 0.1006 0.0920

G-K Tau 0.0165 0.0184 0.0095 0.0066 0.0274 … 0.0100 0.0140 0.0118 0.0101 0.0084

U 0.0081 0.0090 0.0046 0.0032 0.0134 … 0.0048 0.0067 0.0057 0.0049 0.0041

� 0.0183 0.0369 0.0296 0.0087 0.0309 … 0.0354 0.0447 0.0202 0.0220 0.0302

Table 5.  Weights of the I−MFCESF for 2 × 4 contingency table Significant values are in [bold].

Categorical effect size methods

2 ×4

I −MFCESF1 I −MFCESF2

Cramer′sv 0.2349 0.0386

Pearson′sc 0.2386 0.0144

Tschuprows′T 0.2335 0.0252

Cohen′sw 0.2380 0.0156

G − KTau 0.0039 0.3088

U 0.0116 0.3036

� 0.0395 0.2938

MAPE 0.7012 0.3581

Table 6.  MAPE and BİAS values of the proposed and selected effect size methods for 2× 4 contingency tables 
Significant values are in [bold].

Categorical effect size methods

2 ×4

MAPE BİAS

Cramer′sv 0.6587 − 0.0750

Pearson′sc 0.7491 − 0.1016

Tschuprows′T 0.6725 − 0.0707

Cohen′sw 0.7512 − 0.1030

G − KTau 1.1339 0.0122

U 3.3170 0.0221

� 0.5845 − 0.0157

I-MFCESF 0.3581 − 0.0019
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Table 8 demonstrates that two functions are computed by multiplying each method with their respective 
weights. In the case of I-MFCESF, the weights are determined using intuitionistic membership grades. The func-
tions of the proposed method are derived using the equations provided in Eqs. (21, 22).

According to Table 8, it is evident that I −MFCESF2 exhibits the lowest MAPE. Therefore, I −MFCESF2 is 
identified as the best I-MFCESF. The MAPE of the methods are computed and presented in Table 9 to assess the 
performance of the proposed method.

(21)
I −MFCESF1 = Cramer′sv × 0.1541+ Pearson′sc × 0.2722+ Tschuprows′T × 0.2496

+ Cohen′sw × 0.2708+ G − KTau× 0.0155+ U × 0.0182

+ �× 0.0197

(22)
I −MFCESF2 = I −MFCESFbest = Cramer′sv × 0.1699+ Pearson′sc × 0.0161

+ Tschuprows′T × 0.0677+ Cohen′sw × 0.0181+ G − KTau× 0.2439

+ U × 0.2425+ �× 0.2417

Table 7.  Input Matrix for 3 × 4 contingency table

[Z] t1 t2 t3 t4 t5 t996 t997 t998 t999 t1000

Cramer’s v 0.0431 0.0212 0.0793 0.0413 0.0344 … 0.0376 0.0449 0.0343 0.0301 0.0152

Pearson’s c 0.0981 0.0828 0.1349 0.0965 0.0911 … 0.0935 0.0997 0.0910 0.0881 0.0801

Tschuprow’s T 0.0630 0.0530 0.0870 0.0620 0.0584 … 0.0600 0.0640 0.0584 0.0565 0.0513

Cohen’s w 0.0986 0.0831 0.1362 0.0970 0.0915 … 0.0940 0.1002 0.0914 0.0884 0.0804

G-K Tau 0.0048 0.0034 0.0094 0.0045 0.0040 … 0.0046 0.0050 0.0042 0.0038 0.0032

U 0.0038 0.0027 0.0074 0.0038 0.0033 … 0.0035 0.0040 0.0034 0.0031 0.0026

� 0.0340 0.0281 0.0603 0.0080 0.0181 … 0.0044 0.0316 0.0147 0.0316 0.0258

Table 8.  Weights of the I−MFCESF for 3 × 4 contingency table Significant values are in [bold].

Categorical effect size methods

3 × 4

I −MFCESF1 I −MFCESF2

Cramer′sv 0.1541 0.1699

Pearson′sc 0.2722 0.0161

Tschuprows′T 0.2496 0.0677

Cohen′sw 0.2708 0.0181

G − KTau 0.0155 0.2439

U 0.0182 0.2425

� 0.0197 0.2417

MAPE 0.6656 0.2753

Table 9.  MAPE and BİAS values of the proposed and selected effect size methods for 3× 4 contingency tables 
Significant values are in [bold].

Categorical effect size methods

3 × 4

MAPE BİAS

Cramer′sv 0.5650 − 0.0433

Pearson′sc 0.7357 − 0.1212

Tschuprows′T 0.5917 − 0.0639

Cohen′sw 0.7391 − 0.1237

G − KTau 2.3570 0.0277

U 3.1442 0.0304

� 0.5296 − 0.0062

I-MFCESF 0.2753 − 0.0032
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Based on the information provided in Table 9, it is evident that the I-MFCESF method outperforms the 
individual categorical ES methods in terms of MAPE. The I-MFCESF bias value was determined as respectively. 
− 3.2 %. Because bias is between ±10%, the accuracy of the proposed method is also sufficient in terms of bias. 
Figures 2, 3 and 4 illustrate the MAPE and Bias values of the proposed methods and selected methods for vari-
ous contingency tables.

I-MFCESF Cramer’s v Pearson's c Tschuprows’T Cohen's w G-K Tau U λ
Mape 0.4168 0.9021 0.8455 0.8171 0.8462 0.8896 2.1825 0.7056
Bias -0.0106 -0.0559 -0.0830 -0.0680 -0.0835 0.0038 0.0083 -0.0238

-0.5

0

0.5

1

1.5

2

2.5
2x3 Simulated Data

Figure 2.  MAPE and Bias values of the I-MFCESF and effect size methods for 2× 3 simulated data.

I-MFCESF Cramer’s v Pearson's c Tschuprows’T Cohen's w G-K Tau U λ
Mape 0.3581 0.6587 0.7491 0.6725 0.7512 1.1339 3.3170 0.5845
Bias -0.0019 -0.0750 -0.1016 -0.0707 -0.1030 0.0122 0.0221 -0.0157
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Figure 3.  MAPE and Bias values of the I-MFCESF and effect size methods for 2× 4 simulated data.

I-MFCESF Cramer’s v Pearson's c Tschuprows’T Cohen's w G-K Tau U λ
Mape 0.2753 0.5650 0.7357 0.5917 0.7391 2.3570 3.1442 0.5296
Bias -0.0032 -0.0433 -0.1212 -0.0639 -0.1237 0.0277 0.0304 -0.0062
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Figure 4.  MAPE and Bias values of the I-MFCESF and effect size methods for 3× 4 simulated data.
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Real-world categorical dataset for 2 × 3, 2 × 4 and 3 × 4 contingency tables
The first dataset contains 34 variables; 33 of which are categorical and one of them is numerical. There are 366 
observations in the dataset. The dataset is a related to the differential diagnosis of erythematous-squamous dis-
eases. The data is taken from the UCI Machine Learning Repository database. It can be open accessed via (https:// 
archi ve. ics. uci. edu/ ml/ datas ets/ Derma tology). The “family history”, “eosinophi”, and “erythema” variables in the 
“Dermatology” dataset are used. In the dataset, the family history feature has the value “1” if any of these diseases 
has been observed in the family, and “0” otherwise. Eosinophi has the value “0”” if feature was not present, “1” 
indicate the relative intermediate values, “2” indicate the largest amount possible. Erythema has the value “0” if 
feature was not present, “3” indicates the largest amount possible, and “1”, “2” indicate the relative intermediate 
values. A totally of 1000 different samples with replacements are drawn from the Dermatology dataset. In the 
proposed method, the input matrix (Z) is obtained from the outputs of the calculated categorical ES measures 
for these samples. Then, the membership grades are obtained by clustering the input matrix with the IFCM 
algorithm. The fuzziness index parameter ( m) is taken as “2”. Using the membership grades, the weights of each 
categorical ES method in each cluster are calculated. The next step is to obtain the fuzzy functions by using the 
weights. There will be as many fuzzy functions as the optimum number of clusters. The optimum cluster number 
is searched between “2” and “5”, iteratively. Finally, the fuzzy function with the smallest MAPE is chosen and the 
new effect size value is calculated.

Family history and Eosinophi variables ( 2× 3 contingency tables)
“Family history” and “Eosinophi” variables are selected in the Dermatology dataset for 2× 3 contingency table. 
The input matrix (Z) is obtained from outcomes of seven ES measures for these variables. The first five and last 
five prediction values of the input matrix are summarized in Table 10.

The weights for the I −MFCESF are calculated as in Table 11 and I −MFCESF1 and I −MFCESF2 are 
obtained as in Eqs. (23, 24) for Family history and Eosinophi variables.

(23)
I −MFCESF1 = Cramer′sv × 0.2384+ Pearson′sc × 0.2474+ Tschuprows′T × 0.2441

+ Cohen′sw × 0.2451+ G − KTau× 0.0144+ U × 0.0016

+ �× 0.0090

(24)
I −MFCESF2 = Cramer′sv × 0.0490+ Pearson′sc × 0.0117+ Tschuprows′T × 0.0186

+ Cohen′sw × 0.0165+ G − KTau× 0.2975+ U × 0.3056

+ �× 0.3012

Table 10.  Input Matrix for family history and eosinophi variables contingency table

[Z] t1 t2 t3 t4 t5 t996 t997 t998 t999 t1000

Cramer’s v 0.2736 0.3333 0.2462 0.5303 0.2270 … 0.2535 0.2611 0.1912 0.2760 0.1920

Pearson’s c 0.2935 0.3393 0.2725 0.4795 0.2579 … 0.2781 0.2839 0.2310 0.2954 0.2316

Tschuprow’s T 0.2582 0.3034 0.2381 0.4595 0.2244 … 0.2435 0.2490 0.1997 0.2600 0.2002

Cohen’s w 0.3071 0.3608 0.2832 0.5464 0.2669 … 0.2896 0.2961 0.2375 0.3092 0.2381

G-K Tau 0.0943 0.1301 0.0802 0.2986 0.0712 … 0.0838 0.0876 0.0564 0.0956 0.0567

U 0.0900 0.0995 0.0889 0.1912 0.0559 … 0.0842 0.0617 0.0489 0.0836 0.0510

� 0.0357 0.0526 0.0555 0.1000 0.0400 … 0.0384 0.0384 0.0357 0.0370 0.0384

Table 11.  Weights of the  I−MFCESF for family history and eosinophi variables Significant values are in 
[bold].

Categorical effect size methods

2 ×3

I −MFCESF1 I −MFCESF2

Cramer′sv 0.2384 0.0490

Pearson′sc 0.2474 0.0117

Tschuprows′T 0.2441 0.0186

Cohen′sw 0.2451 0.0165

G − KTau 0.0144 0.2975

U 0.0016 0.3056

� 0.0090 0.3012

MAPE 0.7162 0.3196

https://archive.ics.uci.edu/ml/datasets/Dermatology
https://archive.ics.uci.edu/ml/datasets/Dermatology
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In consideration of Table 11, it is obviously seen that the I −MFCESF2 has the lowest MAPE. Thus, the best 
I-MFCESF is I −MFCESF2 . Seven methods contribute the performance of the second function. Besides, the 
sixth method makes the most contribution, but the seventh, fifth, third, fourth, second, and first methods also 
have an impact on the effectiveness of I-MFCESF. The MAPE of the methods are computed, and the results are 
presented in Table 12 to evaluate the performance of the proposed method. Additionally, Fig. 5 provides a visual 
representation of the MAPE and Bias values for the proposed and selected methods specifically for the family 
history and eosinophi variables.

According to Table 12, it is obviously seen that proposed I-MFCESF outperforms other categorical effect 
size methods in terms of the MAPE criterion. Moreover, the bias value of the proposed method is in the range 
of ± 10%, and it was found to be sufficient in terms of bias. As a result, the new ES value is calculated as 0.020 
from Eq. (25).

Family history and Eryhthema variables ( 2× 4 contingency tables)
For 2× 4 contingency table, “Family history” and “Erythema” variables are selected in the Dermatology dataset. 
The input matrix of I −MFCESF are obtained from outcomes of seven effect size measures for these variables. 
The input matrix is summarized in Table 13.

When the number of clusters was iteratively tried between 2 and 5 to obtain the smallest MAPE, it was deter-
mined as 3 for this data set. The weights for the $$I-MFCESF$$ are calculated as in Table 14 and $${I-MFCESF}_
{1}$$, $${I-MFCESF}_{2}$$ and $${I-MFCESF}_{3}$$ are obtained as in Eqs. (26–28).

(25)
I −MFCESFbest = 0.0833× 0.0490+ 0.1106× 0.0117+ 0.0936× 0.0186

+ 0.114× 0.0165+ 0.0124× 0.2975+ 0.0230× 0.3056

+ 0.0012× 0.3012 = 0.020

(26)
I −MFCESF1 = Cramer′sv × 0.0115+ Pearson′sc × 0.0003+ Tschuprows′T × 0.0159

+ Cohen′sw × 0.0018+ G − KTau× 0.3194+ U × 0.3301

+ �× 0.3209

Table 12.  MAPE and BİAS values of the proposed and selected effect size methods for family history and 
eosinophi variables Significant values are in [bold].

Categorical effect size methods MAPE BİAS

Cramer′sv = 0.0833 0.6853 − 0.1531

Pearson′sc = 0.1106 0.7522 − 0.2037

Tschuprows′T = 0.0936 0.6933 − 0.1533

Cohen′sw = 0.1114 0.7606 – 0.2157

G− KTau = 0.0124 0.4370 − 0.0203

U = 0.0230 0.6571 0.0142

� = 0.0012 1.5492 0.0323

I-MFCESF 0.3196 − 0.0083

I-MFCESF Cramer’s v Pearson's c Tschuprows’T Cohen's w G-K Tau U λ
Mape 0.3196 0.6853 0.7522 0.6933 0.7606 0.4370 0.6571 1.5492
Bias -0.0083 -0.1531 -0.2037 -0.1533 -0.2157 -0.0203 0.0142 0.0323
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Figure 5.  MAPE and Bias values of the I-MFCESF and effect size methods for family history and eosinophi 
variables.
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According to Table 14, it is seen that the I −MFCESF2 has the lowest MAPE and the best I-MFCESF is 
I −MFCESF2 . Seven methods contribute to the performance of the proposed method. Besides, the first method 
makes the most contribution, but the third, fifth, seventh, fourth, second, and sixth methods also have an impact 
on the effectiveness of I-MFCESF respectively. The MAPE values of the methods are given in Table 15 to evaluate 
the performance of the proposed method. Also, Fig. 6 represents the MAPE and the Bias values of the proposed 
and selected methods for family history and eryhthema variables.

It is clear from the Table 15 that proposed I-MFCESF give very accuracy prediction results for both evalua-
tion criteria MAPE and bias. The MAPE value of the proposed method is better than other categorical effect size 

(27)
I −MFCESF2 = Cramer′sv × 0.4854+ Pearson′sc × 0.0036+ Tschuprows′T × 0.4241

+ Cohen′sw × 0.0186+ G − KTau× 0.0437+ U × 0.0035

+ �× 0.0211

(28)
I −MFCESF3 = Cramer′sv × 0.0458+ Pearson′sc × 0.4004+ Tschuprows′T × 0.1290

+ Cohen′sw × 0.3939+ G − KTau× 0.0186+ U × 0.0017

+ �× 0.0106

Table 13.  Input Matrix for family history and eosinophi variables contingency table

[Z] t1 t2 t3 t4 t5 t996 t997 t998 t999 t1000

Cramer’s v 0.2067 0.2615 0.1758 0.2475 0.1520 … 0.2708 0.1898 0.3270 0.2917 0.2536

Pearson’s c 0.2602 0.2987 0.1188 0.2396 0.2887 … 0.3055 0.2488 0.3462 0.3206 0.2930

Tschuprow’s T 0.2047 0.2378 0.1006 0.1875 0.2291 … 0.2437 0.1952 0.2804 0.2571 0.2329

Cohen’s w 0.2694 0.3130 0.1197 0.2468 0.3016 … 0.3208 0.2569 0.3690 0.3384 0.3065

G-K Tau 0.0726 0.0980 0.0143 0.0609 0.0909 … 0.1029 0.0660 0.1361 0.1145 0.0939

U 0.0403 0.0683 0.0104 0.0480 0.0560 … 0.0649 0.0328 0.0439 0.0734 0.0526

� 0.0204 0.0169 0.0159 0.0526 0.0357 … 0.0625 0.0164 0.0192 0.0208 0.0244

Table 14.  Weights of the  I−MFCESF for family history and eryhthema variables Significant values are in 
[bold].

Categorical effect size methods

2 ×4

I −MFCESF1 I −MFCESF2 I −MFCESF3

Cramer′sv 0.0115 0.4854 0.0458

Pearson′sc 0.0003 0.0036 0.4004

Tschuprows′T 0.0159 0.4241 0.1290

Cohen′sw 0.0018 0.0186 0.3939

G − KTau 0.3194 0.0437 0.0186

U 0.3301 0.0035 0.0017

� 0.3209 0.0211 0.0106

MAPE 0.9709 0.4767 0.5943

Table 15.  MAPE and BİAS values of the proposed and selected effect size methods for family history and 
eryhthema variables Significant values are in [bold].

Categorical effect size methods MAPE BİAS

Cramer′sv = 0.1478 0.5778 − 0.1184

Pearson′sc = 0.1706 0.6137 − 0.1690

Tschuprows′T = 0.1316 0.5219 − 0.1186

Cohen′sw = 0.1732 0.6268 − 0.1810

G − KTau = 0.0300 0.6898 0.0143

U = 0.0240 1.4509 0.0489

� = 0.0010 2.9487 0.0670

I-MFCESF 0.4767 − 0.0595
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methods and the bias value is in the range of ± 10%. Therefore, I-MFCESF was found to be sufficient in terms of 
MAPE and bias. As a result, the new effect size value is calculated as 0.1328 from Eq. (29).

Eosinophi and Eryhthema variables (3× 4) contingency tables
For 3× 4 contingency table, “Eosinophi” and “Eryhthema” variables are selected in the Dermatology dataset. 
The input matrix of I −MFCESF are obtained from outcomes of seven effect size measures for these variables. 
The input matrix is summarized in Table 16.

Table 17 is show that the weights are calculated on eosinophi and eryhthema variables. The functions 
I −MFCESF1 and I −MFCESF2 , which were created over the weights are given in Eqs. (30) and (31).

(29)
I −MFCESFbest = 0.1478× 0.4854+ 0.1706× 0.0036

+ 0.1316× 0.4241+ 0.1732× 0.0186+ 0.0300× 0.0437

+ 0.0240× 0.0035+ 0.0010× 0.0211 = 0.1328

I-MFCESF Cramer’s v Pearson's c Tschuprows’T Cohen's w G-K Tau U λ
Mape 0.4767 0.5943 0.5778 0.6137 0.5219 0.6268 0.6898 1.4509
Bias -0.0595 -0.1586 -0.1184 -0.1690 -0.1186 -0.1810 0.0143 0.0489
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Figure 6.  MAPE and Bias values of the I-MFCESF and selected methods for family history and eryhthema 
variables.

Table 16.  Input matrix for family history and eosinophi variables contingency table

[Z] t1 t2 t3 t4 t5 t996 t997 t998 t999 t1000

Cramer’s v 0.2051 0.0568 0.1385 0.1322 0.1383 … 0.0000 0.0842 0.1069 0.0000 0.0000

Pearson’s c 0.3537 0.2505 0.2690 0.2636 0.2989 … 0.1866 0.2633 0.2768 0.2375 0.2023

Tschuprow’s T 0.2416 0.1653 0.1975 0.1932 0.2001 … 0.1213 0.1744 0.1841 0.1562 0.1320

Cohen’s w 0.3782 0.2587 0.2793 0.2732 0.3132 … 0.1899 0.2729 0.2881 0.2444 0.2066

G-K Tau 0.0848 0.0225 0.0096 0.0561 0.0632 … 0.0114 0.0410 0.0333 0.0215 0.0177

U 0.0840 0.0458 0.0377 0.0539 0.0521 … 0.0254 0.0582 0.0694 0.0429 0.0377

� 0.0588 0.0312 0.0222 0.0357 0.0377 … 0.0196 0.0227 0.0317 0.0182 0.0385

Table 17.  Weights of the  I−MFCESF for eosinophi and eryhthema variables Significant values are in [bold].

3× 4

Categorical effect size methods I −MFCESF1 I −MFCESF2

Cramer′sv 0.2132 0.0446

Pearson′sc 0.0032 0.3405

Tschuprows′T 0.1232 0.2297

Cohen′sw 0.0096 0.3354

G − KTau 0.2186 0.0121

U 0.2152 0.0211

� 0.2169 0.0166

MAPE 0.7676 0.3335
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Considering Table 17, it is clear that regarding the MAPE criterion, I −MFCESF2 function the best prediction 
performance for this contingency table. The most contributed performance of the proposed method is Pearson′sc . 
Also, other selected methods have smaller impact on the performance of the best function. Figure 7 represents 
the MAPE and the Bias values of the selected and proposed methods for eosinophi and eryhthema variables.

Table 18 lists the performances of selected and proposed method. It is obvious by looking at the MAPE and 
the Bias values of the methods that the best performance is produced by the proposed method. The bias value 
of the proposed methods is in the range of ± 10%, and the MAPE value of the proposed method is the lowest 
according to other effect size methods. Finally, new effect size value is calculated by using Eq. (32).

Conclusion
The significant two key points of the study can be highlighted as follows. The first, a new approach categorical 
effect size method based on the IFCM and MFF is used to ensemble seven different categorical effect size meas-
ures. Thus, instead of depending on a single categorical effect size method, seven categorical effect size methods 
are aggregated for more reliable and accurate outcomes. The second, I-MFCESF is an adaptive method that adjust 
itself based on the given dataset. Some advantages of I-MFCESF are below:

(30)
I −MFCESF1 = Cramer′sv × 0.2132+ Pearson′sc × 0.0032+ Tschuprows′T × 0.1232

+ Cohen′sw × 0.0096+ G − KTau× 0.2186+ U × 0.2152

+ �× 0.2169

(31)
I −MFCESF2 = Cramer′sv × 0.0446+ Pearson′sc × 0.3405+ Tschuprows′T × 0.2297

+ Cohen′sw × 0.3354+ G − KTau× 0.0121+ U × 0.0211

+ �× 0.0166

(32)
I −MFCESFbest = 0.0190× 0.0446+ 0.1522× 0.3405+ 0.0910× 0.2297

+ 0.1541× 0.3354+ 0.0177× 0.0121+ 0.0128× 0.0211

+ 0.0162× 0.0166 = 0.1260

I-MFCESF Cramer’s v Pearson's c Tschuprows’T Cohen's w G-K Tau U λ
Mape 0.3381 0.7156 0.8062 0.7602 0.8128 0.4286 0.4392 1.0243
Bias -0.0218 -0.1667 -0.2173 0.1668 -0.2292 -0.0339 0.0007 0.0188

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1.2
Eosinophi x Eryhthema 

Figure 7.  MAPE and Bias values of the I-MFCESF and selected methods for eosinophi and eryhthema variables

Table 18.  MAPE and BİAS values of the proposed and selected effect size methods for eosinophi and 
eryhthema variables Significant values are in [bold].

Categorical effect size methods MAPE BİAS

Cramer′sv = 0.0190 0.9246 − 0.0677

Pearson′sc = 0.1522 0.7984 − 0.2571

Tschuprows′T = 0.0910 0.6826 − 0.1401

Cohen′sw = 0.1541 0.8089 − 0.2760

G − KTau = 0.0177 0.5041 − 0.0012

U = 0.0128 0.3782 0.0105

� = 0.0162 0.7490 − 0.0177

I-MFCESF 0.3335 − 0.0370
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The proposed method incorporates seven different categorical effect size measures that are proposed under 
various conditions. In the literature, Cramer′sv, Pearson′sc, Tschuprows′T, Cohen′sw, G − KTau, U  and � effect 
size measures are most used to r × c contingency tables. The interpretation ranges of these methods are in the 
same scale. Thus, these techniques are selected for the proposed method.

IFCM, in which the hesitancy of an object belonging to a cluster with a degree of membership valueis taken 
into consideration, is used to improve the performance of the proposed method to obtain more accurate results.

I −MFCESF is gathered the information of selected effect size measures in functions by considering their 
accuracy performances for a dataset. For example, for a given dataset, the X method may perform better than 
the Y method, while in another dataset, the Y method may perform better than the X method. In this case, the 
weight of the X method will be higher in the best in the first dataset, while the weight of Y method in the best 
function will be higher in the second dataset. For this reason, the proposed method has adaptive properties.

I −MFCESF is usually select the best effect size measures with a higher weight in terms of MAPE among 
seven measures.

To demonstrate the performances of the proposed method, we generate two randomly independent categori-
cal variables for N = 1000 sample and t = 1000 repeat. Besides, we have investigated Dermatology real-world 
dataset which are taken from the UCI Machine Learning Repository database. According to the simulation 
results, MAPE was obtained as 0.4168 with a bias of − 0.0106 for the 2 × 3 contingency table, 0.3581 with a bias 
of − 0.0019 for the 2 × 4 contingency table, and 0.2753 with a bias of − 0.0032 for the 3 × 4 contingency table. 
The results obtained from the real data, on the other hand, were 0.3196 MAPE with a bias of − 0.0083 for the 
2 × 3 contingency table, 0.4767 MAPE with a bias of − 0.0595 for the 2 × 4 contingency table, and 0.3335 MAPE 
with a bias of − 0.0370 for the 3 × 4 contingency table. Both the simulation study and the applications on the 
real data set showed us that; the proposed method can predict the results better than the other effect size meas-
ures in terms of MAPE and bias values. The MAPE value of the proposed method was found to be lower in all 
the application results compared to the other methods, and the bias value was in the range of ± 10%. From the 
results we can claim that I-MFCESFs improve prediction accuracy by combining different effect sizes results. The 
limitation of the study can be identified as the fact that the performance of the proposed method is affected by 
the performance of a clustering algorithm. Although, IFCM accounts for the hesitancy of an object to be belong 
to a cluster, it does not consider the outliers in the dataset. In this sense, possibilistic fuzzy clustering algorithm, 
that accounts for the outliers, can be adapted in MFF. This scenario is left for the future study. Therefore, as a 
future research direction, we plan to combine the effect size measures used for different types of variables and 
utilize possibilistic fuzzy c-means. Also, to improve the performance of the proposed method, different categori-
cal effect size measures can be included in MFF.

Data availability
The real dataset are taken from UCI Machine Learning Repository database. It can be open accessed via (https:// 
archi ve. ics. uci. edu/ ml/ datas ets/ Derma tology). The simulated dataset during the current study is available from 
the corresponding author on reasonable request.
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