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Capturing functional connectomics 
using Riemannian partial least 
squares
Matthew Ryan  *, Gary Glonek , Jono Tuke   & Melissa Humphries 

For neurological disorders and diseases, functional and anatomical connectomes of the human brain 
can be used to better inform targeted interventions and treatment strategies. Functional magnetic 
resonance imaging (fMRI) is a non-invasive neuroimaging technique that captures spatio-temporal 
brain function through change in blood-oxygen-level-dependent (BOLD) signals over time. FMRI 
can be used to study the functional connectome through the functional connectivity matrix; that 
is, Pearson’s correlation matrix between time series from the regions of interest of an fMRI image. 
One approach to analysing functional connectivity is using partial least squares (PLS), a multivariate 
regression technique designed for high-dimensional predictor data. However, analysing functional 
connectivity with PLS ignores a key property of the functional connectivity matrix; namely, these 
matrices are positive definite. To account for this, we introduce a generalisation of PLS to Riemannian 
manifolds, called R-PLS, and apply it to symmetric positive definite matrices with the affine invariant 
geometry. We apply R-PLS to two functional imaging datasets: COBRE, which investigates functional 
differences between schizophrenic patients and healthy controls, and; ABIDE, which compares 
people with autism spectrum disorder and neurotypical controls. Using the variable importance in the 
projection statistic on the results of R-PLS, we identify key functional connections in each dataset that 
are well represented in the literature. Given the generality of R-PLS, this method has the potential to 
investigate new functional connectomes in the brain, and with future application to structural data 
can open up further avenues of research in multi-modal imaging analysis.

The functional and anatomical connections of the human brain form complex networks that link the infra-
structure of our minds. Understanding these connectomes has the potential to provide insight into the effect 
of neurological diseases which can be used to better inform targeted interventions and treatment strategies1,2. 
In particular, the functional connectome can shed new light onto psychiatric and neurological conditions such 
as schizophrenia and autism spectrum disorder (ASD), two conditions that alter brain function from healthy, 
neurotypical controls3,4.

A popular approach used to investigate brain function is functional magnetic resonance imaging (fMRI), 
a non-invasive neuroimaging technique that measures the blood-oxygenation-level-dependent (BOLD) signal 
over time as a correlate of brain activity5. An fMRI image is a complex spatio-temporal picture of the brain with 
voxels (volumetric pixels) describing the spatial location and a time series for each voxel describing the BOLD 
signal. To reduce the spatial complexity, voxels can be collated into user-specified regions of interest (ROIs). 
Functional connectomes can then be investigated through Pearson’s correlation matrix between ROIs, known 
as the functional connectivity matrix.

One approach to investigating functional connectivity is using the partial least squares (PLS) regression 
method. Introduced by Wold6 for use in chemometrics, PLS is an extension of multivariate multiple regression 
to high-dimensional data that predicts the response data from a set of lower-dimensional latent variables (that 
is, unobserved variables) constructed from the predictor data. Popularised for fMRI by McIntosh et. al.7, PLS has 
been used to explore the relationships between fMRI data and either behavioural data, experimental designs, or 
seed region activation8. However, standard PLS ignores the structure of functional connectivity data—functional 
connectivity matrices are correlation matrices and hence positive definite, that is, they have non-negative eigen-
values. By ignoring the positive definite criteria, standard PLS on functional connectivity data has the potential 
to ignore intricate non-linearities in the data and provide invalid predictions from the model.
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For a given number of ROIs R, the space of R × R symmetric positive definite matrices—which includes 
functional connectivity matrices—forms a convex cone in R(R + 1)/2-dimensional Euclidean space, that is, they 
form a shape much like an ice-cream cone in high dimensional Euclidean space that has a singularity at the origin. 
However, when considered with the affine invariant geometry9, the space of symmetric positive definite matrices 
becomes a complete Riemannian manifold—a general mathematical space where we can perform calculus—with 
non-positive curvature, that is, it curves in on itself in interesting and complex ways. By considering this non-
linear geometry on symmetric positive definite matrices we can glean interesting new insights into functional 
connectivity (see Pennec et. al.10 and citations therein).

The process of generalising statistical models to Riemannian manifolds has the potential to investigate non-
linearities in the data11, and has been gaining significant interest in neuroimaging in recent years10. Fletcher12 
proposed principal geodesic analysis as a generalisation of principal components analysis to Riemannian mani-
folds for applications in shape analysis for medically-defined anatomical shapes. Later, Fletcher11 generalised 
simple linear regression to Riemannian manifolds, called geodesic regression, to investigate how medically-
defined anatomical shapes can change with age. Following this vein of research, Kim13 generalised canonical 
correlations analysis to Riemannian manifolds to explore multi-modal imaging relationships between diffusion 
tensor images and structural MRI in Alzheimer’s patients. However, PLS, which is closely related to all of these 
methods, has not yet been generalised to Riemannian manifolds.

Here we propose an extension of the PLS model to allow Riemannian manifold response and predictor data, 
which we call Riemannian partial least squares (R-PLS). The R-PLS model then allows us to predict from func-
tional connectivity data while accounting for the intricate relationships enforced by the positive definite criteria. 
To fit the R-PLS model, we propose the tangent non-linear iterative partial least squares (tNIPALS) algorithm, 
which is related to previously proposed applications of PLS for functional connectivity data in the literature14–17. 
We determine the optimal number of latent variables using cross validation. To aid in interpretability of the 
high-dimensional functional connectivity data, we determine significant functional connections identified by 
R-PLS using permutation tests on the variable importance in the projection (VIP) statistic18, a popular measure 
of variable importance from standard PLS.

We apply R-PLS to two datasets and two different ROI atlases to demonstrate its versatility in predicting 
phenotype data from functional connectivity. First is the COBRE dataset19 which investigates differences in 
functional connectivity between healthy controls ( n = 74 ) and patients with schizophrenia ( n = 72 ). We consider 
two separate atlases on the COBRE dataset to test the generalisability of R-PLS across atlases; the multi-subject 
dictionary learning (MSDL) atlas20 to look at a low-dimensional (39 ROIs), data-driven atlas, as well as the auto-
mated anatomic labelling (AAL) atlas, a higher-dimensional (116 ROIs) anatomical atlas. The second dataset 
is the ABIDE dataset from the New York University imaging site21 which investigates differences in functional 
connectivity between typical healthy controls ( n = 98 ) and subjects with ASD ( n = 75 ). We consider the ABIDE 
data in the AAL atlas22 to investigate the generalisability of R-PLS across datasets. Thus, when predicting using 
the MSDL atlas we are considering 780 unique functional connections (since R = 39 ), and when predicting using 
the AAL atlas we are considering 6786 unique functional connections (since R = 116).

Results
For each dataset and atlas we predict the multivariate phenotype information (age and group for the COBRE 
dataset, as well as sex and eye status for ABIDE) from the functional connectivity data using the R-PLS model. 
The categorical variables group, sex, and eye status were represented by binary values, and all phenotype informa-
tion was standardised to have mean zero and standard deviation one. When analysing functional connectivity 
matrices in the AAL atlas there was one matrix in the COBRE dataset and 24 matrices in the ABIDE dataset 
which had low-rank, and hence were not positive definite. To deal with these low-rank functional connectiv-
ity matrices, we consider regularised functional connectivity matrices F̃ = F + I following Venkatesh et. al.23, 
where I is the 116× 116 identity matrix. We compare R-PLS to the standard PLS model using the upper triangle 
of the functional connectivity matrices as the predictors (raw correlations), as well as their Fisher transformed 
values (Fisher correlations).

Model fitting
We determine the optimal number of latent variables K in the PLS model through ten-fold cross validation using 
the “within one standard error” rule24 when minimising the root mean square error (RMSE) on the multivariate 
phenotype information. Due to the interest in the COBRE and ABIDE datasets in investigating the differences 
between healthy controls and patients, we also present the group classification metrics of accuracy, sensitivity, 
specificity, and area under the operator receiver curve (AUC). Since we have represented group as a binary 
value, we classify subjects in the patient group (schizophrenia or ASD) if their predicted group score is greater 
than zero, and in the control group otherwise. Graphs of the cross validation results can be found in the sup-
plementary material (Fig. S1).

For the COBRE dataset with the MSDL atlas, ten-fold cross validation showed that K = 2 latent variables 
was the most parsimonious, within one standard error of the minimum RMSE ( K = 3 ). When compared with 
Euclidean PLS using raw and Fisher-transformed correlations, R-PLS outperformed both methods across all 
metrics except for specificity in group prediction (Table 1) . However, all three methods produced similar results 
for every metric.

When considering the COBRE dataset in the AAL atlas, ten-fold cross validation showed that K = 3 latent 
variables was the most parsimonious, within one standard error of the minimum RMSE ( K = 3 ). Similar to the 
results from the MSDL atlas, we found that R-PLS outperformed the Euclidean PLS methods across all metrics, 
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although now with the inclusion of group specificity (Table 1). When using the AAL atlas on the COBRE dataset, 
we observe a substantial increase in the cross validated R2 value over the Euclidean methods.

For the ABIDE dataset, ten-fold cross validation found K = 3 latent variables was the most parsimonious, 
within one standard error of the minimum RMSE ( K = 6 ). When compared with Euclidean PLS using the raw 
and Fisher-transformed correlations, R-PLS outperformed both methods across all metrics except for specific-
ity in group classification (Table 1). In particular, the R2 value and AUC for R-PLS was substantially larger than 
the Euclidean methods.

Interpretation
To investigate the functional connectomes associated to each phenotype variable, we consider the regression 
coefficient matrix βPLS (see Eq. 4 in the “Methods” section) where the ith column represents the effect of the func-
tional connectivity matrix on the ith response variable (age, group, sex, or eye status). Much like the regression 
coefficients in ordinary least squares, the coefficient matrix βPLS captures the multivariate association between 
functional connectivity and the phenotype data. We determine which functional connections are significantly 
associated with the phenotype variables through a permutation test of the VIP statistic (Eq. 5 in the “Methods” 
section) using 200 permutations at a significance level of α = 0.05 , as described in the “Methods” section. All 
analysis was performed using r25.

We visualise the columns of the matrix βPLS as symmetric matrices in the tangent space of the Fréchet mean 
for each dataset, and represent them as connectomes on standard brains images using the nilearn package 
in python. To assist in visualising patterns in the regression coefficients across the connectome, we average the 
coefficient values across all connections within and between predefined resting state networks similar to Wong et. 

Table 1.   Mean (SE) 10-fold cross validation results for Riemannian partial least squares (R-PLS) on the 
COBRE and ABIDE datasets, and Euclidean PLS using the raw and Fisher transformed correlations. The value 
K represents the optimal number of latent variables for each model when minimising the root mean square 
error (RMSE) using the within one standard error rule. The full model metrics are the multivariate R2 and 
RMSE. The group classification metrics of accuracy, sensitivity, specificity, and area under the operator receiver 
curve (AUC) look at the classification for subject group only. R-PLS is the best model for both datasets and 
atlases over all model metrics, except for specificity (bold values).

Riemannian Raw correlations Fisher correlations

COBRE-MSDL

 K 2 3 3

Full model metrics (SE)

 R2 0.25 (0.035) 0.23 (0.033) 0.23 (0.036)

 RMSE 1.20 (0.036) 1.21 (0.025) 1.21 (0.026)

Group classification (SE)

 Accuracy 0.75 (0.045) 0.73 (0.032) 0.74 (0.032)

 Sensitivity 0.81 (0.035) 0.70 (0.057) 0.72 (0.055)

 Specificity 0.69 (0.071) 0.76 (0.048) 0.76 (0.048)

 AUC​ 0.81 (0.039) 0.78 (0.027) 0.79 (0.024)

COBRE-AAL

 K 3 3 3

Full model metrics (SE)

 R2 0.43 (0.034) 0.38 (0.043) 0.38 (0.043)

 RMSE 1.04 (0.042) 1.08 (0.047) 1.08 (0.047)

Group classification (SE)

 Accuracy 0.79 (0.034) 0.76 (0.038) 0.76 (0.038)

 Sensitivity 0.80 (0.049) 0.75 (0.063) 0.75 (0.063)

 Specificity 0.78 (0.030) 0.76 (0.030) 0.76 (0.030)

 AUC​ 0.86 (0.031) 0.83 (0.039) 0.83 (0.040)

ABIDE

 K 3 3 3

Full model metrics (SE)

 R2 0.15 (0.015) 0.07 (0.016) 0.07 (0.016)

 RMSE 1.80 (0.051) 1.89 (0.059) 1.89 (0.059)

 Group classification (SE)

 Accuracy 0.58 (0.027) 0.55 (0.032) 0.54 (0.032)

 Sensitivity 0.61 (0.058) 0.52 (0.064) 0.51 (0.063)

 Specificity 0.53 (0.063) 0.58 (0.065) 0.58 (0.065)

 AUC​ 0.64 (0.016) 0.61 (0.047) 0.60 (0.046)



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17386  | https://doi.org/10.1038/s41598-023-44687-2

www.nature.com/scientificreports/

al.14. The within-network connectivity is then the average coefficient of all connections within a single resting state 
network, and the between-network connectivity is the average coefficient of all connections between two resting 
state networks. For the MSDL atlas this involves reducing the 39 ROIs to the 17 resting state networks associ-
ated to the atlas26. For the AAL atlas, we associate the 116 ROIs to the seven resting-state networks suggested 
by Parente and Colosimo27 and an eighth containing the cerebellum and vermis, which we call the cerebellum 
network. The resting state networks for the MSDL and AAL atlases are visualised in the supplementary material 
(MSDL in Figs. S2–S7, AAL in Figs. S8–S10).

For the COBRE dataset with the MSDL atlas, a permutation test of the VIP statistic with 200 permutations 
found 45 significant functional connections between ROIs as being predictive of age and subject group (Fig. 1). 
When considered with the AAL atlas, a permutation test of the VIP statistic with 200 permutations found 249 
significant functional connections between ROIs as being predictive of age and subject group (Fig. 2). For the 
ABIDE dataset, a permutation test of the VIP statistic with 200 permutations found 196 significant functional 
connections between ROIs as being predictive of age, subject group, sex and eye status (Figs. 3 and 4).

Across both atlases for the COBRE dataset, an increase in subject age tended towards a decrease of within-
network connectivity (as measured by a mean decrease in functional connectivity within-networks) with particu-
lar emphasis on the auditory network, cingulate insula, and left and right ventral attention networks in the MSDL 
atlas, and the temporo-parietal, limbic, and basal ganglia networks in the AAL atlas (Figs. 1, 2a–c). Increased 
age was associated with an increase in between-network connectivity, particularly for the MSDL atlas which 
shows increased connectivity involving the cingulate insula and the motor network. Notably, an increase in age 
is associated with a decrease in between-network connectivity for the basal ganglia in the AAL atlas but not in 
the MSDL atlas. In the ABIDE dataset, increased age was associated to both increased and decreased functional 
connectivity within resting-state networks (Fig. 3a–c). Although we observed increased between-network con-
nectivity for the thalamus and occipital networks, the cerebellum and default mode network exhibited decreased 
between-network connectivity with age. Note that the decreased within-network connectivity for the basal 
ganglia with age is also present in the ABIDE dataset.

For subjects in the schizophrenic group, the basal ganglia exhibited both increased and decreased connectivity 
with other networks across both atlases (Figs. 1 and 2d–f). In particular, in the MSDL atlas there was a decrease 
in connectivity between the basal ganglia and the cerebellum and salience networks, whereas we observed an 
increase in connectivity between the basal ganglia and auditory and language networks for the schizophrenic 
group. The AAL atlas similarly demonstrates the reduced connectivity between the basal ganglia and the cer-
ebellum, and further shows reduced connectivity between the basal ganglia and the fronto-parietal network. 
In contrast to the analysis with the MSDL atlas, using the AAL atlas suggest there is an increase in connectivity 
between the basal ganglia and the default mode network for schizophrenic subjects. For both atlases, the default 
mode network was highly discriminatory for the schizophrenic group showing both increased and decreased 
between-network connectivity. Finally, we note the the AAL atlas highlights connectivity with the thalamus as 
being highly discriminatory for the schizophrenic group, which is not represented in the MSDL atlas since there 
is no thalamus ROI.

For subjects with ASD we observed increased within-network connectivity with the exception of the limbic 
network (Fig. 3d–f). We also observed decreased between-network connectivity particularly for connections 
involving the cerebellum or the limbic networks. We observed similar connectivity patterns for subject sex 
(Fig. 4a–c).

For subjects with their eyes closed, our model suggests there was decreased within-network connectivity 
(Fig. 4d–f). With the exception of the default mode network, the limbic network, and the basal ganglia, we saw 
decreased between-network connectivity with particular emphasis on the occipital network.

Discussion
The R-PLS model has identified many functional connections associated to age, ASD, schizophrenia, sex, and 
eye status that are well represented in the literature. Across both datasets and atlases, we identified the reduction 
of within-network connectivity with age that has been previously observed28–30, with exceptions in the temporo-
parietal, fronto-parietal, and limbic networks in the ABIDE dataset and the salience network in the COBRE 
dataset, which all show an increase in connectivity with age. Further, both datasets exhibit the decreased con-
nectivity within the default mode network, consistent with existing literature31,32. We also note that the previously 
observed decrease of within-network connectivity for the basal ganglia33 was prominent in the AAL atlas, but 
not the MSDL atlas. This is because there is only one region of interest for the basal ganglia in the MSDL atlas, 
so within-network connectivity is not defined.

For subjects with ASD, the decreased connectivity with the cerebellum34 and the limbic35 networks have been 
previously observed. However, the decreased between-network connectivity suggested by R-PLS is in contradic-
tion with existing literature14,36; in particular, Wong et. al.14 showed an increase in between-network connectivity 
associated to ASD on the full ABIDE dataset using logistic regression. Also, observe that the connectivity for 
subject sex is highly correlated with the connectivity for the ASD group. Although interactions between subject 
sex and ASD have been identified37, we believe this highlights a possible limitation of R-PLS and requires further 
investigation in future research.

The role of the basal ganglia in schizophrenic patients has been previously observed, particularly the decrease 
in connectivity between the salience network and the basal ganglia38,39 and the decreased connectivity between 
the cerebellum and basal ganglia40. Similarly, the importance of the thalamus in schizophrenia, identified when 
using the AAL atlas, is well-known41,42. Further, the connectivity patterns involving the default mode network 
have been previously reported in schizophrenic patients43–47.
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Figure 1.   Significant regression coefficients for predicting age and schizophrenia as measured by variable importance 
in the projection (VIP) for the Riemannian partial least squares (R-PLS) model on the COBRE dataset and the multi-
subject dictionary learning (MSDL) atlas with K = 2 latent variables, visualised as connectomes and symmetric 
matrices. Blue values represent connections that are positively associated with the phenotype, that is, an increase in 
connectivity between two regions with a blue edge would indicate an increase in the phenotype variable. Conversely, 
red values are connections that are negatively associated with the phenotype, that is, an increase in connectivity 
between two regions with a red edge would indicate a decrease in the phenotype variable. (a) Shows the connections 
that increase with age, (b) shows the connections that decrease with age, and (c) shows the average coefficient values 
for age between the 17 resting state networks of the MSDL atlas26 (Figs. S2–S7). (d) Shows the connections that 
increase for patients with schizophrenia, (e) shows the connections that decrease for patients with schizophrenia, 
and (f) shows the average coefficient values for schizophrenia between the 17 resting state networks of the MSDL 
atlas26 (Figs. S2–S7). The darker outlined boxes in (c) and (f) show the top 25% influential regions as measured by 
the absolute coefficient value within and between each network. The network abbreviations in (c) and (f) are: Aud 
auditory, Striate striate, DMN default model network, Occ Post occipital posterior, Motor motor network, R V Att right 
ventral attention network, Basal Basal Ganglia, L V Att left ventral attention network, D Att dorsal attention network, 
Vis Sec secondary visual cortex, Salience salience network, Temporal temporal network, Language language network, 
Cereb cerebellum, Dors PCC dorsal posterior cingulate cortex, Cing-Ins cingulate-insula network, Ant IPS anterior 
intraparietal sulcus.
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Figure 2.   Significant regression coefficients for predicting age and schizophrenia as measured by variable 
importance in the projection (VIP) for the Riemannian partial least squares (R-PLS) model on the COBRE 
dataset and the automated anatomic labelling (AAL) atlas with K = 3 latent variables, visualised as connectomes 
and symmetric matrices. Blue values represent connections that are positively associated with the phenotype, 
that is, an increase in connectivity between two regions with a blue edge would indicate an increase in the 
phenotype variable. Conversely, red values are connections that are negatively associated with the phenotype, 
that is, an increase in connectivity between two regions with a red edge would indicate a decrease in the 
phenotype variable. (a) Shows the connections that increase with age, (b) shows the connections that decrease 
with age, and (c) shows the average coefficient values for age between the 7 resting state networks identified 
by Parente and Colosimo27 and the cerebellum (Figs. S8–S10). (d) Shows the connections that increase for 
patients with schizophrenia, (e) shows the connections that decrease for patients with schizophrenia, and (f) 
shows the average coefficient values for schizophrenia between the 7 resting state networks identified by Parente 
and Colosimo27 and the cerebellum (Figs. S8–S10). The darker outlined boxes in (c) and (f) show the top 25% 
influential regions as measured by the absolute coefficient value within and between each network. In (c) and 
(f), DMN default mode network.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17386  | https://doi.org/10.1038/s41598-023-44687-2

www.nature.com/scientificreports/

Figure 3.   Significant regression coefficients for predicting age and autism spectrum disorder (ASD) as 
measured by variable importance in the projection (VIP) for the Riemannian partial least squares (R-PLS) 
model on the ABIDE dataset and the automated anatomic labelling (AAL) atlas with K = 3 latent variables, 
visualised as connectomes and symmetric matrices. Blue values represent connections that are positively 
associated with the phenotype, that is, an increase in connectivity between two regions with a blue edge would 
indicate an increase in the phenotype variable. Conversely, red values are connections that are negatively 
associated with the phenotype, that is, an increase in connectivity between two regions with a red edge would 
indicate a decrease in the phenotype variable. (a) Shows the connections that increase with age, (b) shows 
the connections that decrease with age, and (c) shows the average coefficient values for age between the 7 
resting state networks identified by Parente and Colosimo27 and the cerebellum (Figs. S8–S10). (d) Shows the 
connections that increase for patients with ASD, (e) shows the connections that decrease for patients with ASD, 
and (f) shows the average coefficient values for ASD between the 7 resting state networks identified by Parente 
and Colosimo27 and the cerebellum (Figs. S8–S10). The darker outlined boxes in (c) and (f) show the top 25% 
influential regions as measured by the absolute coefficient value within and between each network. In (c) and 
(f), DMN default mode network.
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Figure 4.   Significant regression coefficients for predicting sex and eye status as measured by variable importance 
in the projection (VIP) for the Riemannian partial least squares (R-PLS) model on the ABIDE dataset and the 
automated anatomic labelling (AAL) atlas with K = 3 latent variables, visualised as connectomes and symmetric 
matrices. Blue values represent connections that are positively associated with the phenotype, that is, an increase 
in connectivity between two regions with a blue edge would indicate an increase in the phenotype variable. 
Conversely, red values are connections that are negatively associated with the phenotype, that is, an increase in 
connectivity between two regions with a red edge would indicate a decrease in the phenotype variable. (a) Shows 
the connections that increase for males, (b) shows the connections that decrease for males, and (c) shows the 
average coefficient values for males between the 7 resting state networks identified by Parente and Colosimo27 
and the cerebellum (Figs. S8–S10). (d) Shows the connections that increase for patients with eyes open, (e) shows 
the connections that decrease for patients with eyes open, and (f) shows the average coefficient values for the 
eyes open group between the 7 resting state networks identified by Parente and Colosimo27 and the cerebellum 
(Figs. S8–S10). The darker outlined boxes in (c) and (f) show the top 25% influential regions as measured by the 
absolute coefficient value within and between each network. In (c) and (f), DMN default mode network.
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The results for eye status during scan are also well represented in the literature. The decreased within-network 
connectivity for the default mode network for patients with closed eyes has been previously reported by Yan et. 
al.48, and the increased between-network connectivity for the default mode network has recently been discussed 
by Han et. al.49. Further, the observed decrease in connectivity for the occipital network agrees with Agcaoglu 
et. al.50.

The use of the VIP statistic to identify significant connections in functional connectivity has not been previ-
ously studied. We have demonstrated that this statistic can identify many functional connections that have been 
addressed previously in the literature, but it is not without its limitations. First, with our focus on generalising 
partial least squares to Riemannian manifolds, the VIP statistic does not take into account the Riemannian geom-
etry we are considering. This is mitigated by the tangent space approximation we are performing, which directly 
accounts for the geometry of the data, but further research could help better generalise the VIP statistic for R-PLS. 
Further, the VIP statistic associates the effects of a single predictor on the full multivariate response. In situations 
like we consider here, this makes it difficult to determine which functional connections are associated to which 
outcome variable. For example, the connectivity within the default mode network is deemed significant by the 
VIP statistic in the ABIDE dataset, but it is unclear whether this connectivity is significance for every outcome 
variable or a subset of them. Work has been done to generalise the VIP statistic when the outcome variable is 
multivariate51, but further research is needed to investigate this generalisation.

The R-PLS method has shown to be generalisable over different atlases and datasets, but with a few notable 
differences. When analysing the COBRE dataset, we observe similar results between functional connectivity and 
age and subject group, but due to the different granularity of the MSDL and AAL atlases (39 ROI for MSDL and 
116 for AAL) we are able to find further relationships. For example, the relationship between the within-network 
connectivity of the basal ganglia and age, or the role of the thalamus in schizophrenia. Comparing the AAL atlas 
across the COBRE and ABIDE datasets, we find that R-PLS is still the preferred model over Euclidean methods. 
Looking at the relationship between functional connectivity and age across both datasets, we see some similari-
ties in the results with the differences explained by the different ages considered in each cohort52 (mean age for 
COBRE = 37 years old, mean age for ABIDE = 15.2 years old, Tables S1 and S2).

However, further work is needed to verify R-PLS in a clinical context. First, we have not been able to investi-
gate the test-retest reliability of this method due to the cross-sectional nature of the COBRE and ABIDE studies. 
A thorough study of the test-retest reliability of R-PLS would be invaluable to the method and would increase its 
versatility for clinical studies. Second, we have not investigated the effects of different preprocessing choices for 
the fMRI data. It would be beneficial to the generalisability of the results from R-PLS to determine how robust 
they are across preprocessing choices. The different preprocessing pipelines for the ABIDE study offer one avenue 
to investigate this, and is a clear area of future research.

These results suggest that R-PLS can provide insight into the functional connectome and how it relates to 
subject phenotype data. Further, due to the specification and generality of the R-PLS model, this method is 
readily applicable to other imaging modalities, and in particular to multimodal imaging studies. The applica-
tion of R-PLS to multimodal imaging studies is an area of future research that may help to us to understand the 
functional networks that make up the human connectome.

Methods
Data
The International Neuroimaging Data-Sharing Initiative (INDI) is an initiative set to encourage free open access 
to neuroimaging datasets from around the world. We consider two datasets that are accessible as a part of the 
INDI.

COBRE
The Center for Biomedical Research Excellence (COBRE) have contributed structural and functional MRI images 
to the INDI that compare schizophrenic patients with healthy controls19. The data were collected with single-shot 
full k-space echo-planar imaging with a TR of 2000 ms, matrix size of 64× 64 and 32 slices (giving a voxel size of 
3× 3× 4 mm3 ). These data were downloaded using the python package nilearn v 0.6.2, and contains 
146 subjects (Control = 74 ), each with phenotype information on subject group and age; further information is 
available in Table S1 of the supplementary material.

The fMRI data were preprocessed using NIAK 0.17 under CentOS version 6.3 with Octave version 4.0.2 and 
the Minc toolkit version 0.3.1853. The data were subjected to band pass filtering and nuisance regression where we 
removed six motion parameters, the frame-wise displacement, five slow-drift parameters, average parameters for 
white matter, lateral ventricles, and global signal, as well as 5 estimates for component based noise correction54.

For the COBRE dataset, we consider each fMRI in the MSDL atlas and the AAL atlas22. The MSDL atlas is 
a functional ROI decomposition of 39 nodes across 17 resting state networks26. The AAL atlas is an anatomical 
atlas of 116 nodes across the brain. Time series for each atlas were extracted for each ROI by taking the mean 
time series across the voxels in each region.

ABIDE
The Autism Brain Imaging Data Exchange (ABIDE) is part of the Preprocessed Connectomes Project in INDI21. 
The ABIDE data is a collection of preprocessed fMRI images from 16 international imaging sites with 539 individ-
uals diagnosed with ASD and 573 neurotypical controls (NTC). The ABIDE initiative provides data preprocessed 
under four separate standard pipelines, as well as options for band-pass filtering and global signal regression.

Here we consider the 172 subjects (NTC = 98) of the New York University imaging site. We restrict to this 
site to reduce inter-site variation in imaging and because it is the largest individual imaging site. The data were 
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collected with a 3 Tesla Allegra MRI using echo-planar imaging with a TR of 2000 ms, matrix size of 64× 64 
and 33 slices (giving a voxel size of 3× 3× 4 mm 3 ). The fMRI data were downloaded using the python pack-
age nilearn v 0.6.2 preprocessed using the NIAK 0.7.1 pipeline53. The data were subjected to: motion 
realignment; non-uniformity correction using the median volume; motion scrubbing; nuisance regression which 
removed the first principal component of 6 motion parameters, their squares, mean white matter and cerebrospi-
nal fluid signals, and low frequency drifts measured by a discrete cosine basis with a 0.01 Hz high-pass cut-off; 
band-pass filtering and; global signal regression. We consider the subjects preprocessed fMRI as well as subject 
group, age, sex, and eye status during scan (open or closed); further information is available in Table S2 of the 
supplementary material.

For the ABIDE dataset, we consider each fMRI in the AAL atlas22, with time series were extracted by taking 
the mean time series across the voxels in each ROI.

Partial least squares in Euclidean space
PLS is a predictive modelling technique that predicts a response matrix Yn×q from a set of predictors Xn×p . 
Originally introduced in the chemometrics literature by Wold6, PLS has found application in bioinformatics55, 
social sciences56, and neuroimaging8,57,58; see Rosipal and Krämer59 and citations therein for further examples. 
As an extension of multivariate multiple regression, PLS has been shown to have better predictive accuracy than 
multivariate multiple regression when the standard regression assumptions are met60. A further advantage of PLS 
is that it is effective when q > n or p > n since it performs prediction from lower dimensional latent variables, 
that is, PLS constructs a new set of predictor variables from X to predict Y60.

Let Xn×p and Yn×q be predictor and response matrices respectively. Suppose X and Y are column centred, 
that is, suppose the means of each column of X and Y are 0. PLS proposes the existence of L ≤ min{p, n} latent 
variables such that X and Y decompose into a set of scores matrices Tn×L and Un×L , and loadings matrices Pp×L 
and Qq×L with

where En×p and Fn×q are error matrices, assumed to be a small as possible61, and the superscript T denotes the 
matrix transpose. Further, PLS assumes that there is a diagonal matrix BL×L with

where H is a matrix of residuals. Equations (1) and (2) are called the outer relationships while Eq. (3) defines the 
inner relationship that connects X and Y. Combining the inner relationship and the outer relationship for Y gives

which highlights that Y is a regression on the latent scores T. Further, notice that the error in Y is given by 
HQT + F , that is, error in Y is a combination of error inherent to the response data (F) and error from the esti-
mation of the inner relationship ( HQT ). The inclusion of the residual matrix H can complicate discussion of the 
PLS method, so it is common to consider the estimated inner relationship Û ≈ TB instead61,62.

Estimation of the PLS model (Eqs. 1–3) is commonly done through the non-linear iterative partial least 
squares (NIPALS) algorithm (Algorithm S1 in the supplementary material). The inputs for the NIPALS algorithm 
are the data matrices X and Y and the pre-specified number of latent variables K; noting that the true number 
of latent variables L is unknown, the value K can be chosen with methods such as cross validation. The NIPALS 
algorithm outputs estimates of the scores, loadings, and regression coefficients as well as matrices Wp×K and Cq×K 
known as the weights. The weight matrices W and C are linear transformations of P and Q that more efficiently 
fit the PLS model and are defined within the NIPALS algorithm; see the supplementary material S1 for further 
information. Using the results of the NIPALS algorithm and Eqs. (1)–(3), we can write

where

is the matrix of regression coefficients. Using β̂PLS we see that PLS is a linear regression technique similar to 
ordinary least squares and ridge regression.

Cross validation
We choose the optimal number of latent variables K for each PLS model through ten-fold cross validation24. To 
do this, we split each dataset into ten equal subsets C1,C2 . . . ,C10 stratified by subject group (schizophrenia or 
ASD). For each subset Ci , i = 1, 2, . . . , 10 , we train the PLS models on the remaining nine subsets for each value 
of K̂ = 1, 2, . . . , 50 , using the phenotype data as the response variables and the functional connectivity as the 
predictors. We then predict on the subset Ci to calculate the test RMSE. By taking the average RMSE over all 
cross validation folds, we get an estimate of the test RMSE for the model. If K∗ is the value of K̂ that returns the 
minimum cross validated RMSE, the optimal K for our model is K ≤ K∗ such that the cross validated RMSE for 
K is within one standard error of the cross validated RMSE for K∗.

(1)X = TP
T
+ E,

(2)Y = UQ
T
+ F,

(3)U = TB+Hn×L,

Y = TBQ
T
+ (HQT

+ F),

Ŷ = Xβ̂PLS

(4)β̂PLS = W(PTW)−1BCT
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The VIP statistic
To determine significant predictors of the response variables in the PLS model, we use the VIP statistic18. Suppose 
there are p predictor variables, q response variables, and K latent variables extracted using NIPALS. Following 
Tennenhaus63, the VIP statistic for the jth predictor variable is

where tk is the kth column of the score matrix T, wjk is the kth weight for the jth predictor, 
Rd(Y, tk) =

1
q

∑q
i=1 cor(Yi, tk)

2 , and Rd(Y, T) =
∑K

k=1 Rd(Y, tk) . The coefficient cor(Yi, tk)
2 is the squared 

correlation between the jth response variable and the kth score. The denominator Rd(Y, T) in Eq. (5) measures 
the proportion of variance in Y explained by T, and the numerator Rd(Y, tk)(wjk)

2 measures the proportion of 
variance in Y described by the kth latent variable that is explained by the jth predictor64. Thus the VIP statistic 
measures the influence of each predictor on the explained variation in the model65.

Commonly, the “greater than one”  rule is used to find predictors significantly associated with the response. 
However, this rule is motivated by the mathematical properties of VIPj rather than statistical properties64. Thus, 
we use a permutation test to determine significance of VIPj . This is an alternative to Afanador et. al.66 who used 
95% jackknife confidence intervals to determine significance of VIP .

Specifically, for each predictor variable j we permute the values H times. For each permutation h = 1, 2, . . . ,H 
we refit the PLS model and calculate VIPj,h . The P-value for the jth VIP score is then

For our data, the predictors are functional connectivity matrices. Thus, we know a priori that the diagonal ele-
ments are uninformative since they are identically one. Hence, if predictor j describes a diagonal element we set 
P-valuej = 1 for all i. To account for the multiple comparisons problem, we adjust all P-values using the false 
discovery rate67 and determine significance at a significance level of α = 0.05.

Mathematical preliminaries
Riemannian manifolds
Intuitively speaking, a Riemannian manifold M is a space where we can perform calculus, measure dis-
tances, and measure angles between tangent vectors. More specifically, a smooth d-dimensional manifold M 
is a connected, Hausdorff, second countable topological space that is covered by a set of coordinate charts 
{(Ui ,ϕi : Ui → R

d)}i∈I , defined by some indexing set I, such that every point in M belongs to a Ui for some i ∈ I 
and the intersection maps ϕi ◦ ϕ−1

j  are smooth as maps Rd → R
d for every i, j ∈ I . These coordinate charts make 

the space M “locally Euclidean” in the sense that every point has a neighbourhood that looks like Euclidean space. 
Since concepts from differential calculus are local in nature, the construction of a smooth manifold allows us to 
perform calculus on these more general spaces.

An important concept in the study of manifolds is the tangent bundle TM =
⊔

a∈M TaM , where TaM is the 
tangent space at a. The space TaM is defined as the set of equivalence classes of curves through a such that γ1 
and γ2 are equivalent if γ ′

1(0) = γ ′
2(0) , where the prime denotes the derivative. Then TaM is a vector space that 

generalises the notion of vectors tangent to a surface to arbitrary smooth manifolds.
A Riemannian manifold is a manifold M together with a smooth map g : M × TM × TM → R such that 

g(a, ·, ·) = ga : TaM × TaM → R is an inner product for every a ∈ M . The Riemannian metric g allows us to 
measure angles between tangent vectors and measure distances between points on the manifold M. Further, g is 
used to define geodesics (locally length minimising curves) γ : [t0, t1] → M between two points a, b ∈ M . We 
only consider complete Riemannian manifolds here, which are spaces where every geodesic γ has domain R.

Through geodesics we get the concepts of the Riemannian exponential and logarithm maps which allow us to 
smoothly move between the manifold and the tangent space. The Riemannian exponential at a point a ∈ M is a 
map Exp a : TaM → M defined by Exp (a, ·)(γ ) = Exp a(γ ) = γ (1) , where γ is a geodesic such that γ (0) = a . 
The Riemannian exponential is a smooth map that is locally diffeomorphic and hence has a local inverse denoted 
Log (a, ·) = Log a : M → TaM defined by Log a(b) = γ ′(0) where γ (t) is a geodesic from a to b. For a point 
b ∈ M close to a, we think of Log a(b) as the shortest initial velocity vector based at a pointing in the direction of 
b. Further information on Riemannian manifolds can be found in the books by Lee68–70 or do Carmo (1992)71. 
An accessible introduction for medical imaging can be found in the book edited by Pennec et. al.10.

Fréchet mean
To capture the centre of data on a manifold we consider the Fréchet (or intrinsic) mean of data X1,X2, . . . ,Xn ∈ M . 
First, consider the Riemannian distance between two close points X1,X2 ∈ M defined by

where � · � is the norm in TX1M induced by the Riemannian metric. By generalising the sum of squared distances 
definition of the arithmetic mean, the Fréchet mean72 is given by

(5)VIPj =

√

√

√

√

p

Rd(Y, T)

K
∑

k=1

Rd(Y, tk)
(

wjk

)2
,

(6)P-valuej =
#
{

VIPj,h > VIPj
}

H
.

dg (X1,X2) =
∥

∥ Log X1
(X2)

∥

∥,
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We solve for µX using gradient decent10; see Algorithm S2 in the supplementary material for further information.

The affine invariant geometry for symmetric positive definite matrices
Let GLRR be the set of R × R real invertible matrices. The set of symmetric positive definite matrices is defined by

where superscript T denotes matrix transpose. The set S+R  is a smooth manifold, which can be easily seen by 
embedding S+R  into RR(R+1)/2 as a convex cone. This construction shows that the tangent space at each A ∈ S+R  
is given by the set of symmetric R × R matrices.

However, S+R  has an interesting intrinsic geometry known as the affine-invariant geometry9. Under the affine 
invariant geometry S+R  becomes a complete Hadamard manifold—a Riemannian manifold of non-positive cur-
vature where Exp A is a diffeomorphism for every A ∈ S+R .

The affine-invariant metric g is defined by

where A ∈ S+R  , U ,V ∈ TAS
+
R  , and Tr denotes the trace operator. Using g, we can calculate the Riemannian dis-

tance between A,B ∈ S+R  as

where σr
(

A−1/2BA−1/2
)

 are the eigenvalues of A−1/2BA−1/2 , r = 1, 2, . . . ,R . Further, letting A,B ∈ S+R  and 
U ∈ TAS

+
R  , we get

and

where Exp and Log are the matrix exponential and logarithm respectively. The Riemannian distance, exponential, 
and logarithm are essential in the definition and fitting of the R-PLS model defined below.

Riemannian PLS
Let M and N be complete Riemannian manifolds. Let X1,X2, . . . ,Xn ∈ M and Y1,Y2, . . . ,Yn ∈ N , and let µX and 
µY denote the respective Fréchet means. Let L ≤ min{dim(M), n} . The R-PLS model proposes the existence of 
loadings p1, p2, . . . , pL ∈ TµXM and q1, q2, . . . , qL ∈ TµY N such that, for each subject i = 1, 2, . . . , n , there are 
scores ti1, ti2, . . . , tiL ∈ R and ui1, ui2, . . . , uiL ∈ R with

where ei ∈ T
Exp µX

(

∑L
l=1 tilpl

)M and fi ∈ T
Exp µY

(

∑L
l=1 uilql

)M are error vectors with ‖ei‖ , ‖fi‖ small. Equations 

(7) and (8) are the outer relationships for Riemannian data, and Eq. (9) is the inner relationship connecting our 
response and predictor. Note that, since the Riemannian exponential map on Euclidean space is vector addition, 
if M = R

p and N = R
q the R-PLS model (Eqs. 7–9) reduce to the standard PLS model (Eqs. 1–3).

One approach to fitting R-PLS is by directly generalising NIPALS (Algorithm S1) to Riemannian manifolds, 
but this becomes computationally intensive and fails to converge for sample sizes above 20 (see Ryan51 for more 
details). Instead, we propose a tangent space approximation to fitting R-PLS when our data is close to the Fréchet 
mean, similar to methods such as Riemannian canonical correlations analysis13 and principal geodesic analysis11.

The tNIPALS algorithm (Algorithm 1) works by first linearising the manifold data in a neighbourhood of 
the Fréchet mean using the Riemannian logarithm (see supplementary material S1 for further information), 
and then applying the Euclidean NIPALS algorithm to the linearised data which is now vector-valued. Thus, 
tNIPALS provides a combination of the simplicity and efficiency of Euclidean NIPALS with the geometry of the 
Riemannian manifold.

µX = argmin

n
∑

i=1

dg (Xi ,µX)
2 .

S+R =
{

A ∈ GLRR : AT = A and vTAv > 0 for all v ∈ R
R\{0}

}

,

gA(U ,V) = Tr
(

UA−1VA−1
)

,

dg (A,B)
2 =

R
∑

r=1

(

log
(

σr
(

A−1/2BA−1/2
)))2

,

Exp A(U) = A1/2 Exp
(

A−1/2UA−1/2
)

A1/2

Log A(B) = A1/2 Log
(

A−1/2BA−1/2
)

A1/2 ,

(7)Xi = Exp

(

Exp µX

(

L
∑

l=1

tilpl

)

, ei

)

,

(8)Yi = Exp

(

Exp µY

(

L
∑

l=1

uilql

)

, fi

)

, and

(9)ûil = β̂0l + β̂1l til for all l = 1, 2, . . . , L and i = 1, 2, . . . , n ,



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17386  | https://doi.org/10.1038/s41598-023-44687-2

www.nature.com/scientificreports/

The tNIPALS algorithm provides a more general approach to Wong et. al.’s14 method for constructing pre-
dictors from functional connectivity matrices to predict ASD using PLS and logistic regression by considering 
a Euclidean response and symmetric positive definite predictor. Similarly, Zhang and Liu16 and Chu et al.15 
also proposed PLS methods using the affine-invariant geometry for symmetric positive definite matrices that 
is generalised by tNIPALS. Further, the tNIPALS algorithm for R-PLS is closely related to the PLS method for 
symmetric positive definite matrices offered by Perez and Gonzalez-Farias17, where they also propose linearising 
symmetric positive definite matrices in the affine-invariant geometry to fit the PLS model.

Data availibility
The data and r package (spdMatrices) used to complete this work are available on GitHub (Matthew-
Ryan1995/Riemannian-statistical-techniques-with-applications-in-fMRI). The code to perform the analyses and 
generate the figures is also found on GitHub (Matthew-Ryan1995/R-PLS-for-functional-connectivity).
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