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Development and validation 
of a convolutional neural network 
to identify blepharoptosis
Cristina Abascal Azanza 1, Jesús Barrio‑Barrio  1,2*, Jaime Ramos Cejudo 3, 
Bosco Ybarra Arróspide 4 & Martín H. Devoto 5

Blepharoptosis is a recognized cause of reversible vision loss and a non-specific indicator of 
neurological issues, occasionally heralding life-threatening conditions. Currently, diagnosis relies 
on human expertise and eyelid examination, with most existing Artificial Intelligence algorithms 
focusing on eyelid positioning under specialized settings. This study introduces a deep learning model 
with convolutional neural networks to detect blepharoptosis in more realistic conditions. Our model 
was trained and tested using high quality periocular images from patients with blepharoptosis as 
well as those with other eyelid conditions. The model achieved an area under the receiver operating 
characteristic curve of 0.918. For validation, we compared the model’s performance against nine 
medical experts—oculoplastic surgeons, general ophthalmologists, and general practitioners—with 
varied expertise. When tested on a new dataset with varied image quality, the model’s performance 
remained statistically comparable to that of human graders. Our findings underscore the potential to 
enhance telemedicine services for blepharoptosis detection.

It is widely recognized that AI has found extensive application in ophthalmology, particularly in the field of 
retinal disease diagnosis. This is evidenced by over 2000 published studies found on PubMed that combine the 
terms ’retina’ and ’artificial intelligence.’ The prevalence of AI applications in retinal diseases can, in part, be 
attributed to the availability of large, high-quality image datasets that facilitate algorithmic training. Conversely, 
the field of oculoplastics has been slower to adopt AI, with only 14 published studies on PubMed combining the 
terms ’oculoplastics’ and ’artificial intelligence’ as of a search conducted on September 2, 2023. Challenges in 
oculoplastics include the variability in clinical presentations and the lack of standardized, large-scale datasets.

Despite these obstacles, experience in applying AI to oculoplastics is on the raise and it is anticipated that 
further research in this specialized area will gain momentum in the near future1,2. Existing CNNs feature filters 
capable of identifying low-level structural elements such as color, contrast, and edge detection3. These filters 
enable CNNs to undergo ’end-to-end’ training, eliminating the need for pre-processed input and requiring only 
raw image data.

Oculoplastics is an area particularly suited for CNNs and tele-ophthalmology, as visual information and 
unstructured data can be easily acquired using non-specialized equipment. Within the field of oculoplastics, 
blepharoptosis (i.e., drooping of the upper eyelid) stands as a clinically significant condition, often serving as 
the initial or sole manifestation of severe disorders4. For instance, blepharoptosis can manifest in the context of 
Horner syndrome (HS), which may occasionally signify life-threatening conditions such as neuroblastoma in 
children or carotid artery dissection and aneurysms in adults5–7. To date, AI-based diagnosis of blepharoptosis 
has largely relied on parameters established by routine clinical practice, including the measurement of Margin 
to Reflex Distance 1 (MRD1) and palpebral fissure height8. These approaches primarily employ digital image 
processing techniques to identify relevant clinical parameters. Recently, however, there has been a shift towards 
the application of deep learning DL, specifically CNNs, for diagnosing blepharoptosis. A study by Hung et al. 
reported the successful use of AI to accurately diagnose blepharoptosis from clinical photographs, without the 
need for external reference markers or user input, using single-eye images from an Asian ethnic background9,10.

In this study, we offer a holistic approach to the diagnosis of blepharoptosis using CNNs. Specifically, we utilize 
images of both eyes, including the eyebrows, and train a single CNN model end-to-end using only pixel values 
and disorder labels as inputs. Our control group consists of healthy individuals as well as patients with other 
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types of eyelid conditions. This provides a diagnostic framework more reflective of what we might encounter 
in a routine oculoplastic consultation. It should be emphasized that our research serves as a proof of concept, 
laying the groundwork for future investigations in this area.

Methods
Informed consent was obtained from all subjects and/or their legal guardians for both participation in the study 
and the publication of identifying images in an online open-access journal. The clinical study received approval 
from the Research Ethics Committee/Institutional Review Board of Navarra University Hospital and was con-
ducted in accordance with the principles outlined in the Declaration of Helsinki.

Data collection and preprocessing
This study utilized original photographs collected from a tertiary oculoplastic clinic over a 25-year period, 
spanning from 1993 to 2018. The dataset includes 250,534 periocular and facial images from 10,555 patients. 
All images were rigorously graded by a single expert in line with the patients’ conditions. It is worth noting that 
the photographs were captured using various cameras and resolutions over the years.

From the entire dataset, 2000 periocular images were chosen, comprising 1000 patients diagnosed with 
blepharoptosis and another 1000 without the condition. For every patient, one frontal photograph was incorpo-
rated. Each image added to the database was binary- labeled either as "blepharoptosis" or "no blepharoptosis." It’s 
noteworthy that patients categorized under "no blepharoptosis" were not necessarily devoid of any pathologies or 
disorders; they may have exhibited medical conditions distinct from blepharoptosis. Initial image quality control 
was overseen by a member of the research team based on the following criteria:

(1)	 Absence of severe resolution diminution or pronounced artifacts such as hair or ruler interferences.
(2)	 Acceptable illumination, ensuring the image was neither excessively dark nor overly bright.
(3)	 Image composition that encompassed the complete periocular region.
(4)	 No prior history of eyelid surgery.
(5)	 Adequate image focus to validate the diagnosis (Fig. 1).

The ground truth for blepharoptosis was established via consensus among three oculoplastic surgeons using 
a voting system. Initially, two of the three labelers independently reviewed all 2000 photographs in the primary 
labeling phase. For images where a consensus could not be reached, adjudication was performed by a third, 
independent oculoplastic surgeon.

Model architecture and training
To develop our state-of-the-art DL model, Blepharoptosis-CNN, we used labeled training images. We imple-
mented the model using the Keras API within TensorFlow, basing it on the VGG-16 architecture. We made 
several key modifications to the VGG-16 architecture to meet our specific needs. Initially, we omitted one con-
volutional layer and its associated max-pooling layer, reducing the count from five to four, based on observed 
performance improvements. We then replaced the terminal dense layer with a dropout layer with a rate of 0.5 
to facilitate model regularization. This was followed by additional fully connected layers for feature integration. 
Finally, a sigmoid activation function was integrated into the output layer to fulfill the binary classification 
objective of our study.

To address the prevalent issue of overfitting, especially common in deep CNNs, we employed data augmenta-
tion and dropout techniques within our image classification architecture. Overfitting arises when a model, due 
to its high capacity, captures not only the overarching features but also the subtle irregularities and noise in the 
training data, thereby affecting its generalization performance on new, unseen data. Such overfitting is often 
exacerbated when training on limited datasets with models that have numerous parameters11. To fine-tune our 
training process, we regulated the number of complete passes through the training dataset using a parameter 
known as ’epochs,’ which is defined as one complete forward and backward pass of the entire dataset through 
the neural network.

Our analysis employed a binary classification approach, categorizing selected images into two groups: those 
showing patients with ’blepharoptosis’ and those without the condition. The images were preprocessed to a 
resolution of 128 × 64 pixels using software from Sketch B.V. and centered on the periocular area, including 
the eyebrows, for targeted analysis. The dataset was randomly divided into distinct subsets: 85% for training, 
10% for validation, and the remaining 5% for testing. The test set was reserved for evaluating the final model’s 
performance and was not used during the model development stage.

Given the limited size of our dataset and to mitigate the risk of overfitting, we implemented data augmentation 
techniques. These methods artificially expanded our training dataset, thus enhancing the model’s generalization 
capabilities. Specifically, training and validation images underwent random transformations such as horizontal 
flips, rotations, and zoom adjustments. Data augmentation was exclusively applied to the training and validation 
sets, ensuring that the test set remained unmodified for unbiased performance assessment (Fig. 2).

Metrics were calculated and graphs were generated using Python (version 3.7.12, Python Software Founda-
tion). A variety of packages, including Mmatplotlib, Sscikit-Llearn, Nnumpy, and Ppandas, were employed for 
these tasks.
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Comparative study
To assess the effectiveness of the CNN-Blepharoptosis in genuine healthcare settings, a comparative study was 
conducted juxtaposing its performance against human graders utilizing periocular images from online databases 
previously unseen by the Blepharoptosis- CNN. We collated a dataset of 100 periocular images, originating from 
various publicly accessible databases including Google Images and an open image database from "https://​www.​
reals​elf.​com." The image dataset comprised both diagnosed blepharoptosis cases and control subjects. We tar-
geted front-facing images that offered a comprehensive view of the periocular region, encompassing both eyes 
and eyebrows. No constraints were applied to image quality, thereby capturing the diverse spectrum of clinical 
scenarios, including patient-generated selfies. Two board-certified oculoplastic surgeons, boasting 20 and 3 years 
of experience respectively, independently annotated the selected images. Wherein consensus was unattainable, 
a third board-certified oculoplastic surgeon served as an adjudicator.

Figure 1.   Workflow for the development of the Blepharoptosis-CNN (a) and the comparative study (b). 

https://www.realself.com
https://www.realself.com
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Our human grader panel consisted of nine medical professionals, grouped into three experience-based catego-
ries: experts with over 20 years of experience, competent individuals with 5–20 years, and novices with less than 
5 years. All selected images were downscaled to a 128 × 64-pixel resolution, aligning with the input dimensions 
stipulated by the CNN-Blepharoptosis training dataset, utilizing Sketch software for the downsizing procedure. 
Importantly, we did not alter the brightness or contrast of the images.

Graders were presented images through a structured Google Forms interface, which required a binary 
response—either ¨blepharoptosis¨ or ¨no blepharoptosis¨. The term "blepharoptosis" was clinically defined 
based on the subjective identification of drooping in one or both upper eyelids, consistent with the criteria that 
would instigate further clinical evaluation in real-world settings. All participants interacted with the identical 
test document, devoid of any supplemental information, to ensure the objectivity and repeatability of the evalu-
ation process.

Through this meticulously crafted study design, we aimed to capture the nuances of practical applicability 
and real-world performance of CNN-Blepharoptosis.

Statistical analysis
The learning performance of the AI algorithm was assessed using the conventional metric of ROC AUC (Area 
Under the Receiver Operating Characteristic Curve) during both training and field testing on the study dataset. 
Throughput was evaluated using standard measures, including sensitivity, specificity, and the Youden Index score. 
Model performance metrics were calculated based on the counts of true positive samples (TP), false positive 
samples (FP), true negative samples (TN), and false negative samples (FN).

ROC AUC = Area under the Receiver Operating Characteristic curve.
Where statistical significance was assessed, p values were calculated using Fisher’s exact test, Kruskal Wallis 

and Chi-squared with a p-value < 0.05 considered significant.

Results
Utilizing images gathered from oculoplastic clinic evaluations and after applying data augmentation techniques, 
this study included a total of 6180 periocular images. The dataset comprised 1000 patients diagnosed with blepha-
roptosis and 1000 patients without the condition. Of these patients, 38.7% were men and 61.3% were women, 

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

YoudenIndex = Sensitivity(%)+ Specificity(%)− 100

Figure 2.   Blepharoptosis-CNN, (a). The framework of the DL model for detecting possible blepharoptosis, 
(b). The structure of Blepharoptosis-CNN. The VGG-16 architecture provided the fundamental framework for 
constructing the model of Blepharoptosis-CNN.
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with a mean age of 57 ± Q1 41.0, Q3 64.2 years. No significant differences in ethnicity were observed (p = 0.250; 
Fisher’s exact test). However, significant differences were identified in terms of age (p = 0.002; Kruskal–Wallis 
test), sex, and laterality (p = 0.031 and p = 0.001, respectively; Chi-squared test) between the two groups. The 
demographic characteristics of the cohort are summarized in Table 1.

After training the DL model for 20 epochs (as shown in Fig. 3), the model achieved an AUC of 0.918 for 
distinguishing between patients with and without blepharoptosis (Fig. 4). The model exhibited a sensitivity of 
98% and a specificity of 88%. The Youden Index score for our model stood at 0.860.

In the comparative study aimed at assessing the trained AI algorithm’s efficacy in real-world healthcare set-
tings, we included 100 periocular images of unique patients—11 with blepharoptosis and 89 without. Character-
ized by varying image quality, the achieved AUC for this dataset was 0.700. The model exhibited a sensitivity of 
54% and a specificity of 85% (Table 2). Upon juxtaposition of this performance against the highest and lowest 
AUCs of human graders, the observed differences (0.142 and 0.0618, respectively) were found to be statistically 
non-significant (p = 0.6328 and p = 0.2220, respectively). However, the performance discrepancy between the 
best and worst human graders, quantified as an AUC difference of 0.204, was statistically significant (p = 0.0352) 
(Table 3).

In our analysis of the contributions from different regions of the periocular images to Blepharoptosis-CNN’s 
predictions, we found that activation primarily occurred in the upper lid margin and upper brow area (Fig. 5). 
These regions are highlighted in heat maps, which serve to identify the most diagnostically significant areas of the 
periocular images. These heat maps, often referred to as saliency maps, delineate the unique characteristics—such 
as pixels and resolution—that the network focuses on for its predictions within the context of visual processing12.

The heat map was mapped to the original image to visualize the importance of each region.
in Blepharoptosis prediction. The Blepharoptosis-CNN was able to identify characteristic areas (superior 

margin of the eyelid and superior area of eyebrows, yellow arrow) in periocular photographs, which are presented 
as a heat map. The yellow color represents the heatest area for extraction of features for detecting blepharoptosis.

Table 1.   Summary of dataset.

n

Overall No Ptosis Ptosis

P < .05 Test2000 1000 1000

Age, median [Q1,Q3] 57.0 [41.0, 64.2] 57.0 [45.0, 63.0] 54.0 [25.0, 65.0] 0.002 Kruskal–Wallis

Sex, n (%)
Female 1226 (61.3) 637 (63.7) 589 (58.9) 0.031 Chi-squared

Male 774 (38.7) 363 (36.3) 411 (41.1)

Ethenic, n (%)
Caucasian 1997 (99.9) 997 (99.7) 1000 (100.0) 0.250 Fisher´s exact

Asian 3 (0.1) 3 (0.3)

Laterality, n (%)
Bilateral 1016 (50.8) 392 (39.2) 624 (62.4) < 0.001 Chi-squared

Unilateral 984 (49.2) 608 (60.8) 376 (37.6)

Figure 3.   Training curve for the Ptosis-CNN. Blue dot, Training Learning Curve: Learning curve calculated 
from the training dataset that gives an idea of how well the model is learning. Blue dash, Validation Learning 
Curve: Learning curve calculated from the hold-out validation dataset that gives an idea of how well the model 
is generalizing. After training for 20 epochs, our DL model showed no improvement in both accuracy and loss 
function.
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Discussion
The present study introduces a holistic method for differentiating between patients with and without blepharop-
tosis in actual clinical settings. In instances involving high-definition images, the CNN displayed exceptional 
diagnostic accuracy, evidenced by an AUC of 0.918. Even in the case of low-quality images, the system maintained 
a respectable performance, registering an AUC of 0.700.

Figure 4.   ROC curve. Performance of the CNN in detection of blepharoptosis in the testing set. The area under 
the curve (AUC) is 0.918.

Table 2.   Summary of the Area Under the ROCs, Sensitivity—Specificity Balance, Youden Index Score and P 
Value of the Blepharoptosis-CNN and Human Graders in the comparative study.

%(95%CI)

Model comparison AUC (95% CI) Sensitivity Specificity Youden index score P < .05

Blepharoptosis-CNN 0.700 (0.600–0.787) 54.5 (23.3–83.2) 85.3 (76.3–91.9) 0.399 0.0339

Oculoplastic surgeons

 Expert 0.842 (0.755–0.907) 81.8 (48.2–97.7) 86.5 (77.6–92.8) 0.683 0.0001

  Competent 0.836 (0.749–0.903) 81.8 (48.2–97.7) 85.3 (76.3–91.9) 0.671 0.0001

 Novice 0.825 (0.736–0.894) 81.8 (48.2–97.7) 83.1 (73.7–90.2) 0.649 0.0001

General ophthalmologists

 Expert 0.836 (0.748–0.902) 72.7 (39.0–93.9) 94.3 (87.3–98.1) 0.671 0.0001

 Competent 0.768 (0.673–0.846) 63.6 (30.7–89.0) 89.8 (81.6–95.2) 0.535 0.0006

 Novice 0.711 (o.612–0.797) 54.5 (23.3–83.2) 87.6 (78.9–93.6) 0.421 0.0089

General practitioners

 Expert 0.761 (0.666–0.841) 54.5 (23.3–83.2) 97.7 (92.1–99.7) 0.523 0.0010

 Competent 0.656 (0.554–0.748) 72.7 (39.0–93.9) 58.4 (47.4–68.7) 0.311 0.0382

 Novice 0.638 (0.536–0.732) 54.5 (23.3–83.2) 73.0 (62.5–81.8) 0.275 0.0935

Table 3.   Differences in the AUC Among the Blepharoptosis-CNN, the best and the worst Human Graders.

Model comparison Differences between AUCs 95% CI P < .05

Blepharoptosis-CNN versus Expert Oculoplastic Surgeon 0.142 0.0859–0.370 0.2220

Blepharoptosis-CNN versus Novice General Practitioner 0.061 0.192–0.315 0.6328

Expert Oculoplastic Surgeon versus Novice General Practitioner 0.204 0.0141–0.393 0.0352
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When compared to analogous studies with high-quality images, our model exhibits comparable performance 
metrics. For instance, J. Hung et al. reported in their article ’A Deep Learning Approach to Identify Blepharoptosis 
by Convolutional Neural Networks’ that their top-performing CNN model attained a sensitivity of 90.1% and a 
specificity of 82.4%9. In a subsequent investigation, Hung et al. deployed an AI model based on the VGG-16 archi-
tecture and utilized more extensive and diverse datasets to diagnose blepharoptosis accurately. Transfer learning 
was applied by importing pretrained weights from ImageNet, resulting in their CNN model achieving a sensitivity 
of 92% and a specificity of 88%10. In contrast, our modified model of VGG-16 showed superior performance in 
sensitivity, achieving a rate of 98%, while maintaining the same specificity rate of 88%. Therefore, this supports 
the idea that the benefit of transfer learning is limited when working with this particular type of eye images.

In these research studies focused on an Asian population, Hung et al. trained their DL-CNN models using 
images that displayed only one eye and excluded the eyebrow9,10.

However, it is worth noting that determining in advance which anatomical features will be most useful for 
diagnosis is challenging, as CNN models are self-learning12. Consequently, the clinical images used in our study 
are meticulously centered on the periocular domain, including the eyebrows within the frame. The frontalis 
muscle, apart from its role in elevating the forehead and eyebrows, also serves an ancillary function in lifting 
the upper eyelid, providing an additional elevation of 3–5 mm. Noteworthy findings from our study’s heatmap 
analyses indicate pronounced activations primarily in the superior eyelid margin and the upper eyebrow region 
within the images generated by the Blepharoptosis-CNN. These revelations could serve as a pivotal reference for 
future iterations of Blepharoptosis-CNN implementations.

Another distinct facet of our approach resides in the integration of both eyes and eyebrows within the clinical 
photographs, an innovative paradigm in the context of CNN utilization. Traditional AI algorithms for blepha-
roptosis have primarily focused on quantifying eyelid position in images that display a single eye13–20. Notably, 
there is a dearth of antecedent reports scrutinizing the efficacy of CNNs when applied to images encompassing 
both ocular elements simultaneously. Our deployed CNN exhibits the capacity to accurately classify instances 
of blepharoptosis, irrespective of the condition manifesting unilaterally (in one eye) or bilaterally (in both eyes). 
This crucial capability mirrors the inherent nature of clinical evaluation, a paradigm where gauging each eye in 
isolation may inadvertently distort the accurate depiction of blepharoptosis, potentially culminating in misdi-
agnosis or susceptibility to instances of misrepresentation, as might be encountered in interactions with medical 
insurers. This underscores the relevance of adhering to Hering’s Law of equal innervation, positing symmetrical 
innervation of ocular and eyelid muscles. In scenarios involving marked ptosis in one eye, the principle of equal 
innervation necessitates the elevation of the contralateral eyelid21. Should the ptotic eyelid be elevated, the 
opposing eyelid is inclined to descend due to the reciprocal relationship in stimulus response. This physiological 
framework further accentuates the necessity of adopting a holistic visual perspective for accurate assessment.

To date, studies have trained their CNNs with images of blepharoptosis patients and healthy patients [^9^]
[^10^][^14–16^]9,10,13–15. However, in real clinical settings a physician evaluates patients with different types 
of pathologies and disorders that can potentially influence the interpretation of facial features22. Notably, our 
study embraces a more expansive patient cohort, encompassing individuals with blepharoptosis, healthy subjects, 
and remarkably, those presenting with diverse eyelid pathologies other than blepharoptosis (e.g., thyroid eye 
disease, eyelid tumor, ectropion…). This holistic inclusion stands as a significant departure from prior reports, 
wherein such a comprehensive patient spectrum had not been previously explored. This strategic inclusion 
serves as a pivotal facet of our evaluation strategy, as a substantial proportion of patients seeking consultation 
with specialized ophthalmologists are inclined to manifest diverse palpebral or orbital pathologies. Furthermore, 
it merits emphasis that our study design distinctly excludes patients who have undergone prior oculoplastic 
interventions within the non-blepharoptosis group. We posit that the distinctive contour of the eyelid ensuing 
from blepharoptosis surgery may not faithfully mirror the native eyelid topography in a healthy subject. This 

Figure 5.   Visualization of prediction imaging features.
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premise is discernible in the work by Tabuchi et al.13 wherein automated ptosis diagnosis was executed using a 
pretrained MobileNetV2 CNN applied to images captured via an iPad Mini. An incisive examination of Fig. 2 of 
their publication unveils an instance (labeled “b”) as a normal eyelid. However, discernible alterations in eyelid 
skin hue (manifesting as redness) and a distinct tapering form at the apex of the upper eyelid margin are evident. 
The latter phenomenon is frequently an aftermath of inadvertent folding of the tarsal plate during suture place-
ment, as is often observed post-surgery.

Since the onset of the COVID-19 pandemic, telemedicine has become an integral component of oculoplastic 
service delivery, and its continued use is anticipated23. This mode of healthcare provision offers a streamlined, 
efficient approach for the preliminary assessment of patients suspected to have blepharoptosis, whether in the 
context of potential systemic or neurological disorders or for expedited referrals to oculoplastic specialists. It is 
precisely this growing reliance on telemedicine for oculoplastic evaluations that underscores the critical impor-
tance of conducting validation studies for diagnostic algorithms in real-world clinical settings.

The comparative study conducted by Hung et al. yielded promising results, showing that their CNN model 
outperformed non-ophthalmic physicians in identifying both true and pseudoptosis cases of referable blepha-
roptosis. Their CNN model attained an AUC of 0.90, compared to a mean AUC of 0.77 for the non-ophthalmic 
physician group when utilizing high-quality images10. From an AUC standpoint, our algorithm demonstrated 
performance comparable to that of human graders. Nonetheless, there is a notable difference between the AUC 
of 0.918 achieved with the high-quality image test set and the AUC of 0.700 attained with the low-quality image 
test set, as observed in the comparative study. Our intention with this comparative study was to push the limits 
of our Blepharoptosis-CNN and to stimulate discussion regarding what the achievements of AI signify when 
subjected to controlled studies versus their real-world applicability in uncontrolled conditions.

It’s essential to highlight the differences in image quality between the two studies. While Hung et al. relied 
on high-quality images with optimal focus, brightness, and minimal artifacts, our study incorporated the kinds 
of images one might typically encounter in a standard telemedicine consultation. Real-world healthcare settings 
often present clinicians with challenges like variable lighting and inconsistent capture distances. Our intentional 
choice to include such images adds an extra layer of robustness to our findings, emphasizing the algorithm’s 
ability to function effectively under less-than-optimal conditions.

Despite the absence of high-caliber images, our model exhibited remarkable resilience across a range of pal-
pebral apertures and image resolutions. Looking ahead, broader adoption of telemedicine will require further 
advancements in digital infrastructure and clinical examination capabilities. For ophthalmologists, telemedicine 
also has the potential to streamline processes, possibly serving as a convenient alternative to manual MRD1 
measurements and visual field tests for insurance approvals.

This study presents several limitations that warrant further discussion. Specifically, our Blepharoptosis-CNN 
was trained exclusively on high-quality images, which has affected its AUC performance when applied to poor-
quality images commonly found in non-specialized clinical settings24. When a CNN is subjected to a test set 
featuring images of lower resolution than those used in the training and validation datasets, several challenges 
may arise. First, there is the issue of dimensional incompatibility, as CNNs are engineered to accept input of 
a specific size; test set images with fewer pixels must therefore be resized to align with the network’s expected 
input dimensions. Second, this resizing process may result in a critical loss of detail, particularly important for 
tasks such as classification or object detection. Lastly, reduced performance is a concern; given that the CNN 
was trained on high-resolution images, its ability to generalize effectively to lower-resolution images may be 
compromised, potentially impacting accuracy, sensitivity, or other key performance metrics. In summary, the 
application of a high-resolution-trained CNN to a lower-resolution test set introduces a range of complications, 
from dimensional mismatch to performance degradation, underscoring the necessity to incorporate images of 
varying quality and size in both training and validation stages. Consequently, we believe it is crucial to develop 
extensive oculoplastic databases akin to those available in other fields of ophthalmology, such as retinal studies. 
The necessity for more extensive databases specifically tailored for oculoplastic studies suggests a roadmap for 
improving the diagnostic capabilities and generalization of AI models.

Second, our dataset exhibited substantial variations in terms of sex, age, and laterality, which may have influ-
enced the Blepharoptosis-CNN’s ability to accurately classify periocular images. Third, the dataset employed 
for training the CNN was overwhelmingly comprised of images from patients of Caucasian descent, making up 
nearly 99% of the sample. It is plausible that the model’s sensitivity and specificity could decline when applied 
to diverse racial groups, as the pixel-intensity relationships tied to blepharoptosis could differ across ethnicities. 
Thus, the applicability of our CNN model is largely restricted to Caucasian populations. Fourth, there is a need for 
advancements in medical image processing techniques to enhance accuracy, computational efficiency, and overall 
performance. Although the CNN model employed in this study has shown effectiveness in image classification 
tasks, it primarily serves as a proof of concept. Future research targeting the detection of blepharoptosis in the 
context of other ocular conditions should explore the incorporation of hybrid techniques and more advanced 
methods for hyperparameter optimization.

Conclusions
This study developed Blepharoptosis-CNN, a DL model demonstrating high diagnostic accuracy in controlled 
clinical settings. The model’s performance compared favorably with human graders, thus validating its applica-
bility in healthcare settings.
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