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Copper metabolism‑related Genes 
in entorhinal cortex for Alzheimer’s 
disease
Yan Zhang 1,3, Yu‑shen Yang 1,3, Cong‑mei Wang 1,2, Wei‑can Chen 1, Xin‑li Chen 1, Fan Wu 1 & 
He‑fan He 1*

The pathological features of Alzheimer’s disease are the formation of amyloid plaques and 
entanglement of nerve fibers. Studies have shown that Cu may be involved in the formation of 
amyloid plaques. However, their role has been controversial. The aim of this study was to explore the 
role of Cu in AD. We applied the “R” software for our differential analysis. Differentially expressed 
genes were screened using the limma package. Copper metabolism‑related genes and the intersection 
set of differential genes with GSE5281 were searched; functional annotation was performed. The 
protein–protein interaction network was constructed using several modules to analyse the most 
significant hub genes. The hub genes were then qualified, and a database was used to screen for small‑
molecule AD drugs. We identified 87 DEGs. gene ontology analysis focused on homeostatic processes, 
response to toxic substances, positive regulation of transport, and secretion. The enriched molecular 
functions are mainly related to copper ion binding, molecular function regulators, protein‑containing 
complex binding, identical protein binding and signalling receptor binding. The KEGG database is 
mainly involved in central carbon metabolism in various cancers, Parkinson’s disease and melanoma. 
We identified five hub genes, FGF2, B2M, PTPRC, CD44 and SPP1, and identified the corresponding 
small molecule drugs. Our study identified key genes possibly related to energy metabolism in the 
pathological mechanism of AD and explored potential targets for AD treatment by establishing 
interaction networks.

Alzheimer’s disease (AD) is a complex neurodegenerative disease that is the result of a combination of factors, 
characterised by the accumulation of amyloid (Aβ) plaques and neuronal fibrillary tangles of Tau  proteins1–4. 
In the 1990s, the “amyloid cascade” hypothesis became the dominant  hypothesis5,6, with results suggesting that 
senile plaques are  pathogenic5. Subsequently, drugs have been developed based on this  hypothesis7. However, 
to date, no single causal treatment has achieved the desired effect, possibly because only a single factor has 
been  considered8–10. Therefore, it is reasonable to rethink the role of Aβ. In fact, there are conflicting accounts 
of the role of Aβ deposits. Aβ is not necessarily harmful because in a physiological setting, the formation and 
accumulation of Aβ fibrils is part of the metabolite Amyloid precursor protein (APP), and it is probably the Aβ 
oligomers that have toxic  effects11. Several studies have suggested that amyloid-rich plaques can be conceived as 
"net traps" where toxic substances and infectious agents are “trapped”12,13, thus providing a protective effect on 
the body. It follows that Aβ, APP, and tau proteins play critical roles in the neural pathways associated with AD. 
In additional, multiple pathogenic pathways may activate disease cascades through independent mechanisms. 
For example, Apoe, lipid metabolism and inflammation. Apoe, a risk factor for AD, is mainly involved in lipo-
protein  metabolism14, which maintains brain morphology and homeostasis and plays an important role in the 
aging  process15, and Apoe binds to trigger receptor 2 (TREM2) expressed by myeloid cells, which is mediated by 
microglia in the central nervous system (CNS)16. Therefore, microglia are one of the major cells involved in the 
pathogenesis of AD. Activated microglia promote the production of inflammatory cytokines and chemokines, 
which increase the activity of β-site APP cleaving enzyme (BACE1) and nuclear factor κB (NFκB), leading to 
an increase in the production of Aβ17, while the aggregation of Aβ provides unlimited stimulation to micro-
glia, which further increases the level of activated  microglia18. Activated microglia also induce other signaling 
pathways, such as the PI3K/Akt pathway, which is involved in the regulation of apoptosis and inflammatory 
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responses; activation of PI3K also promotes NFκB  translocation19. Overall, these cellular pathways all interact 
and are inextricably linked.

In addition, the relationship between AD and Cu has been  reported20, and it has been demonstrated that 
AβPP/Aβ has a high affinity for  copper21, forming a Cu-Aβ complex. When the Cu-Aβ complex is overloaded, it 
leads to the production of toxic compounds that cause oxidative  stress22, contributing to neuronal degeneration 
and leading to cognitive dysfunction. However, there is considerable controversy regarding the role of Cu in 
the development of AD, with one meta-analysis showing that brain Cu is deficient in AD patients compared to 
normal brain tissue  specimens23. In contrast, most studies have shown high levels of Cu in  AD24–30.

Copper is involved in several physiological pathways in the  body31, and in the brain, copper is essential for 
neuronal function as it is involved in biological processes such as neurotransmitter synthesis and respiratory 
 oxidation32,33. A recent study has shown that many different copper-binding molecules or ion carriers can induce 
cell death by a mechanism that involves the accumulation of intracellular copper, a mode of death that differs 
from known forms of cell death (e. g. apoptosis, iron death, etc.), and which the research team identified as a new 
form of cell death and named-Cuprotosis34. However, the mechanism of copper ion carrier-induced cytotoxicity 
is still unknown. Indeed, dysregulation of copper homeostasis has been clearly linked to neurological disorders, 
where decreases and increases in brain copper (respectively) lead to neurodegeneration, including Wilson and 
AD. In AD, copper is thought to be the substance that directly causes molecular changes in the  brain35.

AD is a major medical condition. Due to the complexity of its pathological mechanism, its diagnosis and 
treatment are uncertain. Copper-induced neuronal death may be a newly discovered pathological process that 
could prove helpful for understanding the pathogenesis of AD more comprehensively. Therefore, in this study, 
we attempted to identify the hub gene related to copper metabolism in AD by mining the data obtained by gene 
chip technology and to find new drug targets for AD treatment.

Materials and methods
Data source
Gene expression profile data, including microarray, gene expression, and chip data, were obtained from an open 
functional genomics high-throughput resource database, the Gene Expression Omnibus (GEO) database (https:// 
www. ncbi. nlm. nih. gov/ geo/)36. We searched the GEO database for relevant gene expression datasets using the 
terms ’Alzheimer’s disease’ (research keyword) and ’human’ (organism). Finally, we downloaded the GSE5281 
dataset, which contains 161 brain tissue samples, and measured six brain regions. The brain region of interest 
(entorhinal cortex) was selected for our analysis, which included 8 AD and 13 healthy samples. Table 1 report 
the demographics of the individuals.

Differential expression analysis
We applied the “R” software (R v4.2.1) for our differential analysis. First, we converted the probe sets in file for-
mats into gene symbols using human annotation packages. Probe sets without gene symbols were then removed, 
and the average expression values for probe sets sharing the same gene symbols were retained. The data were nor-
malized using a robust multi-array averaging algorithm. Finally, DEGs were screened using the limma package 
(R 3.4.3). We set adj. p < 0.05, and |logFC (fold change) |> 2 to DEGs. Subsequently, we searched the GeneCards 
database for genes related to copper metabolism, crossed them with GSE5281, identified DEGs related to copper 
metabolism, and generated a Venn map of DEG using the online tool JVenn.

Enrichment analyses of copper‑related DEGs
For functional enrichment analysis of DEGs, g: Profiler (http:// biit. cs. ut. ee/ gprofi ler/ gost), Metascape (https:// 
metas cape. org/ gp/ index. html#/ main/ step1), and WebGestalt (https:// www. webge stalt. org/) were used. These 
enrichment analysis tools have different algorithms that can verify one another. Gene Ontology (GO) clas-
sification comprises molecular function (MF), biological process (BP), cellular component (CC), and Kyoto 
Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses. We uploaded DEGs related to 
copper metabolism to the over-representation analysis (ORA) of WebGestalt for further research. Molecular 
function (MF), BP, and CC were analyzed separately. In addition, we uploaded the obtained DEGs related to 
copper metabolism using the online gene function annotation analysis tool, Metascape. The annotation of bio-
logical processes was completed using Metascape. The pathway enrichment analysis was mainly obtained from 
g: Profiler, which included the Reactome database and wikipathways database besides MF, CC, BP, and KEGG.

Table 1.  The demographics of the individuals.

Con (n = 13) AD (n = 8) P value

Age (yr, Mean ± SD) 80.31 ± 9.20 84.13 ± 5.54 0.250

Sex 0.032

 Male 10 (76.9%) 2 (25%)

 Female 3 (23.1%) 6 (75%)

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://biit.cs.ut.ee/gprofiler/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
http://www.webgestalt.org/
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Protein–protein interaction (PPI) network construction, module analysis, and identification 
of hub genes
To further explore the interactions between the genes obtained above, we constructed a PPI network using the 
STRING database (http:// STRING- db. org/) to reveal the general organizing principles of functional cellular 
systems and to predict protein interactions. In the network results, the nodes represent the protein, and the lines 
represent the interactions between the proteins. Modular analysis and visualization of PPI network results were 
performed using molecular complex detection technology (MCODE). Using the default parameters (degree 
cutoff value 2, node score cutoff value 2, K-core 2, and maximum depth = 100), we identified 10 hub genes using 
five different algorithms using the CytoHubba plug-in and selected genes that were in the five algorithms for 
subsequent analysis.

Small molecule agents screening and molecular‑ligand docking analysis
Five common genes were mapped to the corresponding drugs using Network Analyst (https:// www. netwo rkana 
lyst. ca/). Network Analyst is a comprehensive online platform for gene expression analysis and network visualiza-
tion analysis that can help discover drug-gene interactions in regulatory networks. The protein crystal structure of 
gene was downloaded from the Protein Data Bank database (http:// www. rcsb. org, PDB). We then used AutoDock 
Tools software (version 1.5.7) to molecularly dock the small molecule compounds with corresponding target. 
Pymol software (http:// www. pymol. org) was used to evaluate the binding activities of small molecule compounds 
and targets. Furthermore, we conducted an analysis of 6 hub genes for pharmacogenetic interactions utilizing 
the DGIDB data resource (https:// dgidb. genome. wustl. edu/). This resource furnishes information regarding the 
correlation between genes and established or potential medications.

Results
Identification of DEGs
Through analysis of the GSE5281 dataset using the “R” software, the differentially expressed genes between 
patients with AD and normal groups are shown in the volcano plot (Fig. 1A). 231 up-regulated genes and 561 
down-regulated genes were obtained. Similarly, we obtained 2044 genes related to copper metabolism from the 
GeneCards database and cross-identified them with GSE5281. The results are shown in Fig. 1B. In total, 87 CM-
DEGs were identified. The information on the entire research process is shown in Fig. 2.

Analysis of the functional characteristics of common DEGs
To further explore the capabilities of the 87 CM-DEGs, we performed feature and pathway enrichment analy-
sis using g Profiler (http:// biit. cs. ut. ee/ gprofi ler/ gost), WebGestal, and Metascape. First, we sent the related 
information on DEGs to WebGestal for GO analysis. The results of the analysis of the enriched gene datasets 
are shown in Fig. 3. These genes were mainly enriched in homeostatic process, response to toxic substance, 
positive regulation of transport, and secretion. The enriched molecular functions were mainly related to copper 
ion binding, molecular function regulator, protein-containing complex binding, identical protein binding, and 
signaling receptor binding. Moreover, WebGestal results were further verified using Metascape. The results are 
shown in Fig. 4, with specific annotations are presented in Table 2. g: Profiler was used to analyze the pathways 

Figure 1.  Volcano plot illustrating DEGs. (A) The volcano plot shows the DEGs between the control group and 
AD, red represents up-regulated genes, blue represents down-regulated genes, and gray represents genes with 
little fold change. (B) Venn plots show common genes associated with copper metabolism in GSE5281. DEGs, 
differentially expressed genes.

http://STRING-db.org/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
http://www.rcsb.org
http://www.pymol.org
https://dgidb.genome.wustl.edu/
http://biit.cs.ut.ee/gprofiler/gost
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of 87 CM-DEGs in the samples. The website mainly includes the KEGG, Reactome, and Wikipathways databases. 
The KEGG database focuses on diseases such as central carbon metabolism in various cancers, Parkinson’s and 
melanoma, while the REAC database is enriched for cellular responses to chemical stress, TP53 regulation of 

Figure 2.  The visual flow-process diagram of this study. AD: Alzheimer’s disease, CM-genes: Copper 
metabolism-related genes, DEGs: Differentially expressed genes, GO: Gene Ontology, KEGG: Kyoto 
Encyclopedia of Genes and Genome.
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metabolic genes and detoxification of reactive oxygen species. Glycolysis during ageing, aerobic glycolysis and 
amyotrophic lateral sclerosis are the main pathways in the WP database. (Fig. 5 and Table 3).

PPI network analysis of DEGs associated with copper metabolism
PPI analysis was performed to identify interactions between differentially expressed genes associated with cop-
per metabolism. The results showed an interaction between these genes related to copper metabolism, and we 
obtained a PPI network consisting of 87 nodes and 171 edges. Using Cytoscape clustering analysis of the gene 
network with the MCODE software, two key modules were constructed (Fig. 6A,B). Metascape was used to 
analyze the functions of the two modules. Module 1 mainly focused on central carbon metabolism in cancer, cell 
activation, and positive chemotaxis. Modules 2 involved relatively few genes, including fsynaptic vesicle cycle 
and oxidative phosphorylation. (Fig. 7). Additionally, we identified the top 10 hub genes using five algorithms 
(Table 4) and selected the crossed five genes, fibroblast growth factor 2 (FGF2), Beta-2-Microglobulin (B2M), 
and Secreted Phosphoprotein 1 (SPP1), CD44, and Protein Tyrosine Phosphatase Receptor Type C (PTPRC) 
for subsequent analysis.

Figure 3.  Gene Ontology analysis. Biological process (BP, A); cellular component (CC, B); molecular function 
(MF, C); and analysis results of 87 DEGs with copper metabolism.

Figure 4.  Network of enriched terms. (A) colored by cluster ID, where nodes that share the same cluster ID are 
typically close to one another; (B) colored by p-value, where terms containing more genes tend to have a more 
significant p-value.
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Drug‑gene crosstalk and functional analysis of potential genes
Uploading these five genes to Network Analyst revealed that only FGF2 and B2M had related compounds in the 
DrugBank database, which might provide potential therapeutic targets for AD. In order to present and clarify 
the interaction between the compounds and the corresponding targets, molecular docking was performed. 
Molecular docking is a useful method to display the optimal conformation of target molecules and small molecule 
compounds for interaction. In the current study, the crystal structures of two molecular targets [(F2F, PDB ID: 
Q14209; Resolution: 2.20 Å), and (B2M, PDB ID: P61769; Resolution: 1.91 Å)], were obtained from the RCSB 
Protein Data Bank. Then AutoDock Tools1.57 software was used to dock compounds and the two molecular 
targets with the largest fold difference. It’s reported that when the docking scores were less than − 6 kcal/mol, 
the binding affinity of compounds with the targets was high. Figure 8 showed the binding poses and sites, where 
the green color represents the compounds, and the yellow dotted lines represent hydrogen bond interactions.

Table 2.  Top 10 GO annotation in metascape.

GO Category Description Count % Log10(P) Log10(q)

R-HSA-9711123 Reactome gene sets Cellular response to chemical stress 11 12.64 − 10.86 − 6.51

GO:0,052,548 GO biological processes Regulation of endopeptidase activity 12 13.79 − 9.78 − 5.73

GO:0,019,725 GO biological processes Cellular homeostasis 15 17.24 − 9.14 − 5.32

hsa05230 KEGG pathway Central carbon metabolism in cancer 7 8.05 − 8.88 − 5.23

GO:0,006,006 GO biological processes Glucose metabolic process 8 9.20 − 8.72 − 5.15

GO:0,001,775 GO Biological Processes Cell activation 14 16.09 − 7.77 − 4.93

GO:0,051,129 GO biological processes Negative regulation of cellular component organiza-
tion 14 16.09 − 7.74 -4.93

hsa05012 KEGG pathway Parkinson disease 9 10.34 − 7.11 − 3.94

R-HSA-9675108 Reactome gene sets Nervous system development 12 13.79 − 6.99 − 3.87

R-HSA-6798695 Reactome Gene sets Neutrophil degranulation 11 12.64 − 6.86 − 3.76

Figure 5.  g:Profiler performs functional enrichment analysis, also known as over-representation analysis 
(ORA) or gene set enrichment analysis, on DEGs list. In addition to Gene Ontology, it includes pathways from 
KEGG Reactome and WikiPathways. Red represents MF, orange represents BP, green represents CC, pink 
represents KEGG, blue represents REAC.

Table 3.  Paths to 3 databases enrichment in g profiler.

Database Term name Term ID Padj

KEGG

Central carbon metabolism in cancer KEGG:05,230 9.579 ×  10–5

Parkinson disease KEGG:05,012 1.901 ×  10–2

Melanoma KEGG:05,218 2.064 ×  10–2

REAC

Cellular response to chemical stress REAC:R-HSA-9711123 3.868 ×  10–4

TP53 regulates metabolic genes REAC:R-HSA-5628897 1.171 ×  10–2

Detoxification of reactive oxygen species REAC:R-HSA-3299685 1.171 ×  10–2

WP

Glycolysis in senescence WP:WP5049 1.516 ×  10–2

Aerobic glycolysis WP:WP4629 2.009 ×  10–2

Amyotrophic lateral sclerosis (ALS) WP:WP2447 4.293 ×  10–2



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17458  | https://doi.org/10.1038/s41598-023-44656-9

www.nature.com/scientificreports/

We additionally analyzed the drug-gene interactions of the five hub genes using DGIDB data resources 
(https:// dgidb. genome. wustl. edu/). The results showed that six drugs interacted with the SPP1 gene, among which 
GENTAMICIN also interacted with CD44, FGF2, and PTPRC, which were closely related to ten different drugs, 
and no related drug was found for β2M. Six drugs have been studied for their effects on AD  (ADALIMUMAB37, 
 ETANERCEPT38,  INFLIXIMAB39,  ESTRADIOL40,  PREDNISONE41,  PROGESTERONE42), while the effect of 
remaining 22 drugs on AD remains to be revealed (Table 5).

Discussion
AD is a refractory neurodegenerative disease that has a detrimental effect on quality of life, especially in older 
 adults43,44. The most typical pathological features of AD patients are amyloid plaque deposits and neurofibrillary 
tangles. In the last four decades, the scientific community has made a great deal of research on β-amyloid (Aβ), 
from pathological mechanisms to drug development. However, the results have not been satisfactory. Therfore, 

Figure 6.  The two most prominent modules in the PPI network. (A) is module 1, (B) is module 2.

Figure 7.  GO analysis of two modules. Bar graph of enriched terms across modules gene lists, colored by 
p-values. (A) module 1. (B) module 2.

https://dgidb.genome.wustl.edu/
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the scientific community has rethought the amyloid doctrine and the intervention strategies derived from it, 
while the need for new targets has grown more urgent.

The tremendous advances and widespread applications of bioinformatics prediction and computer technology 
in recent years have facilitated the exploration of more viable biomarkers and novel therapeutic candidates for 
various diseases. An increasing amount of sequence data is being submitted to public databases such as cancer 
genome maps and GEO databases. Through bioinformatics analysis, we identified 789 DEGs between AD and 
normal samples and then identified DEGs related to copper metabolism. GO and KEGG analyses were performed 
on these DEGs to explore their potential molecular mechanisms and linkages.

Notably, aerobic glycolysis in the wikipathways database is closely related to mitochondria. Mitochondrial dys-
function can lead to a variety of disorders such as neurodegenerative disorders AD and Parkinson’s disease (PD). 
The pyruvate dehydrogenase complex (PDHC) and 2-ketoglutarate dehydrogenase complex showed reduced 
activity in the affected areas of the AD  brain45. In the AD cerebral cortex, the activities of complex I, complex 
II-III, and cytochrome oxidase are  decreased46. AD increases oxidative damage to the mitochondrial  DNA47. 
In addition, Lynn and  coworkers48 analyzed changes in the mitochondrial protein group in temporal pole (TP) 
brain specimens from patients with mild cognitive impairment, early AD, and late AD and identified a list of 
21 proteins with increased expression in patients with mild cognitive impairment. These proteins belong to the 
electron transport chain tricarboxylic acid pathway, chaperone, and ATP transport and  utilization48.

Metal ions play a critical role in numerous biological processes and neuronal activity in the brain, including 
copper, iron, and zinc. Therefore, it is important to regulate metal ion levels in the brain for optimal function 
and health. Uncontrolled fluctuations of these metal ions in the brain can lead to homeostatic imbalances in the 
internal environment and result in massive cell death. The concept of Ferroptosis, a mode of cell death result-
ing from iron-dependent lipid peroxidation and the accumulation of reactive oxygen radicals, was first intro-
duced by Dr. Brent R. Stockwell in  201249. Iron overload in cells can occur through endogenous or exogenous 
 pathways50. The endogenous pathway is activated mainly by blocking the expression of intracellular antioxidant 
 enzymes51, while the exogenous pathway is initiated mainly through the regulation of transport proteins such as 
lacto-transferrin (LTF)52 and transferrin (TF)53. In the past decade, research on iron death has increased, yet a 
complete comprehension of the concept remains elusive. Zinc, a non-redox-active metal, has been linked to neu-
rodegeneration, particularly in AD, where it has been identified as a significant element in amyloid  plaques54. To 
date, the precise process by which zinc mediates cell death remains elusive. Nonetheless, numerous hypothesized 
mechanisms pertaining to zinc’s role in cell death converge on a shared position: zinc depletion stimulates the 
activation of caspases, ultimately resulting in apoptotic cell death. Thus, zinc exhibits a cytoprotective, rather than 
harmful, function. A newly published  study34 showed that copper could induce cell death by targeting lipidated 
tricarboxylic acid (TCA) cycle proteins. This new mode of death is called ‘copper death’. Thus, whether copper 
metabolism can be linked to the pathogenesis of AD through TCA degeneration and how the copper-induced 
cell death mechanism plays a role in AD may require further study.

Additionally, we identified five hub genes. Among these, FGF2 encodes neurogenic factors for the prolifera-
tion and differentiation of pluripotent neural progenitor cells isolated from the brains of adult  mice55. In the AD 
transgenic mouse model (APP + PS1 and J20), FGF2 gene expression mediated by adeno-associated virus serotype 
2/1 hybridization (AAV2/1) significantly restored spatial learning, long-term hippocampal CA1 enhancement 
(LTP), and neurogenesis of the  SGZ56. Interestingly, besides its neurogenic properties, FGF2 appeared to have 
anti-inflammatory and amyloid-reducing effects: AAV2/1-FGF2 mice injected with APP + PS1 showed decreased 
total a β and plaque burden and increased microglial proliferation around the plaque area. Moreover, treatment 
of primary cultured microglia with FGF2 enhanced the phagocytosis of Aβ, and infection of primary cultured 
neurons with AAV2/1-FGF2 reduced the production of Aβ, indicating that FGF2 not only had an effective effect 
on neurons but also had effective phagocytosis of  microglia56. Therefore, FGF2 may be an effective agent for 
reducing AD lesions. Additional clinical experiments are needed to support this conclusion.

Beta-2-microglobulin encodes a serum protein associated with the major histocompatibility complex class 
I heavy chain on the surface of almost all nucleated cells. This protein has a predominantly pleated sheet struc-
ture that permits the formation of amyloid fibrils under certain pathological conditions. Recently, Professor 
Xin Wang’s team  published57 that β2M in peripheral blood can cross the blood–brain barrier into the CNS and 

Table 4.  CytoHubba’s 5 algorithms ranking top 10 genes, and bold type is a common gene.

MNC MCC EPC Degree Closeness

FGF2 PTPRC B2M FGF2 B2M

B2M FGF2 FGF2 B2M SNCA

CD44 CCL5 SPP1 SNCA FGF2

PTPRC CD44 CD44 PTPRC CD44

SPP1 SPP1 PTPRC CD44 PTPRC

COL1A1 B2M COL1A1 SPP1 SPP1

CCL5 VWF CCL5 PKM LDHA

GSN COL1A1 VWF LDHA TXN

LDHA RUNX2 RUNX2 HSP90AB1 HSP90AB1

HSP90AB1 IL7 SNCA RUNX2 RUNX2
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Figure 8.  Molecular docking pattern of the compounds identified in the DrugBank database with the 
corresponding targets (B2M and F2F). (A) B2M-3-indolebutyric acid [affinity (kcal/mol): − 5.4]; (B) B2M-
doxycycline [affinity (kcal/mol): − 7.3]; (C) B2M-n-formylmethionine [affinity (kcal/mol): − 3.8]; (D) F2F-
sirolimus [affinity (kcal/mol): − 8.2]; (E) F2F-pentosan polysulfate [affinity (kcal/mol): − 6.9]; (F) F2F-ABT-510 
[affinity (kcal/mol): − 6.4]; (G) F2F-1,4-dideoxy-O2-sulfo-glucuronic acid [affinity (kcal/mol): − 8.3]; (H) F2F-
1,4-dideoxy-5-dehydro-O2-sulfo -glucuronic acid [affinity (kcal/mol): − 6.0].



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17458  | https://doi.org/10.1038/s41598-023-44656-9

www.nature.com/scientificreports/

impair neuronal synaptic function by inhibiting NMDA receptors, which may underlie cases of several cogni-
tive disorders, but it is not clear whether β2M is deposited in the CNS. Subsequently, the team found that β2M 
levels were significantly upregulated in the brains of AD patients and bound to Aβ to form a β2M-Aβ copolymer, 
exacerbating its neurotoxicity, while knockdown of β2M almost antagonised the neurotoxicity of Aβ58. Therefore, 
targeting β2M could be a potential strategy for AD treatment.

The inhibition of glucose utilisation in the brain is associated with cognitive dysfunction in  AD59. PTPRC 
is primarily associated with glucose metabolism in the brain. Protein Tyrosine Phosphatase Receptor Type C 
(PTPRC) encodes a protein that is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known 
to directly affect cellular metabolism, and the expression of glycolytic enzymes is affected by various PTPs. For 
example, Cdc25A is a positive regulator of PKM2, which catalyzes the conversion of phosphoenolpyruvate to 
pyruvate during glycolysis.

Secreted phosphoprotein 1 (SPP1) and CD44 are closely associated with AD. Studies have shown that in a 
mouse model of AD, SPP1 is upregulated at the onset of synaptic phagocytosis in microglia and regulates the 
perivascular-microglia interaction  network60. Thus, spp1 is required for activation of the complement initiator 
C1q and microglia phagocytosis of synapses, and deletion of Spp1 expression prevents synapse loss. Similarly, 
CD44 plays an important role in the development of AD. Exposure to Aβ1-42 leads to upregulation of CD44 vari-
ant genes, while knockdown of CD44 isoforms reduces neuronal apoptosis and acts as a neuroprotective agent. 
Thus, inhibition of CD44 activity may provide a new therapeutic approach for drug  discovery61.

Using hub genes, we identified 6 of the 28 drugs (adalimumab, etanercept, infliximab, estradiol, prednisone, 
and progesterone) for which trials have been conducted to investigate their effects on AD, but no correspond-
ing findings have been reported. The remaining 22 drugs were not found to be related to AD treatment, making 
them potential targets for AD.

In summary, our study has further revealed the existence of a strong correlation between the pathogenesis of 
AD and copper metabolism, but the specific mechanism of copper in this process requires further investigation. 
We identified five hub genes and established a series of molecular network enrichment pathways related to their 
functions. Through this initial exploration, we hope to uncover the “new veil” of the pathological process of 
AD, find new therapeutic targets for patients with AD, and improve the condition and alleviate pain. However, 

Table 5.  Candidate drugs targeting genes with AD. The bold text represents drugs that have been studied in 
relation to Alzheimer’s disease.

Drug Gene Interaction score Clinical application

SUCRALFATE FGF2 5.89 Approved

REBAMIPIDE FGF2 1.96 Approved, investigational

FAMOTIDINE FGF2 1.47 Approved

ABT-510 FGF2 1.47 Investigational

PYRAZOLE FGF2 1.47 Experimental

THYROTROPIN FGF2 1.18 Investigational

SQUALAMINE FGF2 0.74 Investigational

QUIZARTINIB FGF2 0.65 Approved, investigational

FP-1039 FGF2 0.59 Unsearchable

PHENYLEPHRINE FGF2 0.42 Approved

HYDROGEN PEROXIDE PTPRC 10.3 Approved, vet approved

CHEMBL204543 PTPRC 5.15 Unsearchable

APAMISTAMAB IODINE I-131 PTPRC 5.15 Investigational

ALENDRONIC ACID PTPRC 1.29 Approved

ADALIMUMAB PTPRC 0.91 Approved, experimental

ETANERCEPT PTPRC 0.81 Approved, investigational

INFLIXIMAB PTPRC 0.77 Approved

EPOETIN BETA PTPRC 0.74 Approved

ESTRADIOL PTPRC 0.34 Approved, investigational, vet approved

PREDNISONE PTPRC 0.32 Approved, vet approved

HYALURONAN CD44 6.87 Approved, vet approved

GENTAMICIN CD44 1.96 Approved, vet approved

PROGESTERONE CD44 0.62 Approved, vet approved

ASK-8007 SPP1 10.3 unsearchable

CALCITONIN SPP1 3.43 Approved, investigational

GENTAMICIN SPP1 0.98 Approved, vet approved

ALTEPLASE SPP1 1.08 Approved, investigational

TACROLIMUS SPP1 0.61 Approved, investigational

WORTMANNIN SPP1 0.74 Experimental
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there are still limitations to our study. First, our results were not validated experimentally to demonstrated 
that genetic differences do exist. Secondly, we do not know exactly how the genes altered in the brains of AD 
patients are "linked" to the cu-metabolism genes. Thirdly, the safety and efficacy of drugs developed for Aβ must 
be established through animal studies and clinical trials. In conclusion, there is still much room for exploration 
in AD research.

Data availability
Publicly available datasets were analyzed in this study. These data can be found in the GEO data repository 
(https:// www. ncbi. nlm. nih. gov/ geo/) and include the accession number: GSE5281.
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