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Goodness‑of‑fit testing 
for meta‑analysis of rare binary 
events
Ming Zhang 1, Olivia Y. Xiao 2, Johan Lim 3 & Xinlei Wang 1,4,5*

Random‑effects (RE) meta‑analysis is a crucial approach for combining results from multiple 
independent studies that exhibit heterogeneity. Recently, two frequentist goodness‑of‑fit (GOF) tests 
were proposed to assess the fit of RE model. However, they tend to perform poorly when assessing 
rare binary events. Under a general binomial‑normal framework, we propose a novel GOF test for the 
meta‑analysis of rare events. Our method is based on pivotal quantities that play an important role in 
Bayesian model assessment. It further adopts the Cauchy combination idea proposed in a 2019 JASA 
paper, to combine dependent p‑values computed using posterior samples from Markov Chain Monte 
Carlo. The advantages of our method include clear conception and interpretation, incorporation of 
all data including double zeros without the need for artificial correction, well‑controlled Type I error, 
and generally improved ability in detecting model misfits compared to previous GOF methods. We 
illustrate the proposed method via simulation and three real data applications.

Meta-analysis is a valuable technique used in various fields, including medicine, biology, social sciences, and 
ecology, to combine information from multiple studies to increase inference reliability. A random-effects model 
(REM) is a popular choice in a meta-analysis, which assumes that the actual effect sizes of component studies 
θi s follow a normal distribution with an overall mean θ0 and variance τ 2 (often referred to as the heterogeneity 
parameter). When τ 2 = 0 , a REM is reduced to a fixed-effect model (FEM) with θi ≡ θ0 . REMs are preferred over 
FEMs in most scenarios because they account for the heterogeneity among studies and are, therefore, applicable 
to a broader range of  scenarios1.

Among REMs, a generic model widely employed for binary and continuous outcomes uses the normal-normal 
hierarchical structure. For study i, let yi be the observed effect size (for binary data, yi is typically the log odds 
ratio), and σ 2

i  denotes the within-study variance (i.e., the sampling variation in study i). The generic model speci-
fies yi|θi , σ 2

i ∼ N
(

θi , σ
2
i

)

 and θi ∼ N
(

θ0, τ
2
)

 . However, for rare binary outcomes, the normal approximation for 
yi given θi and σ 2

i  may not work well due to the sparsity or small sample sizes. Alternatively, the binomial-normal 
(BN) hierarchal structure is a popular substitute for the normal approximation. It assumes that the number of 
observed events in the treatment (control) group for study i, denoted by xi2(xi1) , follows a binomial distribution 
with the total number of subjects ni2(ni1) and event probability pi2

(

pi2
)

 . The logit transformed probabilities are 
then assumed to be distributed normally in the second hierarchy, where the log odds scale measures the effect 
size θi . Several variations of the BN framework have been proposed. Bhaumik et al.2 assumed logit

(

pi1
)

= µi 
and logit

(

pi2
)

= µi + θi , where µi ∼ N(µ0, σ
2) denotes logit-transformed background incidence rate for study 

i. Smith, Spiegelhalter, and  Thomas3 considered the equal variance between the control and treatment group by 
defining logit

(

pi1
)

= µi − θi/2 and logit
(

pi2
)

= µi + θi/2 . Li and  Wang4 proposed a more flexible model by 
defining logit

(

pi1
)

= µi − ωθi and logit
(

pi2
)

= µi + (1− ω)θi , where the new parameter ω adjusts the variance 
ratio between two arms and the previous two models can be viewed as special cases by assigning ω = 0 and 
1/2, respectively. To avoid the assumption of independency between µi and θi , Houweilingen, Zwinderman and 
 Stijnen5 proposed the use of a bivariate normal distribution for modeling (logit

(

pi1
)

, logit
(

pi2
)

) , which allows 
any correlation structure between logit

(

pi1
)

 and logit
(

pi2
)

 in order to test the effects of each variable.
All the models discussed above make a common assumption that the true effect sizes θ ′i s follow a normal 

distribution θi ∼ N
(

θ0, τ
2
)

 . While this assumption is convenient for mathematical purposes, it may not always 
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hold in reality as the distribution of true effect sizes across different studies could have any shape. Therefore, 
conducting a goodness-of-fit (GOF) test is crucial before drawing conclusions or making inferences, since a 
misspecified model may yield misleading  results6, 7. Researchers have come up with various solutions to test the 
normality of models. Recently, Chen, Zhang, and  Li8 proposed a parametric bootstrap-type GOF test, mainly 
focused on the generic REM. Subsequently, Wang and  Lee9 developed a standardization framework to evaluate 
the normality assumption. It avoids the need to generate reference distributions and is therefore computation-
ally efficient. However, their methods require continuity corrections when encountering single or double-zero 
studies, which can impact both Type I error rates and statistical power. Furthermore, those who previously 
proposed methods did not investigate their approaches numerically under different background incidence rates, 
especially when dealing with rare binary outcomes. This is an interesting and important aspect to explore in 
meta-analyses of binary outcomes.

In terms of Bayesian alternatives, no Bayesian approach has been considered for GOF testing in meta-analysis 
to our knowledge. We propose a novel GOF test for meta-analysis that utilizes the pivotal quantity (PQ) method-
ology proposed for Bayesian model  assessment10, 11, and adapts the Cauchy combination  test12, which combines 
dependent p values computed using posterior draws from Markov chain Monte Carlo (MCMC), to inform the 
final conclusion. A pivotal quantity is a function of data and model parameters whose distribution does not 
depend on unknown parameters. For instance, suppose θ = (µ, σ) ∼ π , and θ0 = (µ0, σ0) is a random vector 
drawn from density π , which generates the normal data x = {x1, ..., xn} . Then f (x,µ0, σ0) =

∑n
i=1(

xi−µ0
σ0

)2 ∼ χ2
n 

is a pivotal quantity. Let µ̃ and σ̃ be samples from the corresponding posterior distribution p(µ, σ |x) . The PQ 
method is constructed based on the fact that f (x,µ0, σ0) and f (x, µ̃, σ̃ ) are identically distributed; that is, 
f (x, µ̃, σ̃ ) ∼ χ2

n.
Our proposed method, called Improved Pivotal Quantities (IPQ), can detect a model failure at all levels in 

hierarchical models without extra computational cost. Additionally, it can be easily incorporated into standard 
Bayesian implementations and automatically accounts for all available data without requiring artificial corrections 
for rare binary events. While our method is suitable for general purposes, we focus primarily on its application 
for meta-analyses of rare binary outcomes.

The rest of this article is organized as follows. We first review Bayesian techniques that assess model adequacy, 
followed with a brief introduction to pivotal quantities and the Cauchy combination test. We then introduce our 
proposed method based on the generalized REM in Houweilingen, Zwinderman and  Stijnen5 for meta-analysis 
of binary events. We also describe the Bayesian implementation of our method, including adapting the proposed 
IPQ method within the MCMC algorithm and considering different bivariate covariance priors. In the simula-
tion section, we conduct simulation studies to evaluate our method’s performance in terms of Type I error rates 
and statistical power and compare it with other existing GOF methods. We also evaluate four different covari-
ance priors based on estimating the overall treatment effect, the inter-study heterogeneity, and the correlation 
coefficient. In data examples section, we illustrate our method using three real data examples. The first example 
utilizes handedness and eye-dominance data from 54 studies, the second one employs Type 2 diabetes mellitus 
and gestational diabetes data from 20 studies, and the third uses GSTP1 gene and lung cancer data from 44 
studies. We then end this paper with conclusions and discussions.

Review of related bayesian work
In current practice, Bayesian model diagnostics mainly fall into three categories: prior predictive, posterior 
predictive, and pivotal quantity-based approaches. See Figure 1 for illustration.

Prior and posterior predictive checks
Suppose x has a distribution function specified by p(x|θ) , where θ represents the parameters of a model (say M ) 
under study. Let xobs denote the observed data and xrep denote the replicated data that are generated to mimic 
real data.  Box13 recommended using the prior predictive distribution, p(x) =

∫

p(x|θ)p(θ)dθ , as a reference 
distribution to generate xrep for comparing with xobs . The steps to obtain the prior predictive distribution are 
illustrated in Figure 1A. Given θ repj drawn from the prior p(θ) for j = 1, ..,R , we draw xrepj from the sampling 
distribution p

(

x|θ repj
)

 . We then use T(x, θ) or T(x) , a function of data and model parameters or a function of 
data alone, to measure the discrepancy between data and model assumptions. Here, we take T(x) as an example 
for simplicity, evaluated at both xobs and xrepj for all j. The model misfit can be concluded if T

(

xobs
)

 is unlikely 
from the reference distribution formed by T

(

x
repj

)

’s. However, prior predictive checks might be problematic 
when using improper or weakly-informative priors, which are commonly used in  practice14.

Gelman, Meng, and  Stern15 proposed model assessment using the posterior predictive distribution, defined as 
p
(

xrep|xobs
)

=
∫

p(xrep|θ)p
(

θ |xobs
)

dθ . As shown in Figure 1B, replicated data xrepj are generated using θ repj from 
the posterior distribution p

(

θ |xobs
)

 . Then, the reference distribution based on the chosen discrepancy function 
T(x) can be computed. The Bayesian posterior predictive p value can be obtained as P

[

T(xrep) ≥ T
(

xobs
)

|xobs
]

 
to quantitatively detect the model misfit.

The posterior predictive check has gained increasing popularity in Bayesian model checking due to its 
straightforward implementation via Monte Carlo Markov Chain (MCMC) algorithms. However, there are two 
major limitations associated with this type of approach. Firstly, unlike the traditional p value, the posterior predic-
tive p value does not follow a uniform distribution under the null hypothesis of no lack of fit, making it difficult 
to interpret and assess the level of evidence against the null  hypothesis16. Secondly, the method has almost no 
power to detect failures from the second or deeper layers in hierarchical  models11, 17.

To overcome the non-uniformity problem, a potential solution is to calibrate the posterior predictive p value 
so that the calibrated p value follows a uniform distribution  asymptotically18. However, the statistical power of 
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using the calibrated p value has not been investigated yet. To avoid this issue, Bayarri and  Berger19 proposed two 
new types of p values: the conditional predictive p values and the partial posterior predictive p values. Bayarri 
and  Castellanos16 further extended the partial posterior predictive method to test the second layer of hierarchi-
cal models, which avoids “using data twice.” However, as mentioned in  Johnson20, the partial posterior strategy 
is typically not straightforward to implement beyond normal-family problems. More recently,  Gosselin21 and 
 Zhang22 recommended randomly drawing a single value θ single from the posterior distribution π

(

θ |xobs
)

 to 
generate xrep , namely sampled posterior check (Figure 1C). The corresponding p values is distributed uniformly 
when the data model is correctly specified, and the approach achieved higher power than the original posterior 
predictive check for detecting model  misfit21.

Pivotal quantity methodology
Johnson10 pioneered the use of pivotal quantities (PQ) to detect model misfit, and Yuan and  Johnson11 extended 
upon the methodology so that it can be applied to any level of hierarchical models. Since it does not involve 
replicated data, there is no need to distinguish xobs and xrep , and x is directly used for observed data.

A pivotal quantity, denoted by D(x; θ) , is a function of both data x and model parameters θ . It possesses a 
sampling distribution F that is both known and invariant when evaluated at θ0 , the “true” (data-generating) value 
of θ ; that is, D

(

x; θ0
)

∼ F .  Johnson10 shows that D
(

x; θ̃
)

 and D
(

x; θ0
)

 are identically distributed, where θ̃ is 

Figure 1.  Schematic diagrams of different model diagnostic methods.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17712  | https://doi.org/10.1038/s41598-023-44638-x

www.nature.com/scientificreports/

drawn from the posterior distribution p(θ |x) . Based on this result, the approach to model assessment involves 
two main  steps10. The first is to select a pivotal discrepancy measure D(x; θ) with a known reference distribution 
F, and, the second step is to evaluate the model fit by determining whether D

(

x; θ̃
)

 can be considered as a draw 
from F. However, when conducting a GOF test for the second or deeper layers in hierarchical models, one may 
encounter difficulties since D(x; θ) depends on x , but these layers usually involve no data. For this reason, Yuan 
and  Johnson11 extended the method by defining the pivotal quantity D as a function of model parameters only 
and further showed that D

(

θ0
)

 and D
(

θ̃
)

 have identical distributions. This allows the application of pivotal 
quantities and the corresponding reference distributions to diagnose model inadequacy at any level of a hierar-
chical model.

As shown in Figure 1D, after drawing θ̃
(i)

 from p(θ |x) , D(x; θ) is evaluated at θ̃
(i)

 for i = 1, ...,M . Then, each 
D
(

x, θ̃
(i)
)

 has the same distribution as D
(

x, θ0
)

 . For example, suppose D
(

x, θ0
)

∼ N(0, 1) , then under the null 

hypothesis of no lack of fit, D
(

x, θ̃
(i)
)

∼ N(0, 1) for each i marginally. To test normality,  Johnson10 suggested 

using a formal approach such as the Shapiro-Wilks test, and different p values from the tests on 
(

x, θ̃
(i)
)

 are 
calculated for i = 1, ...M. However, combining those p values is not as straightforward as using Fisher’s combina-
tion test. This is because the p values are derived from posterior samples using the same dataset and so are 
dependent with an unknown covariance structure.

To address this issue,  Johnson10 suggested that one could avoid generating multiple draws from the same 
dataset by utilizing the prior-predictive distribution from Dey et al.17, which suggested generating 1000 replicated 
datasets, xrepi for i = 1, ..., 1000 , from p(x) as illustrated in Figure 1A. For each replicated dataset xrepi , Bayesian 
data analysis is performed to obtain the corresponding posterior distribution p(θ |xrepi ) , then a single θ̃

repi is 
randomly sampled from the posterior, and one p values from testing the normality using the pivotal quantity 
is computed. This results in 1000 independent p values. Standard approaches, such as Fisher’s test, can then be 
employed to draw a conclusion. However, this method may suffer from two limitations. Firstly, using 1000 rep-
licated datasets can be computationally intensive since the same MCMC procedure needs to run 1000 times to 
draw independent posterior samples. Secondly, non-informative priors may not necessarily generate reasonable 
datasets. Considering these difficulties,  Johnson10 recommended finding probabilistic bounds on dependent p 
values using the properties of order statistics derived from Gascuel and  Caraux23 and  Rychlik24.

Let x(1), .., x(M) denote order statistics from a dependent sample of random variables, where each has distri-
bution function F, and let Fk:M denote the distribution function for the k-th order statistic out of M. Then, the 
bound of Fk:M can be written as

Let p1, ..., pM be dependent p values for m = 1, ...,M . Under the null, each p values should be distributed uni-
formly on (0, 1) , implying F(t) = t in Eq. (1). Let xi = −pi , Li, Wu and  Feng25 showed that the Eq. (1) becomes

which means that a p value upper bound for the observed k-th order statistic pobs(k)  is min
(

1, pobs(k)
M
k

)

. To avoid 
choosing the value of k ,  they suggested reporting the minimum upper bound such that 
pmin = min

{

min
(

1, pobs(k)
M
k

)}

k=1,...,M
. Yuan and  Johnson11 advocated using the rule-of-thumb value of 0.25 as 

a cutoff for declaring the model misfit in practice; that is, reject the null hypothesis H0 if pmin < 0.25 . However, 
the proposal may be liberal, and our simulation studies in the simulation section show that 0.25 is not necessarily 
a good choice and it is hard to select an optimal cutoff to balance the trade-off between Type I error and power.

Method
The generalized REM for meta‑analysis of binary events
Suppose a meta-analysis contains I independent studies, and for the ith study, let xi1(xi2) be the number of 
observed events in the control (treatment) group, which follows a binomial distribution with the total number 
of subjects ni1(ni2) and corresponding event probability pi1

(

pi2
)

 . Let φi1(φi2) denote the logit-transformed 

pi1
(

pi2
)

 , i.e., φij ≡ ln
(

pij
1−pij

)

 . Then the generalized binomial-normal REM in Houweilingen, Zwinderman and 
 Stijnen5 can be written as

where (φi1,φi2) is modeled by a bivariate normal distribution with an arbitrary covariance structure. We further 
define the treatment effect θi = φi2 − φi1 for study i, which follows a univariate normal distribution with an 
overall mean effect θ0 = µ2 − µ1 and the heterogeneity τ 2 = σ 2

1 + σ 2
2 − 2ρσ1σ2.

(1)Fk:M(t) ≥ max

{

0,
MF(t)− k + 1

M − k + 1

}

.

Fk:M(t) ≤ min

(

1, t
M

k

)

,

(2)

xi1 ∼ Bin
(

ni1, pi1
)

, xi2 ∼ Bin
(

ni2, pi2
)

,
logit

(

pi1
)

= φi1, logit
(

pi2
)

= φi2,
(

φi1
φi2

)

∼ N

((

µ1

µ2

)

,

(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

))

,
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The generalized REM builds a strong connection to many well-established  models26. For example, the model 
in Li and  Wang4 and Zhang et al.27 is a special case of model (2), yielding

where in (2), σ 2
1 = ω2τ 2 + σ 2 , σ 2

2 = (1− ω)2τ 2 + σ 2 , and ρ = σ 2−ω(1−ω)τ 2
√

(ω2τ 2+σ 2)
(

(1−ω)2τ 2+σ 2
)

 . As mentioned in the 

introduction, we can let ω be 0 or 0.5, which further reduces the model to the one in Bhaumik et al.2 or Smith, 
Spiegelhalter, and  Thomas3, respectively. Thus, model (2) is regarded as the most generalized binomial-normal 
model with fewer assumptions, so we choose it as the basis to design the GOF test for detecting non-normality 
of θi’s.

Let � =
{

φ1,φ2,µ1,µ2,�
}

 be all parameters in (2), where φj =
{

φ1j , ...,φIj
}

 for j = 1, 2 and 

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

. Let X = {xi1, xi2}Ii=1 be the data. Then the full probability model is given by

where

p(φi1,φi2|µ1,µ2,�) is the density function of the bivariate normal distribution; p(µ1,µ2,�) is the joint prior 
distribution on hyper-parameters introduced by the bivariate normal distribution of (φi1,φi2).

The proposed GOF test
Inspired by previous research, we propose a novel GOF test and demonstrate its applicability in the context of 
meta-analysis of (rare) binary events. Our approach involves defining the null hypothesis, denoted by H0 , which 
assumes normality for the true effect sizes θi s, a prevailing assumption made in meta-analysis. The alternative 
hypothesis, denoted by H1 , is formulated as any departure from H0 . In other words, we aim to detect this specific 
departure from the bivariate normal model assumed for the second layer of the generalized REM, where we can 
draw our conclusion about the presence of an overall treatment effect θ0 and between-study heterogeneity τ 2.

Let �∗
i =

(

φ∗
i1,φ

∗
i2,µ

∗
1,µ

∗
2, σ

2∗
1 , σ 2∗

2 , ρ∗) be data-generating parameter values for study i, and �̃
(m)

i  be the 
corresponding mth draw from the joint posterior distribution p(�|X) for m = 1, ...,M . We define a discrepancy 
measure to capture the deviation from H0 , namely

which is a pivotal quantity and follows a standard normal distribution under H0 . Furthermore, as pointed out 
by one of our reviewers, this measure can be viewed as the study-specific effect in units of standard deviations, 
for each study and each posterior draw. Then, according to Yuan and  Johnson11,

has a distribution identical to D
(

�∗
i

)

 ; that is, D
(

�̃i
(m)

)

∼ N(0, 1) for every m marginally.
Conducting a standard normality test using the pivotal quantities in (3) based on a single draw is straight-

forward, but this sampled posterior approach can be problematic since the vagaries of randomness can produce 
a sample that seems unwise. Alternatively, combining multiple MCMC draws to draw a conclusion was recom-
mended in  Johnson10 and Yuan and  Johnson11, where probabilistic bounds of the order statistics of the p values 
are used to combine the dependent p values. Here, we propose to use the Cauchy combination  idea12 to combine 
the dependent p values.

Consider pi as the p values obtained from the i-th statistical test, and ωi as the corresponding nonnegative 
weight that sums up to 1. Liu and  Xie12 introduced the Cauchy combination test and demonstrated that, subject 
to certain regularity conditions, the tail of a test statistic that linearly combines individual transformed p values 
can be well approximated by a standard Cauchy distribution under the null hypothesis. Specifically, if there are k 
p values, then the test statistic is given by T =

∑k
i=1 ωi tan

{(

0.5− pi
)

π
}

 , where the weight ωi is typically set to 
1/k in the absence of any prior information. The Cauchy combination test has several salient features. Firstly, the 
test, by leveraging the Cauchy distribution, the test has a simple analytical formula to compute the p value. Next, 
unlike classical Fisher’s  test28 or other common tests for combining p values, such as the minimum p value  test29, 
the Berk-Jones  test30 and the higher criticism  test31, the Cauchy combination test handles p values from correlated 
statistical tests and remains valid for arbitrary correlation structures. Finally, the test works well even if one main 
assumption required for the test, the bivariate normality between any two test statistics generating the p values, 

(

φi1
φi2

)

∼ N

((

µ− ωθ

µ+ (1− ω)θ

)

,

(

ω2τ 2 + σ 2 σ 2 − ω(1− ω)τ 2

σ 2 − ω(1− ω)τ 2 (1− ω)2τ 2 + σ 2

))

,

p(X,�) =
I
∏

i=1

p(xi1, xi2|φi1,φi2)p(φi1,φi2|µ1,µ2,�)p(µ1,µ2,�),

p(xi1, xi2|φi1,φi2) =
(

ni1
xi1

)(

ni2
xi2

)

(eφi1)xi1

(1+ eφi1)ni1

(eφi2)xi2

(1+ eφi2)ni2
,

D
(

�∗
i

)

= φ∗
i1 − φ∗

i2 − θ∗0
τ ∗

=
φ∗
i1 − φ∗

i2 −
(

µ∗
1 − µ∗

2

)

√

σ 2∗
1 + σ 2∗

2 − 2ρ∗σ ∗
1 σ

∗
2

,

(3)D
(

�̃i
(m)

)

= φ̃
(m)
i1 − φ̃

(m)
i2 − θ̃

(m)
0

τ̃ (m)
=

φ̃
(m)
i1 − φ̃

(m)
i2 −

(

µ̃
(m)
2 − µ̃

(m)
2

)

√

σ̃
2(m)
1 + σ̃

2(m)
2 − 2ρ̃(m)σ̃

(m)
1 σ̃

(m)
2
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is not satisfied. Thus, pi s can be from non-normal typed tests (i.e., those with test statistics that are not normally 
distributed), such as the Shapiro-Wilk  test32, the Cramer-von Mises  test33–35 and the Anderson-Darling  test35, 36.

In summary, the proposed GOF test, namely Improved Pivotal Quantities (IPQ), can be outlined by the 
following steps:

Step 1: Given I independent studies, randomly sample �̃
(m)

i  from the joint posterior distribution p(�|X) via 
MCMC for i = 1, ..., I and m = 1, ...M.

Step 2: Calculate D
(

�̃i
(m)

)

 in Eq. (3) for all i and m. For each mth draw, use 
{

D
(

�̃i
(m)

)}I

i=1
 to conduct a 

formal normality test (e.g. Shapiro-Wilk test) to get its p values, say p(m).

Step 3: Compute the test statistic T0 =
∑M

m=1
tan

{(

0.5−p(m)
)

π
}

M  , and calculate the corresponding p values using 
the formula p∗ = 1

2 −
arctanT0

π
. Then, we will reject the H0 if p∗ < α with a pre-specified significance level (e.g., 

α = 0.01, 0.05, 0.1).

Bayesian implementation with different covariance priors
We now pivot the discussion to prior specification and the Bayesian implementation. We use a Hamiltonian 
Monte Carlo (HMC) algorithm via Stan (version 2.19.1)37 in conjunction with  R38 to fit models with different 
priors discussed below. For each dataset, we run the algorithm with 5000 burn-in iterations and 5000 additional 
sampling iterations. The convergence of MCMC chains is detected using the Gelman-Rubin  diagnostic39.

We start with the prior choices for logit-transformed mean effects µ1 and µ2 for the control and treatment 
groups, where we consider diffuse uniform priors such that µj ∼ U

(

Lµj , Uµj

)

 for j = 1, 2 . To define the range, 

we get rough estimates µ̂ij for all I studies, µ̂ij = ln
xij+0.5

nij−xij+0.5 . Then, we define the lower bound 
Lµj = mini,j

{

µ̂ij

}

− c and upper bound Uµj = maxi,j
{

µ̂ij

}

+ c , where we let c = 5 as in Bai et al.40 so that the 
priors are conservative enough to contain all plausible values.

Regarding the prior for the covariance matrix � , several commonly used conjugate priors are available, includ-
ing the independent prior (IND) that assumes mutual independence a priori among the elements of �41, the 
inverse Wishart prior (IW)42 and the hierarchical inverse Wishart prior (HIW)43. Other alternatives include the 
scaled inverse Wishart prior (SIW)44 and the prior based on the separation strategy (SS)45. The Bayesian infer-
ence of a covariance matrix is highly sensitive to different choices of priors, and several studies have compared 
the performance of various priors. For example, Alvarez, Niemi and  Simpson46 compared four different priors 
(IW, HIW, SIW and SS) in the multivariate normal model and found that the IW prior performed the worst 
among all the four, especially when the true variances were small. Rúa, Mazumdar and  Strawderman41 conducted 
extensive simulation by comparing 38 priors, including IW, HIW, and IND, with different hyper-parameter 
specifications in multivariate Bayesian meta-analysis models. They found that the IW prior had overall poor 
performance, while the HIW prior had much more consistent performance across all scenarios examined. Akinc 
and  Vandebroek47 focused on the same priors used in Alvarez, Niemi and  Simpson46 and investigated Bayesian 
inference of the covariance matrix in mixed logit models. They suggested using different priors to check the 
robustness of the results but recommended avoiding the IW prior. To the best of our knowledge, the impact 
of different covariance priors on BN models in the context of meta-analysis of rare binary events has not been 
investigated. Thus, we aim to address the gap and access how these priors perform under rare binary settings. 
Below we briefly review four classes of priors, including IW, HIW, SS , and SIW, and their performance will be 
assessed in the simulation section.

Inverse Wishart prior
Due to the conjugacy property, the IW prior is often used as a default choice for covariance matrices. The 
density function of the IW prior IW(ν,H) is defined as p(�) ∝ |�|− (ν+3)

2 exp
{

− 1
2 trace

(

H�−1
)}

 , where 
ν > 0 is the number of degrees of freedom and H is a symmetric scale matrix with two dimensions. The 

marginal distribution of the correlation parameter ρ in � is p(ρ) ∝
(

1− ρ2
)
(ν−3)

2  when H is a diagonal 
matrix. If ν = 3 , ρ follows U(−1, 1)45. For our model, the conditional posterior distribution of � is given by 
p
(

�|φ1,φ2,µ1,µ2, x
)

∼ IW
(

ν + I ,H+�µ

)

 , where

While the IW prior is a popular choice in Bayesian analysis due to its mathematical convenience, it also has 
limitations. One issue is that selecting the appropriate degrees of freedom ν and scaled matrix H can be chal-
lenging. Although these are often set to default values of 3 and an identity matrix, respectively, recent studies 
by Rúa et al.41 and Akinc and  Vandebroek47 have shown that these choices may not always be suitable. Another 
limitation is that the IW prior implies a strong relationship between variance and correlation, which can bias 
inference. Specifically, smaller variances are associated with correlation coefficients ρ around 0, while larger 
variances correspond to ρ approaching −1 or 1. This dependency can be problematic when interpreting results 
and drawing conclusions from statistical analyses.

�µ =
(

∑I
i=1 (φi1 − µ1)

2 ∑I
i=1 (φi1 − µ1)(φi2 − µ2)

∑I
i=1 (φi1 − µ1)(φi2 − µ2)

∑I
i=1 (φi2 − µ2)

2

)

.
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Hierarchical inverse Wishart prior
Huang and  Wand43 proposed a two-layer hierarchical prior that builds upon the work of Wand et al.48 and 
Armagan, Artin et al.49, who showed that a half-t distribution can be expressed as a scale mixture of an inverse 
gamma distribution. In our case, the dimension of � is two, so that their hierarchical prior is defined as 
p(�|a1, a2) ∼ IW(ν + 1,H∗) , where H∗ = 2νdiag(1/a1, 1/a2) , aj ∼ Inverse-Gamma

(

1/2, 1/A2
j

)

 for j = 1, 2 , 
ν > 0 , and Aj > 0 is typically assigned a large value (e.g. 105 ) to indicate non-informativeness. They also showed 
that the marginal distribution of the correlation coefficient ρ is uniform on (−1, 1) for bivariate cases when ν = 2 . 
Compared to the IW prior, the HIW prior provides increased flexibility in the choice of the scaled matrix while 
retaining the conjugacy properties. In our model, the conditional posterior distribution of � and aj for j = 1, 2 
now become

where 
(

�−1
)

jj
 denotes the 

(

j, j
)

 entry of �−1 , and we set ν = 2 . However, Alvarez, Niemi and  Simpson46 pointed 
out that, compared to the IW prior, the HIW prior is capable of reducing, but not eliminating, the dependency 
between variance and correlation.

Separation strategy
Barnard, McCulloch and  Meng45 introduced a prior class known as the separation strategy (SS) that decomposes 
a covariance matrix � into a diagonal matrix S of standard deviations (SDs) and a correlation matrix R , resulting 

in � = SRS . Specifically, for bivariate data, S = diag(σ1, σ2) and R =
(

ρ 1
1 ρ

)

 . The SS prior assigns independent 

priors for the SDs and correlations, which eliminates the association between variance and correlation, setting 
it apart from the IW and HIW priors. Posterior computation with the SS prior is usually done via the Hamiltonian 
Monte Carlo (HMC)  algorithm50, which was later improved by the No-U-Turn  sampler51 in Stan. In the Stan 
 manual37, the recommended hyperprior settings for the SS prior are σj ∼ Cauchy(0, 2.5) constrained by σj > 0 
for j = 1, 2 and R ∼ LKJCorr(1) , where LKJCorr(1) denotes the LKJ prior from Lewandowski et al.52 with a shape 
parameter of 1. However, implementing the specific SS prior still requires intensive posterior computation. On 
the other hand, the IND prior is the simplest among the SS class, which assigns independent priors on 

(

σ 2
1 , σ

2
2 , ρ

)

 
for the bivariate case, where σ 2

j ∼ IG(0.01, 0.01) for j = 1, 2 and ρ ∼ U(−1, 1) to reflect our lack of information 
about these terms. The posterior computation involved in the IND prior is much less compared to the SS prior 
suggested in the Stan manual and can be done via a Gibbs sampler. Thus, throughout our simulation and real 
data analyses, the IND prior was used for this SS class for computational efficiency.

Scaled inverse Wishart prior
O’Malley and  Zaslavsky44 developed a scaled inverse Wishart (SIW) prior that decomposes a covariance matrix 
differently such that � = �Q� , where for the bivariate case, Q is an two dimensional unscaled matrix with the 
(

i, j
)

 element Qij and � = diag(δ1, δ2) . The SIW prior is defined as Q ∼ IW(ν,H) and log
(

δj
) ind∼ N

(

bj , ζ
2
j

)

 , 

which implies that standard deviation σj = δj
√

Qjj  for j = 1, 2 and ρ = Q12√
Q11Q22

 . Compared to the SS prior, the 
SIW prior avoids problematic transformation steps, yielding a more efficient sampling process. Following the 
specifications in Gelman and  Hill53 and Akinc and  Vandebroek47, we set H = I , ν = 3,bj = 0 and ζ 2j = 1 for 
j = 1, 2.

Simulation
We conducted two simulation studies focusing on meta-analysis of rare binary events: the first is to compare 
the performance of our Bayesian model under various covariance prior choices on the estimation of key model 
parameters in terms of bias, mean squared error (MSE) and coverage; the second is to assess the performance of 
our proposed IPQ method in comparison to existing GOF tests in terms of Type I error rates and statistical power. 
Our code is publicly available at https:// github. com/ chris zhangm/ MetaG OF. In our numerical experiments, we 
used the default continuity correction factor of 0.5 for all frequentist methods unless otherwise stated. On the 
other hand, we did not adopt any continuity correction or eliminate studies containing zero events for Bayesian 
methods since they handle such studies automatically via incorporation of prior information into data analysis.

Comparison of different covariance prior choices
We simulated data using the generalized REM in (2) to evaluate the performance of our Bayesian model with 
four covariance prior choices (i.e., IW, HIW, SIW and IND) in estimating (a) the overall treatment effect θ0 , 
(b) the heterogeneity τ 2 and (c) the correlation coefficient ρ , based on three metrics (bias, MSE and cover-

age). Specifically, for a parameter of interest (say κ , κ can be θ0, τ 2 or ρ ), we define Bias(κ) =
∑J

j=1 (κ̂j−κ)
J  and 

MSE(κ) =
∑J

j=1 (κ̂j−κ)
2

J  , where κ̂j is the corresponding estimate of κ in the jth replicated dataset. We estimated 

θ0 and ρ using the posterior mean, and τ 2 using the posterior median due to its heavily skewed distribution. The 
coverage probability was computed using 95% equal-tail credible intervals.

p
(

�|φ1,φ2,µ1,µ2, a1, a2, x
)

∝ IW
(

ν + I + 1,�µ +H∗),

p
(

aj|�, x
)ind∼ Inverse-Gamma

(

ν
2 + 1, ν

(

�−1
)

jj
+ A−2

j

)

,
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To generate data from (2), we set µ1 = −5 , µ2 = −5+ θ0 , and σ 2
1 = σ 2

2 = 0.5 . For (a), we varied 
θ0 ∈ {−1,−0.5, 0, 0.5, 1} and fixed ρ = 0 so that τ 2 = 1 (recall that τ 2 = σ 2

1 + σ 2
2 − 2ρσ1σ2 ) while for (b), we 

varied τ 2 ∈ {0.2, 0.4, ..., 1} so that ρ = 1− τ 2 , and fixed θ0 = 0 ; for (c), we varied ρ = {−0.8,−0.6, ..., 0.6, 0.8} 
so that τ 2 = 1− ρ , and fixed θ0 = 0 . Then, for each setting, we simulated probabilities pi1 = exp (φi1)

1+exp (φi1)
 and 

pi2 = exp (φi2)
1+exp (φi2)

 for study i = 1, ..., I . We considered three meta-analysis sizes I = 20, 50, 80 , and allowed differ-
ent sample-size allocation ratios across studies by setting ni2 = rini1 , where log2 ri ∼ N(0, 0.5) . The number of 
subjects in the control group ni1 , was randomly drawn from 50 to 1000 for each study, and the number of events 
xi1 or xi2 was generated by Bin

(

ni1, pi1
)

 or Bin
(

ni2, pi2
)

.
In Figure 2, we report results based on 200 replicates for each setting with I = 20 , in which the three rows 

give bias, MSE and coverage results, and the three columns correspond to θ0 , τ 2 and ρ , respectively. We observe 
that the performance of IPQ in estimating θ0 seems to be insensitive to the choices of different priors. For τ 2 and 
ρ , the IND prior generally outperforms other choices as it produces smaller bias and MSE as well as coverage 
closer to the nominal level 95% in most scenarios. Among the other three priors, although IW tends to do better 
in point estimation, it gives the worst coverage for both τ 2 and ρ especially when τ 2 is small or |ρ| is close to 1. 
This is not surprising, as mentioned before, the IW prior induces dependency between variance and correla-
tion, which can bias the inference. For I = 50 or 80 (results omitted here for brevity), while the discrepancies 
of the bias and coverage results using different priors become less salient, it is worth noting that IW still yields 
unsatisfactory coverage.

For GOF testing using the proposed IPQ method in this paper, the IND prior was used due to its demon-
strated better performance and its simplicity.

Performance evaluation of GOF testing
Our interest lies in conducting the GOF test to detect departures from a common assumption in meta-analysis 
that the true effect sizes θi s of component studies are normally distributed. Using the generalized REM, for null 
cases, we generated φi1 from normal distributions; for non-null cases, we generated φi1 from one of four pre-
specified non-normal distributions: (i) an exponential distribution with a rate of 1; (ii) a gamma distribution 
with a shape parameter of 4 and a scale parameter of 0.5, a unimodal right-skewed distribution; (iii) a mixture of 

Figure 2.  Comparison of bias, MSE and coverage results for Bayesian estimates of θ0 , τ 2 and ρ using the 
Inverse-Wishart prior (IW), the Hierarchical Inverse-Wishart prior (HIW), the Scaled Inverse-Wishart prior 
(SIW) and the independent prior (IND) for meta-analysis of rare binary events with I = 20 studies. For each 
setting, results were generated using 200 replicates and the nominal coverage level was set as 95%.
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two equal-weighted normal distributions: N(1, 0.5) and N(4, 0.5) ; (iv) a t distribution with number of degrees of 
freedom of 4. Then, with z ∼ N(0, 1) , φi2 given φi1 was generated by φi2 = ρ σ2

σ1
φi1 + σ2

√

1− ρ2z + µ2 − ρ σ2
σ1
µ1 

so that the correlation coefficient between (φi1,φi2) is ρ and the mean and variance of φij are µj and σ 2
j  for j = 1, 2 , 

respectively. In other words, the conditional distribution of φi2 given φi1 is set to be normal in our simulation. 
Note that the four distributions of φi1 cover different types of violation of the normality assumption, of which 
the first two cover skewness, the next covers multimodality, and the last covers heavy-tailedness. Generating the 
data in the above way would pass these types of violation to the distribution of θi’s.

Without loss of generality, we set the means of φi1 and φi2 to be equal such that the overall effect θ0 = 0 , 
µ = µ1 = µ2 ∈ {−5,−3,−2} , corresponding to {0.67%, 4.74%, 11.92%} in probability scale. We set 
σ 2
1 = 0.5, σ 2

2 = 0.8 for the null cases , and set σ 2
2 = 0.8 while σ 2

1  was determined by its distribution type specified 
above for the non-null cases(e.g., σ 2

1 = 1 for φi1 from the exponential distribution). We further set the number 
of component studies I ∈ {20, 50, 80} , and ρ ∈ {−0.5, 0, 0.5}.

We compared our proposed method IPQ to six other approaches, including three frequentist-based 
approaches: the Naïve method that conducts the Shapiro-Wilk test on estimated effect sizes (log odds 
ratios) directly, the parametric bootstrap method  (PB8) and the standardization method  (STD9), and three 
Bayesian methods: the pivotal quantities method  (PQ10, 11) using two cutoffs of 0.25 and 0.1, the posterior 
predictive check  (PPC15) using the discrepancy function recommended in Sinharay and  Stern54, defined as 
T(θ) = |max (θ)−median(θ)| − |min (θ)−median(θ)| with θ = (θi)

I
i=1 , and the sampled posterior check 

 (SPC21, 22) using the same discrepancy function. We set the significance level α = 0.05 . For all frequentist 
approaches (PB, STD and Naive) and the proposed IPQ, we reject the normality assumption if the p value is 
less than 0.05. For PPC or SPC, we reject the null when the posterior predictive p value (PPP) is below 0.025 
or above 0.97522; for PQ, if the minimum p value upper bound pmin is less than the chosen cutoff (0.25 or 0.1), 
we reject the null. As mentioned earlier, for either PPC or PQ, the reference distribution of PPP or pmin is not 
uniform(0,1) even in an asymptotic sense, and so we do not expect that they maintain the Type I error rate. 
However, the cutoff value 0.1 for pmin in the PQ method was chosen via preliminary simulation because it can 
offer error rates much closer to 0.05 in most of the simulation scenarios, compared to the rule-of-thumb value 

Figure 3.  Comparison of empirical Type I error rates by proposed IPQ, parametric bootstrap method (PB), 
standardization method (STD), Naïve method (Naive), Posterior Predictive Check (PPC), Sampled Posterior 
Check (SPC), and Pivotal Quantities method with cutoffs of 0.1 and 0.25 (PQ-0.1, PQ-0.25). Data were 
generated from the null cases with different (I ,µ, ρ) combinations, each 200 replicates. Tests were conducted at 
the significant level α = 0.05.
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of 0.25. We simulated 200 replicates for each setting, and reported Type I error rates for data from null cases and 
statistical power otherwise.

Figure 3 reports the Type I error rates for all methods in various settings. The IPQ, STD, and SPC methods 
demonstrate superior performance, as they maintain an error rate close to the nominal value of 0.05 regardless 
of {I ,µ, ρ} . Conversely, PQ-0.25 (the PQ method with the recommended cutoff of 0.2511) frequently produces 
severely inflated Type I error rates, particularly as the event of interest becomes rarer, while PQ-0.1 performs 
much better in general. Therefore, we exclude PQ-0.25 from our power results below. Among the remaining 
three methods, PPC and PB are often conservative for rarer events (i.e., µ = −5 ), exhibiting Type I error rates 
below 0.05, while Naive tends to have inflated rates for less rare events.

Figures 4, 5, 6, 7 display power results with different underlying distributions of φi1 . We observe that all 
approaches tend to report higher power as I increases or ρ decreases. Also, the differences in power among the 
methods become smaller as µ goes up. This is perhaps because some methods in the bottom group such as PB 
improve significantly while the proposed IPQ, as the best overall method, appears to be much less sensitive to 
the change of µ . Figures 4 and 5 present power results for skewed distributions (i.e., exponential and gamma 
distributions). IPQ is the best in nearly all scenarios, followed by PQ-0.1 and STD. Naive often stands somewhere 
in the middle among all. PB tends to perform poorly, except for larger µ and smaller ρ . SPC reports slightly 
better results than PPC, while both methods provide the worst overall results, particularly with large ρ . Figure 6 
presents outcomes for a multimodal distribution (i.e., normal mixture). IPQ is a clear winner and provides the 
highest power in all settings. Among the others, STD and PQ-0.1 usually perform better, followed by Naïve and 
PB. SPC and PPC consistently give the worst results that show almost no power. Figure 7 displays power results 
for t4 , a symmetric and heavy-tailed distribution, where again, IPQ outperforms other methods while PPC and 
SPC tend to perform the worst.

To summarize, the proposed IPQ maintains the Type I error rate at the target level well and offers the highest 
statistical power for various departures from the normality assumption compared to alternative approaches.

Figure 4.  Comparison of empirical power by proposed IPQ, parametric bootstrap method (PB), 
standardization method (STD), Naïve method (Naive), Posterior Predictive Check (PPC), Sampled Posterior 
Check (SPC), and Pivotal Quantities method with a cutoff of 0.1(PQ-0.1). Data were generated from the non-
null cases, where φi1 ∼ Exp(1) , with different (I ,µ, ρ) combinations, each 200 replicates. Tests were conducted 
at the significant level α = 0.05.
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Data examples
We applied our IPQ method, along with six other methods (PB, STD, Naïve, PPC, SPC and PQ-0.1) to three 
real data sets of meta-analysis, for testing the normality assumption about the distribution of true effect sizes 
across component studies. The first involves hand-eye dominance data, the second involves diabetes data, and 
the third involves lung cancer data.

Bourassa55 conducted a meta-analysis of 54 studies to investigate the hand-eye dominance association (see 
Table A1 for detailed data in Supplementary Material). The study found that the hand-eye concordance was larger 
than one, indicating left-handed people tended to have left-eyed dominance, and the same was true for right-
handed people. The meta-analysis included 54,087 subjects, summarized in 2× 2 tables of four categories: left-
handed/left-eyed, left-handed/right-eyed, right-handed/left-eyed and right-handed/right-eyed. We considered 
the event of interest to be “ left-handed,” with the control and case groups being “ left-eyed” and “ right-eyed,” 
respectively. The overall incident rates for the control and case groups are about 6% and 18.5% , which are −2.75 
and −1.48 on a logit scale equivalently. The left panel of Figure 8 displays the histogram, density and quantile-
quantile plots of the observed log odds ratio, revealing a left-skewed distribution.

Bellamy et al.56 conducted a meta-analysis of 20 studies to investigate the association between Type 2 diabetes 
mellitus and gestational diabetes (see Table A2 for detailed data in Supplementary Material). The analysis revealed 
that women with gestational diabetes had an increased risk of developing type 2 diabetes. The study included 
675,455 subjects, of which 31,867 had Type 2 diabetes. Among the control groups (no gestational diabetes), 6,862 
subjects had Type 2 diabetes, indicating an overall incident rate of ~ 1.1% (or −4.53 on a logit scale). For the case 
groups (with gestational diabetes), 3997 of them had Type 2 diabetes, resulting in an incident rate of ~ 12.5% (or 
−1.94 on a logit scale). The middle panel of Figure 8 shows the histogram, density, and quantile-quantile plots 
of the observed log odds ratio, suggesting a unimodal, symmetric, and bell-shaped curve.

Feng et al.57 conducted a meta-analysis of 44 studies to evaluate the association between GSTP1 gene poly-
morphism and the risk of lung cancer (see Table A3 for detailed data in Supplementary Material). The event of 
interest is considered the GG genotype of GSTP1. The study included 26,516 subjects, of which 2763 had the 
GG genotype. Among the control (no lung cancer) and case (lung cancer) groups, 1406 and 1357 subjects had 
the GG genotype, implying overall incident rates of 10.0 (or −2.19 on a logit scale) and 10.8 (or −2.11 on a logit 

Figure 5.  Comparison of empirical power by proposed IPQ, parametric bootstrap method (PB), 
standardization method (STD), Naïve method (Naive), Posterior Predictive Check (PPC), Sampled Posterior 
Check (SPC), and Pivotal Quantities method with cutoff 0.1(PQ-0.1). Here, data were generated from the non-
null cases, where φi1 ∼ Gamma(4, 0.5) , with different (I ,µ, ρ) combinations, each 200 replicates. Tests were 
conducted at the significant level α = 0.05.
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scale), respectively. The right panel of Figure 8 reveals the histogram, density, and quantile-quantile plots of the 
observed log odds ratio, showing a roughly symmetric curve but with heavy tails on both sides.

Table 1 shows that for the hand-eye dominance data, at the significance level α = 0.05 , all methods except for 
STD reject the null hypothesis, indicating a departure from the assumed normality. Note that among the existing 
methods, STD was quite competitive. Nevertheless, it failed in this specific example. On the other hand, PPC 
and SPC tend to be conservative in rejecting the null but worked here. For the diabetes data, Table 1 shows that 
all methods have the same conclusion: there is no evidence against the normality.

For the GSTP1 gene polymorphism and lung cancer data, Table 1 shows that Naïve, PQ-0.1 and IPQ reject 
the null hypothesis while other methods do not provide evidence against normality. As shown in Figure 7, given 
the symmetric and heavy-tailed distribution, IPQ offered the highest power across all the cases. When µ = −2 , 
similar to the overall incidence rates in this dataset, Naïve and PQ-0.1 performed relatively well. However, STD, 
PPC, and SPC performed poorly under the cases of µ = −2 . Therefore, we recommend avoiding the normality 
assumption in this example.

In summary, IPQ performs consistently well across all three real data examples, while PB, STD, PPC, and SPC 
sometimes fail. Although Naïve and PQ-0.1 also demonstrate good performance here, they are less satisfactory 
in our simulation studies. As such, IPQ is the recommended method of choice in this context.

Discussion
Meta-analysis commonly assumes that actual effect sizes from component studies follow a normal distribution 
for mathematical convenience, despite a lack of formal justification for this assumption. In practice, however, 
this assumption can be frequently violated, potentially leading to inaccurate conclusions. To address this issue, 
we propose a novel goodness-of-fit (GOF) test called Improved Pivotal Quantities (IPQ) for testing this assump-
tion in the context of meta-analysis of rare binary outcomes, where the effect size is measured by log odds ratio.

The proposed IPQ method builds upon the strengths of the original PQ  approach10, which is conceptually sim-
ple and efficient in detecting model misfit at any level of a hierarchical model without additional computational 
costs. However, the original PQ method employs the probability bound as a criterion to determine model misfit, 
which can result in inflated Type I error rates when used with the rule-of-thumb cutoff of 0.25. This highlights 

Figure 6.  Comparison of empirical power by proposed IPQ, parametric bootstrap method (PB), 
standardization method (STD), Naïve method (Naive), Posterior Predictive Check (PPC), Sampled Posterior 
Check (SPC), and Pivotal Quantities method with a cutoff of 0.1(PQ-0.1). Here, data were generated from 
the non-null cases, where φi1 ∼ 0.5N(1, 0.5)+ 0.5N(4, 0.5) , with different (I ,µ, ρ) combinations, each 200 
replicates. Tests were conducted at the significant level α = 0.05.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17712  | https://doi.org/10.1038/s41598-023-44638-x

www.nature.com/scientificreports/

the need for selecting new cutoff values that are tailored to different applications. To address this limitation, our 
IPQ method improves the decision-making process of PQ by adopting the Cauchy combination  idea12 to account 
for dependent p value. In addition, given sparse data such as tables with zero events, IPQ naturally incorporates 
all data, without requiring artificial corrections due to its Bayesian model formulation.

In fact, IPQ is a hybrid approach. It adopts the frequentist framework for hypothesis testing, since it uses 
the Cauchy combination test to obtain a p value, from which the final conclusion is drawn. On the other hand, 
it constructs the test statistics by incorporating a Bayesian idea through Markov Chain Monte Carlo methods. 
We further note that, because of the use of pivotal quantities, the sampling distribution of the proposed test 
statistics, evaluated at posterior samples, is known and invariant (i.e., N(0,1)) under the null hypothesis. The set 
of posterior draws used to construct the test statistics is from the same data (i.e., the true observed data rather 
than any “fake” data).

Simulation results indicate that IPQ maintains well-controlled Type I error rates while achieving higher 
statistical power than other approaches in most scenarios. To demonstrate the effectiveness of our method, we 
provide examples of three real datasets. Specifically, our results suggest that the normality assumption should 
be avoided for the hand-eye dominance  dataset55 and the GSTP1 gene polymorphism and lung cancer  dataset57, 
while it is likely to hold for the diabetes  dataset56. In situations where the normality assumption does not hold, 
it becomes imperative to explore alternative distributions, such as those characterized by heavy tails (e.g., t 

Figure 7.  Comparison of empirical power by proposed IPQ, parametric bootstrap method (PB), 
standardization method (STD), Naïve method (Naive), Posterior Predictive Check (PPC), Sampled Posterior 
Check (SPC), and Pivotal Quantities method with a cutoff of 0.1(PQ-0.1). Here, data were generated from the 
non-null cases, where φi1 ∼ t4 , with different (I ,µ, ρ) combinations, each 200 replicates. Tests were conducted 
at the significant level α = 0.05.
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distributions) or skewness (e.g., gamma distributions), in order to more accurately capture the characteristics 
of observed data. Alternatively, one can employ nonparametric methods for estimating treatment  effects58 and 
for estimating  heterogeneity59–61. Furthermore, in scenarios where a meta-analysis involves a small number of 
studies, a situation commonly encountered in practice, alternative frameworks such as Bayesian model averaging 
may yield more reliable outcomes.

Although our focus is primarily on rare binary events, the IPQ method is directly applicable to meta-analysis 
of any binary data. However, we believe that the gain in performance for common binary events may not be as 
significant as that for rare binary events. As demonstrated in our simulation studies, the differences in power 
between our method and other approaches diminish when increasing the background incidence rate. Moreo-
ver, IPQ can be extended beyond testing normality to other scenarios where an appropriate test statistic can be 
designed to measure the discrepancy. In conclusion, our IPQ method is useful for detecting model misfits and 
selecting appropriate statistical models for different applications, particularly in scenarios where sparse data are 
present or when the normality assumption is in question.

Data availability
The data that support the findings of this study are included in Supplementary Material.

Figure 8.  The histogram and density plots (top) and Quantile-Quantile plot (bottom) of the observed effect 
sizes measured by log odds ratio (lnOR). The left panel is for hand-eye dominance data, the middle panel is for 
diabetes data and the right panel is for lung cancer data.

Table 1.  P values of the GOF tests for three meta-analyses involving (i) hand-eye dominance data, (ii) type 2 
diabetes mellitus and gestational diabetes data, and (iii) GSTP1 gene polymorphism and lung cancer data. Note 
that for PPC or SPC, the posterior predictive p value is reported and for PQ-0.1, the minimum p value upper 
bound pmin is reported.

Methods Hand-eye dominance Diabetes Lung cancer

PB 0.021 0.932 0.753

STD 0.069 0.835 0.460

Naïve <0.001 0.921 0.034

PPC 0.999 0.277 0.666

SPC 0.998 0.245 0.714

PQ-0.1 0.031 0.707 0.022

IPQ 0.007 0.985 0.021
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