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Untargeted metabolomics analysis 
on kidney tissues from mice reveals 
potential hypoxia biomarkers
Muhammad Imran Sajid 1,2,6, Francisco J. Nunez 1,6, Farideh Amirrad 1,6, 
Moom Rahman Roosan 1, Tom Vojtko 3, Scott McCulloch 3, Amal Alachkar 4* & 
Surya M. Nauli 1,5*

Chronic hypoxia may have a huge impact on the cardiovascular and renal systems. Advancements 
in microscopy, metabolomics, and bioinformatics provide opportunities to identify new biomarkers. 
In this study, we aimed at elucidating the metabolic alterations in kidney tissues induced by 
chronic hypoxia using untargeted metabolomic analyses. Reverse phase ultrahigh performance 
liquid chromatography-mass spectroscopy/mass spectroscopy (RP–UPLC–MS/MS) and hydrophilic 
interaction liquid chromatography (HILIC)–UPLC–MS/MS methods with positive and negative ion 
mode electrospray ionization were used for metabolic profiling. The metabolomic profiling revealed 
an increase in metabolites related to carnitine synthesis and purine metabolism. Additionally, there 
was a notable increase in bilirubin. Heme, N-acetyl-l-aspartic acid, thyroxine, and 3-beta-Hydroxy-
5-cholestenoate were found to be significantly downregulated. 3-beta-Hydroxy-5-cholestenoate 
was downregulated more significantly in male than female kidneys. Trichome Staining also 
showed remarkable kidney fibrosis in mice subjected to chronic hypoxia. Our study offers potential 
intracellular metabolite signatures for hypoxic kidneys.

It is well known that living under hypoxic conditions has several distressing effects on the  kidney1 that resulted in 
the coining of the term "High Altitude Renal Syndrome" (HARS)2. The key findings of HARS are chronic kidney 
disease (CKD), polycythemia (excessive erythrocytosis), hyperuricemia, glomerulomegaly, microalbuminuria, 
elevated systemic blood pressure, and kidney  failure2. The kidneys have an abundant blood supply (20%–25% of 
cardiac output) and high blood flow and are susceptible to the effects of  hypoxia3. In 1998, Fine et al. proposed 
the "Chronic Hypoxia Hypothesis" for the pathogenesis of CKD based on the observation that hypoxia drives 
kidney fibrogenesis and tubulointerstitial injury is characteristic of all progressive renal  diseases4,5. Furthermore, 
Shamloo et al. reported that fetal kidneys are more susceptible to hypoxia, possibly due to a “triple-hit hypoxia” 
phenomenon, which implicates three factors (triple-hit) affecting fetal kidneys in response to  hypoxia6.

Over the past three decades, substantial evidence has been accumulated concluding that hypoxia is a com-
mon cause of both Acute Kidney Injury (AKI) and CKD, that renal tissue hypoxia, at least under in-vitro condi-
tions, drives a signaling cascade that leads to tissue damage and that tissue hypoxia can lead to renal pathology 
independent of other known risk factors of kidney  disease7. However, relatively little progress has been made 
in determining the causative role of hypoxia in kidney disease and if preventing hypoxia can prevent or delay 
renal  disease7.

Hypoxia, defined as the deficiency of oxygen in the biotic environment, causes cellular stress and alters 
normal metabolic  activity8. Several studies investigated the adaptation of cellular metabolism in response to 
 hypoxia8. For instance, it has been reported that exposure to hypoxia causes an increased production of reac-
tive oxygen species that causes damaging effects on a variety of cellular  components9. Additionally, hypoxia 
alters several key metabolic processes, including glucose uptake, glycolysis, oxidative metabolism, lipolysis, 
and lipogenesis in  adipocytes10. Chen et al. comprehensively reviewed the pathophysiological implications of 
hypoxia in several diseases and concluded that hypoxia plays critical roles in the pathogenesis of major causes 
of mortality, including cancer, metabolic diseases, myocardial ischemia, chronic heart and kidney diseases, and 
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in reproductive diseases such as preeclampsia and  endometriosis10. However, very few studies investigated the 
metabolic biomarkers of hypoxia.

Metabolomics is a powerful tool to study such complex metabolism by quantitatively analyzing metabolic 
response to pathological, physical, or chemical stimulus including changes in oxygen  availability11,12 Metabo-
lomics is an emerging field that investigates the metabolites at a cellular, organ, or organism level to identify the 
metabolites overexpressed or inhibited in a particular condition or  disease13. With the technological advancement 
in chromatography, mass spectrometry, and bioinformatics tools, metabolomics can involve an "untargeted" 
screening where thousands of metabolites can be screened and profiled to understand the relative differences in 
diseased conditions or genetic  differences14,15. Investigating the difference in metabolites in biological samples 
provides valuable insights into the animal models raised in severe conditions such as hypoxia. For instance, 
several metabolomics studies have been performed in serum samples, urine, and  tissues16–19. However, to the 
best of our knowledge, this is the first report in which we utilized the metabolomic and histological approach 
to understand the effect of hypoxia on kidney tissues. We used advanced Ultrahigh Performance Liquid Chro-
matography-Tandem Mass Spectroscopy, bioinformatics tools, and robust statistical analysis to investigate the 
metabolic alterations observed in response to hypoxia in kidney tissue, which led to the discovery of potential 
biomarkers for hypoxia. Furthermore, National Institute of Health in its policy published in 2016 emphasized 
for researchers to include sex as a biological variable in all research designs, analyses, and reporting in vertebrate 
animal and human  studies20. Sex- and gender-aware investigations are critical to the conduct of rigorous and 
transparent science and the advancement of personalized medicine. In the current study, we also investigated 
and analyzed the metabolic differences in male and female groups in response to hypoxia.

Materials and methods
Ethics statement
All animal experiments in the current study were approved by Chapman University Institutional Animal Care and 
Use Committee (IACUC# 2020-1132 and PHS# D17-00960) and were conducted in accordance with the “Guide 
for the Care and Use of Laboratory Animals” prepared by Institute for Laboratory Animal Research (ILAR) of 
the National Research Council in the  USA21. Furthermore, all methods of animal experiments are reported in 
accordance with ARRIVE (Animal Research: Reporting of In Vivo Experiments)  guidelines22.

Animals and tissue collection
A total of eighteen, 8 weeks old, adult, fertile, male and female wildtype (WT) mice were used in our study. The 
animals were chosen randomly based on age. Ten mice were exposed to hypoxic chambers (described below) 
for 6 weeks and the remaining eight mice were raised in the same room at normal room temperature, pressure, 
and airflow (normoxic conditions). The kidney samples were collected from each animal after euthanasia and 
immediately frozen in liquid nitrogen. A total of twelve kidney samples (one kidney sample from each of the 
mice) was used for Masson’s Trichrome Staining (described below). One frozen kidney sample from each of the 
eighteen mice were sent to Metabolon Inc. for etabolomics profiling, the details including weight of the samples, 
gender, and the condition (hypoxic vs normoxic) of these samples are provided in Supplementary Information 
1 under tab “Sample Meta Data”.

Masson’s trichrome staining
To evaluate kidney fibrosis, we used Masson’s trichrome  staining23. A total of twelve mice kidney samples (one 
kidney from each mouse) were used for histological study and were divided into two groups (hypoxic and nor-
moxic) containing six mice in each group (see Fig. 1 legend). Also, both normoxic and hypoxic groups consisted 
of equal number of male and female mice (N = 3). The kidney tissues were collected and fixed in 10% formalin. 
The tissues were dehydrated in ethanol and xylene, embedded in liquid paraffin, and cut with a thickness of 
5 μm. Cut sections were stained with Masson’s trichrome kit (Cat# 25088-1; Polysciences, Inc.), and images 
were visualized and captured using KEYENCE BZ-X710. The kidney fibrosis was quantified by calculating the 
percentage of kidney tissue occupied by collagen fibers (blue color) in different kidney sections using a Nikon 
Eclipse Ti microscope.

Hypoxia chambers
Eight weeks old, adult, fertile, male and female WT mice (N = 10) were maintained in a normobaric hypoxic 
chamber (BioSpherix, NY, USA) with 10%  O2 (corresponds to about 5800-m altitude) and  CO2 less than 
1000 ppm for six consecutive weeks (hypoxic condition). Matching control animals (N = 8) were kept for six 
consecutive weeks outside the hypoxic chamber in the same room at normal room temperature, pressure, and 
airflow (normoxic condition). Static Innovive cages were used to allow air/gas exchange from the outside, and 
these cages were put in the Biospherix chamber (https:// sites. chapm an. edu/ cilia/ biosp herix/). The chamber 
had its own  O2/N2/air regulators to adjust the levels of  PO2 and  PCO2 during the experiments.  O2 levels were 
regulated through  N2 gas, and  CO2 level was controlled with soda lime (sodasorb) and an air tank. On the first 
day of exposure, the  O2 level in the chamber decreased by 1% every 20 min to up to 10% and remained constant 
at this level for the duration of the study. In the hypoxic chamber, mice had free access to water and diet, and 
the disposable cage was changed every week (q7days) to ensure the clean environment for the animals; the cage 
changing did not take more than a minute per cage. The filter top on the Innovive cage lid provided enough air 
ventilation in the hypoxic chamber and was acceptable without the forced air ventilation from the rack. The  O2 
and  CO2 levels in the chamber were controlled by the ProOx P110 and P120PPM, respectively.

https://sites.chapman.edu/cilia/biospherix/
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After 42 days of hypoxic exposure, animals were removed and euthanized by asphyxiation using a  CO2 gas 
chamber for 5 min, followed by cervical dislocation as a secondary method to confirm death. The kidneys were 
collected from euthanized animals and were immediately frozen in liquid nitrogen for further study.

Sample accessioning and preparation
The weighed samples were received by Metabolon Inc. in frozen form in liquid nitrogen and were immediately 
inventoried in Metabolon’s Laboratory Information Management System (LIMS) with a unique identifier, which 
tracked all the samples throughout the experimental process, data generation, and analysis. All samples were kept 
frozen at − 80 °C until  processed24,25. The details of the samples received by the Metabolon Inc. are provided in 
Supplementary Information 1 under the tab “Sample Meta Data”.

On the day of extraction, the kidney tissues were thawed on ice and the proteins were precipitated using 
methanol for 2 min under vigorous shaking using Glen Mills GenoGrinder 2000. The samples were centrifuged, 
followed by placement on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were stored 
overnight under nitrogen before preparation for  analysis24,25. Later, the sample extract was dried, followed by 
reconstitution with compatible solvents (50 µL of 0.1% formic acid in  H2O, 50 µL of 6.5 mM ammonium bicarbo-
nate in  H2O, or 50 µL of 0.1% formic acid in 10% methanol) to make five fractions of each sample. For instance, 
one aliquot was reconstituted in the reconstitution solvents containing instrument internal standards that were 
used to monitor instrument performance and as retention index markers. Fixed concentration and volume of 
the standards were added to ensure the injection and chromatographic consistencies. The sample extract was 
divided into five fractions. Two separate Reverse Phase-Ultrahigh Performance Liquid Chromatography-Mass 
Spectroscopy/Mass Spectroscopy (RP)/UPLC–MS/MS) methods with positive ion mode electrospray ionization 
(ESI) were used on two fractions. Another RP/UPLC–MS/MS with negative ion mode ESI was used on the third 
fraction, and the fourth fraction was used for analysis by Hydrophilic Interaction Chromatography (HILIC) 
UPLC–MS/MS with negative ion mode ESI. The fifth fraction was kept as a  backup24,25.

Quality assurance and control
Instrumental performance monitoring and precise chromatographic alignment were carried out using sev-
eral controls run with the experimental samples. These controls included a pooled matrix sample from each 
experimental sample, human plasma pool, water samples serving as blanks, and Quality Control (QC) standards. 
Tables S1 and S2 describe these QC samples and  standards24,25. Experimental samples were randomized with QC 
samples across the platform run, as outlined in Fig. S1 in Supplementary Information 3.

UPLC–MS/MS
“Waters Acquity Ultrahigh Performance Liquid Chromatography” was used for all methods along with a high 
resolution/accurate mass spectrometer (Thermo Scientific Q-Exactive) equipped with a heated ESI source and 
a mass analyzer with 35,000 mass resolution. Four methods were used to analyze the metabolites. One method 
used acidic positive ion conditions optimized for hydrophilic compounds, in which the sample aliquot was eluted 
from a  C18 column (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using a gradient of water and methanol 
supplemented with 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). The second method was 
optimized for more hydrophobic compounds, in which the sample aliquot eluted from the  C18 column (Waters 
UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using a gradient of methanol/acetonitrile/water containing 0.05% PFPA 
and 0.01% FA. The third sample aliquot was run in basic negative ion conditions and was eluted from a separate 
dedicated  C18 column using a gradient of methanol/water with 6.5 mM ammonium bicarbonate (pH = 8). The 

Figure 1.  Masson’s trichrome staining. (A) Representative images of the cortex and medulla of the kidney 
under hypoxic and normoxic conditions. (B) Bar graphs represent the quantification of fibrosis and illustrate 
significant fibrosis in male and female mice due to hypoxia. N = 6 for hypoxic kidneys and N = 6 for normoxic 
kidneys from independent mice. Male mice were 3 each in the normoxic and hypoxic groups; similarly, female 
mice were 3 each in normoxic and hypoxic groups. **p < 0.01; ***p < 0.001.
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fourth sample aliquot was run under negative ionization and was eluted from the HILIC column (Waters UPLC 
BEH Amide 2.1 × 150 mm, 1.7 µm) using a gradient of acetonitrile/water with 10 mM ammonium formate 
(pH = 10.8). Following UPLC, the MS analysis was performed, where the MS scan range covered 70–1000 m/
z24,25. Raw data files were archived and extracted for further analysis.

Bioinformatics and laboratory information management system (LIMS)
The bioinformatics system consisted of four major components: LIMS, the peak-identification software, data 
processing tools for compound identification, and software for data analysis. A local area network backbone 
and a database server run on Oracle 10.2.0.1 Enterprise Edition were the foundation for these bioinformatics 
 components24,25. The Metabolon’s LIMS was enabled for complete auditable laboratory automation that covers 
sample accessioning, preparation, instrumental analysis, reporting, and advanced data  analysis24,25.

Data extraction and compound identification
Following analysis, the raw data was extracted, and the compounds were identified using library entries of puri-
fied standards. Metabolon Inc. maintains a compound library containing information on the retention time/
index (RI), chromatographic data, MS/MS spectral data, and the mass-to-charge ratio. Over 3300 commercially 
available purified standard compounds have been registered into LIMS. Furthermore, biochemical identifica-
tions were performed using retention index within a narrow RI window, accurate mass match (± 10 ppm), and 
the MS/MS forward and reverse scores. The details of these processes are described in reports by Evan et al. and 
Ford et al.24,25.

Biomarker discovery
The biomarker discovery feature of MetaboAnalyst 5.0 was used for biomarker discovery that provides the 
receiver operating characteristic (ROC) curve-based approach for identifying potential biomarkers. Xia et al. 
provided a comprehensive tutorial on translational biomarker discovery in clinical  metabolomics26. Briefly, the 
ROC curve is the plot of the true positive rate (TPR) (also known as sensitivity) against the false positive rate 
(FPR) (also known as specificity) at various threshold settings. ROC curves are summarized into a single metric 
called Area under the curve (AUC), which represents the probability that a diagnostic test or a classifier will 
rank a randomly chosen positive instance higher than a randomly chosen negative one. If all positive samples 
are ranked before negative ones (i.e., a perfect classifier), the AUC is 1.0. A rough guide for assessing the utility 
of a biomarker based on its AUC is as follows: 0.9–1.0 = excellent; 0.8–0.9 = good; 0.7–0.8 = fair; 0.6–0.7 = poor; 
0.5–0.6 =  fail26. We selected the metabolites with an AUC > 0.8.

Data analyses
Comprehensive information on the classification, physical and chemical properties of the metabolites detected 
in this study can be obtained from Human Metabolome Database (HMDB; https:// www. hmdb. ca/, KEGG: Kyoto 
Encyclopedia of Genes and Genomes; (https:// www. genome. jp/ kegg/), and SMPDB: The Small Molecule Pathway 
Database (https:// www. smpdb. ca/). We used log-transformed and normalized data for statistical analysis using 
MetaboAnalyst 5.0 (https:// www. metab oanal yst. ca/), which is a comprehensive web-based tool dedicated to 
metabolomic data analysis, and GraphPad Prism Version 9.5.0 (730). (The complete dataset is available in Sup-
plementary Infromation 1). Briefly, Volcano plot analysis was performed to analyze the significant differences 
in metabolites between hypoxic and normoxic groups; p-values were calculated using student’s t-test, and fold-
change (FC) of metabolites between hypoxic vs. normoxic group was calculated. The differential metabolites 
between the groups were identified by a p-value cut-off of < 0.05 and an FC > 2.0.

Most omics experimental design aims to compare samples from a control (e.g., diseases or treatment)27. 
Predictive models such as orthogonal partial least discriminant analysis (OPLS-DA) are widely used for discri-
minant  analysis28,29 and have been demonstrated as a powerful tool with easier interpretation of the qualitative 
data  analysis30,31. We used OPLS-DA to observe the visible separation of metabolites between the groups. The 
significant metabolites from OPLS-DA were selected based on the variable importance in projection (VIP) > 1, 
as reported earlier by Hasegawa et al.32, and used for Pathway Analysis from MetaboAnalyst 5.0., using Mus. 
musculus library containing 82 pathways.

Hierarchical clustering of the data was done using  healtmap33. A heatmap provides an intuitive visualization 
of the data, where each colored cell on the map corresponds to the log-normalized concentration of the metabo-
lites in the data. The rows in the heatmap represent individual metabolites, and the columns represent biological 
replicates. Distance was measured using Euclidean Correlations and the Ward clustering algorithm. For analyzing 
the interaction of gender with hypoxic state, we used the multivariate analysis feature from MetaboAnalyst 5.034, 
the study design of ’two-factor independent samples’ was set, and two-way ANOVA analysis was performed to 
identify differences and interactions between gender and condition (hypoxic vs. normoxic).

Patents
The study results are being considered for "invention and discovery disclosure" at Chapman University.

Results
Masson’s trichrome staining
Masson’s trichrome staining was used to investigate the effect of hypoxia on kidney tissues. Normoxic kidneys 
(N = 6) served as negative control, and the hypoxic kidneys (N = 6) were used as the experimental group. The 
histological images clearly demonstrated significant fibrosis in the cortex and medulla of the kidney. Figure 1 

https://www.hmdb.ca/
https://www.genome.jp/kegg/
https://www.smpdb.ca/
https://www.metaboanalyst.ca/
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shows the representative images of the cortex and medullary kidneys from the mice raised under normoxic and 
hypoxic conditions. Figure 1A visibly demonstrates the effect of hypoxia on the kidney tissues.

Furthermore, renal fibrosis was quantified both in male and female mice by calculating the percentage of 
renal tissue occupied with the collagen fibers (blue color) in different kidney sections. The results indicated 
significant fibrosis in the hypoxic group in both genders. Figure 1B represents the % fibrosis in the hypoxic vs. 
normoxic group.

Metabolic profiling of mouse kidney tissues
We conducted a comprehensive metabolomic analysis of kidney tissues from mice raised in standard and hypoxic 
conditions. Metabolomic profiling identified 1029 biochemicals, but the chemical identity of 91 remained unde-
termined (labeled "uncharacterized molecules"). The comprehensive data can be found in the Supplementary 
Information 1. Figure 2A summarizes all metabolites identified through the untargeted metabolomic profil-
ing, with nearly half of the identified metabolites being lipids. These lipids are further categorized by class (a 
comprehensive list is available in Supplementary Information 2). Figure 2B summarizes the lipids with their 
category. Furthermore, Tables S3 and S4 in Supplementary Information 3 provide the individual counts of each 
class of metabolites.

The overall results showed that 46% of the identified biochemicals belonged to lipids and their derivatives. 
Amino acids and derivatives constituted 18% of the metabolites. 7% of the biochemicals were classified as xeno-
biotic, the biochemicals found in metabolic profiling but are not naturally produced. 6% each belonged to the 
category of carbohydrates & derivatives and nucleotide & derivatives, whereas 4% each were classified as cofactors 
& vitamins and peptides & derivatives. Among the lipids, phospholipids were found to be the most abundant 
(38%), followed by fatty acid & derivatives (23%). Other lipids identified in metabolic profiling included acyl 
carnitines (12%), sphingosines and derivatives (7%), acyl glycerol (7%), sterols (4%), and acyl glycine (3%). 
Acylcholines, acyl amines, and ceramides constituted 2% each of the identified lipids.

Effect of hypoxia on kidney metabolites
Metabolites with known Human Metabolites Data Base (HMDB) identifiers were selected for further analysis. 
Using MetaboAnalyst 5.0, we conducted a univariate statistical analysis with t-tests to differentiate between 
hypoxic and normoxic groups, applying a two-fold (FC) change and a p-value cut-off of < 0.05. This analysis 
identified 19 biochemicals elevated under hypoxic conditions and 29 that were reduced (see Fig. 3A). Table 1 
highlights significant metabolites, excluding lipids, whereas about half of the identified biochemicals, largely 
phospholipids, fatty acids, acyl glycerol, and sterols, are shown in Table S5 in Supplentary Information 3.

The Volcano plot analysis shows that pantetheine, involved in pantothenate and co-enzyme A biosynthesis, 
is the most significantly elevated (FC = 6.17, p-value = 0.0297) metabolite in the hypoxic group. Two metabolites 
involved in carnitine synthesis, 4-trimethylammoniobutanoic acid, and l-Carnitine, were increased in hypoxic 
groups, suggesting that carnitine synthesis was markedly increased in response to hypoxia. Other significantly 
upregulated metabolites included galactonic acid, phenyllactic acid, orotidine, glutamic acid gamma-methyl ester, 
hydroxyphenyllactic acid, alpha-tocopherol, myo-Inositol, inosinic acid, and bilirubin. The significantly down-
regulated metabolites included heme, N-Acetyl-l-aspartic acid, thyroxine, and 3-beta-Hydroxy-5-cholestenoate. 
Previous reports found similar results, discussed below.

We next performed the OPLS-DA analysis using MetaboAnalyst 5.0. The score diagram analysis shows a 
complete separation between the hypoxic and normoxic groups (see Fig. 3B).

Figure 2.  Pie chart illustrating the distribution of biochemicals detected in metabolomic profiling of kidney 
tissues. (A) Provides the percentage of all the metabolites detected, and (B) shows the subclassification of lipids 
and their derivatives.
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Figure 3.  Analysis of hypoxic vs. normoxic groups. (A) Represents the volcano plot with 2FC and a 
p-value < 0.05, (B) represents the OPLS-DA score diagram between the hypoxic and normoxic groups. (C) The 
pathway analysis based on the VIP score from the OPLS-DA analysis. (D) Represents the heatmap of the top 25 
significant features between the hypoxic and normoxic groups; log normalized intensity is presented in the red-
blue colors, where red represents high and blue indicates low expressions.

Table 1.  Significantly altered non-lipid metabolites hypoxic (N = 10) vs. normoxic (N = 8) group using volcano 
plot analysis.

Metabolite log2(FC) −  Log10 (p) Pathway/metabolite category

Significant increase

Pantetheine 6.1763 1.5268 Pantothenate and CoA biosynthesis

4-Trimethylammoniobutanoic acid 3.6196 2.136 Carnitine synthesis

l-Carnitine 3.6156 1.8515 Carnitine synthesis

Galactonic acid 3.2893 2.4266 Galactitol and galactonate degradation

Phenyllactic acid 3.1732 1.3458 Phenylalanine catabolism

Orotidine 2.6719 2.014 Pyrimidine metabolism

Glutamic acid gamma-methyl ester 2.4096 2.4153 Glutamic acid and derivatives

Hydroxyphenyllactic acid 2.2837 1.3225 Phenylpropanoic acids

Alpha-tocopherol 2.1247 1.3356 Active form of vitamin E

myo-Inositol 2.0453 1.637 Inositol metabolism

Inosinic acid 1.5923 1.3029 Purine metabolism

Bilirubin 1.4957 1.3428 Porphyrin and heme metabolism

Significant decrease

Heme − 1.4179 1.5407 Heme synthesis

N-Acetyl-l-aspartic acid − 2.444 1.3225 Aspartate metabolism

Thyroxine − 4.0523 1.6852 Thyroxine synthesis

3 beta-Hydroxy-5-cholestenoate − 5.6404 2.7161 Primary bile acid biosynthesis pathway
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Hypoxia‑induced alterations in metabolites and metabolic pathways
The significant biochemical from OPLS-DA analysis were selected based on the variable importance in projec-
tion (VIP) > 1, as reported earlier by Hasegawa et al.32. Table S6 in the Supplementary Information 3 provides 
the list of these significant biochemicals. These significant biochemicals were used for Pathway Analysis from 
MetaboAnalyst 5.0., using a Mus musculus library containing 82 pathways. Table 2 shows the pathways that have a 
corresponding p-value < 0.05. The complete list of pathways is provided in Table S7 in Supplementary Information 
3. Match status in Table 2 reflects hits/total, where total means the total number of compounds in the pathway, 
and the hits are the actually matched compounds from the list. The p-value reflects the raw p-value; Holm p is 
the adjusted p-value calculated from the Holm-Bonferroni method; the FDR means the False Discovery Rate; 
and the impact is the pathway impact value calculated from pathway analysis.

The Pathway Analysis revealed that hypoxia induced the significant upregulation (p < 0.05) of several path-
ways (Fig. 3C), including biosynthesis of unsaturated fatty acids, glycerophospholipid, thiamine, histidine, and 
purine metabolism. Also, the pantothenate and CoA biosynthesis appeared upregulated in the pathway analysis. 
Considering FDR < 0.05, only two pathways appeared significantly upregulated due to hypoxia: biosynthesis 
of unsaturated fatty acids and glycerophospholipid metabolism. Previous reports on hypoxia-related studies 
revealed a similar pattern in metabolic pathway alterations, as discussed below.

Furthermore, a hierarchical clustering heat map was generated through MetaboAnalyst 5.0 that indicated 
visual clustering of hypoxic vs. normoxic groups (Fig. 3D). The rows in the heat map showed significantly altered 
metabolites, and the columns in the heat map represent biological replicates. The blue color represents the 
significantly downregulated metabolites, and the red color indicates the significantly upregulated metabolites; 
the intensity of the color corresponds to the log-normalized intensity of the metabolites, as shown in the bar in 
the top right corner of the heat map. A closer look at the heat map indicated a similar pattern observed in the 
volcano plot analysis. For instance, the visual inspection of the heat map showed that inosinic acid, myo-inositol, 
l-carnitine, and pantetheine are significantly upregulated in the hypoxic group, as shown by red color boxes in 
the lower left corner of the heat map. Also, N-acetyl-l-aspartic acid, thyroxine, and heme appear downregulated 
in the hypoxic group, as indicated by the light blue colors in the heat map.

Sex-based metabolic profiling of hypoxia
We examined the data based on sex as well to see if hypoxia has different effects on male and female mice. The 
male group consisted of ten animals, of which five were raised in normoxic conditions, and five were exposed to 
hypoxic chambers. The Female group consisted of eight animals, of which 3 female mice were raised in normoxic 
conditions, and five were subjected to severe hypoxia.

Metabolic profiling of hypoxia in male mice
Volcano plot analysis with two-fold change and a cut-off p-value < 0.05 indicates 66 altered metabolites, of which 
40 were significantly elevated in the hypoxic group, and 20 were significantly down (Fig. 4A; Table S8). As seen 
with the sex-independent hypoxic vs. normoxic group (Table S5 in Supplementary Information 3), many metabo-
lites belonged to the lipid category (phospholipids, acylcarnitines, and fatty acids). Non-lipid elevated metabo-
lites in the male hypoxic group, which were also seen elevated in the sex-independent hypoxic group, included 
pantetheine, 4-trimethylammoniobutanoic acid, galactonic acid, orotidine, glutamic acid gamma-methyl ester, 
alpha-tocopherol, and myo-inositol (Table 3). However, when observing downregulated metabolites in the male 
hypoxic group, only one metabolite appeared similar in the sex-independent hypoxic group, i.e., 3-beta-hydroxy-
5-cholestenoate. The variation in results in the male group (10 mice) vs. the sex-independent group (18 mice) 
could be due to the fewer animals in this analysis.

OPLS-DA showed a visible complete separation of features in the male hypoxic and normoxic groups that 
appeared tighter than sex-independent hypoxic and normoxic groups (Fig. 4B). The metabolites with the VIP 
score > 1 from OPLS_DA were selected for pathway analysis (Table S9). The Pathway Analysis revealed that purine 
metabolism, histidine metabolism, pantothenate  and CoA biosynthesis, arginine biosynthesis, and alanine aspar-
tate and glutamate metabolism were significantly upregulated (Fig. 4C). The upregulation of purine metabolism 
and pantothenate and CoA biosynthesis appeared similar to the sex-independent hypoxic vs. normoxic group. 
Table S10 in the Supplementary Information 3 provides the complete list of upregulated pathways.

Table 2.  Pathway analysis for hypoxic vs. normoxic group (N = 10 for hypoxic group and N = 8 for normoxic 
group).

Pathway name Match status p-value − log10(p) Holm p FDR Impact

Biosynthesis of unsaturated fatty acids 8/36 8.057E-5 4.0938 0.0067678 0.0067678 0.13636

Glycerophospholipid metabolism 7/36 5.6537E-4 3.2477 0.046926 0.023746 0.35739

Thiamine metabolism 3/7 0.0022688 2.6442 0.18604 0.063527 0.66667

Histidine metabolism 4/16 0.0036754 2.4347 0.2977 0.077183 0.32786

Purine metabolism 8/66 0.0055263 2.2576 0.4421 0.092842 0.27239

Pantothenate and CoA biosynthesis 3/19 0.043605 1.3605 1.0 0.59181 0.27857



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17516  | https://doi.org/10.1038/s41598-023-44629-y

www.nature.com/scientificreports/

Hierarchical clustering of metabolites was observed in the heat map (Fig. 4D), which showed better clustering 
of significantly altered metabolites in the male hypoxic vs. normoxic group. The pattern observed in the heat 
map seemed to be consistent with the volcano plot analysis.

Metabolic profiling of hypoxia in female mice
Volcano plot analysis with two-fold change and a p-value cut-off < 0.05 showed 25 altered metabolites, of which 10 
are significantly upregulated and 15 are significantly down (Fig. 5A; Table S11). The observed altered metabolites 
were not similar to the sex-independent group or male group, which could be due to the lesser number of animals 
in the female hypoxic group (N = 8) vs. male hypoxic group (N = 10) and sex-independent hypoxic group (N = 18). 
Also, the number of animals in the female mice group was unequal, which could contribute to different results.

OPLS-DA analysis showed a distinctive separation of components between hypoxic and normoxic groups 
(Fig. 5B). The metabolites with VIP score > 1 are listed in Table S12 in the Supplementary Information 3. The 
pathway analysis showed that aminoacyl tRNA biosynthesis, pyrimidine metabolism, and arginine biosynthesis 
were significantly upregulated. (Fig. 5C). The upregulated pathways appeared different in the female group in 
comparison to the sex-independent group (Table S13). However, arginine biosynthesis appeared significantly 
upregulated in both males and females.

The heat map from the female group showed a distinctive pattern that appeared to be consistent with the 
volcano plot analysis, as represented by red and blue colors (Fig. 5D).

Covariate analysis of hypoxia according to sex
We used multivariate features from MetaboAnalyst 5.0 to examine the sex-based effect of hypoxia. Table S14 
shows the list of metabolites that appear to be significant with a p-value of < 0.05. The results indicated alterations 
in 16 metabolites. Negative  log2 fold change (FC) values indicated significantly elevated metabolites in hypoxic 
conditions in male and female kidneys, whereas positive  log2 FC meant that the metabolites were significantly 
downregulated in both sexes. According to the co-variate analysis, galactonic acid, pantetheine, 4-trimethylam-
moniobutanoic acid, quinol sulfate, l-cysteine, orotidine, stachydrine, 2,4-dihydroxyacetophenone 5-sulfate, 

Figure 4.  Analysis of hypoxic vs. normoxic groups in male mice. (A) Represents the volcano plot with 2FC 
and a p-value < 0.05, (B) represents the Orthogonal Partial Least Square Analysis between the hypoxic male and 
normoxic male group. (C) The pathway analysis. (D) Represents the heatmap of the top 25 significant features 
between the male hypoxic and male normoxic groups; log normalized intensity is presented in the red-blue 
colors, where red represents high, and blue indicates low expressions.
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uridine diphosphate glucose (UDP), TMAP (N, N, N-Trimethyl-l-alanyl-l-proline betaine), indoxyl sulfate, 
and inosinic acid appeared to be elevated in both male and female kidneys in hypoxic condition. In contrast, 
linoleoyl ethanolamide, heme, oleoylethanolamide, and thyroxine appeared significantly decreased in male and 
female hypoxic kidneys (Fig. 6).

We generated the heatmap to visualize the effect of hypoxia on sex (Fig. S2). The heatmap does not show a 
clear clustering of metabolites according to sex. Although results from the male group, female group, and the 
co-variate analysis show sex-based differences in metabolites, it is difficult to deduce sex-specific metabolic 
alteration, possibly due to the lesser number of animals when classified according to sex.

Biomarker discovery
We performed classical univariate ROC curve analysis to calculate AUC at 95% confidence intervals using Meta-
boAnalyst 5.0. One of the aims of the current study was to identify the biomarkers for hypoxia with high sensi-
tivity (true-positive rate) and specificity (true-negative rate). As mentioned above, an AUC > 0.8 is considered a 
good predictor of a  biomarker26; therefore, we selected the metabolites with an AUC > 0.8 as potential hypoxic 
biomarkers. Table S15 describes the biomarkers identified using the normalized data with their corresponding 
p-values < 0.05 from the t-tests and AUC > 0.8. Figure 7 shows the identified biomarkers with their corresponding 
box plots and ROC curves. The results appeared similar to those obtained from the volcano plot analysis from the 
sex-independent hypoxic vs. normoxic group (Table 1). It can be inferred from the results that 4-trimethylammo-
niobutanoic acid (p-value = 0.00731, AUC = 0.8625), galactonic acid (p-value = 0.00374, AUC = 0.875), glutamic 
acid gamma-methyl ester (p-value = 0.00384, AUC = 0.8875), pantetheine(p-value = 0.0297, AUC = 0.8125), l-car-
nitine (p-value = 0.0140, AUC = 0.875), and orotidine (p-value = 0.0096834, AUC = 0.8375) can serve as potential 
biomarkers for hypoxia as they appeared significantly elevated in hypoxic group compared to normoxic group 

Table 3.  Significantly altered non-lipid biochemicals from Volcano plot with twofold 
change and p-value < 0.05 in male mice (N = 5 for each hypoxic and normoxic group. SICAR  
succinylaminoimidazolecarboxamide ribotide, AICAR  5-aminoimidazole-4-carboxamide ribonucleoside.

Biochemicals log2 (FC) − Log10 (P) Pathway/metabolite category

Significant increase

Pantetheine 13.497 2.629 Pantothenate and CoA biosynthesis

Sorbitol 13.232 1.3491 Fructose and mannose degradation

SAICAR 13.051 1.9493 Purine metabolism

Galactonic acid 12.16 1.6526 Galactitol and galactonate degradation

l-Homoserine 11.466 1.7508 Methionine metabolism

myo-Inositol 10.538 3.0587 Inositol metabolism

Betaine 10.448 1.3958 Betaine metabolism

Glutamic acid, gamma-methyl ester 9.4995 1.4527 Glutamic acid and derivatives

l-Arabitol 9.2328 1.344 Sugar alcohol

Urea 7.4236 1.7868 Urea cycle

l-Cysteine 5.5896 2.2174 Methionine metabolism

Adenosine monophosphate 4.944 2.1141 Purine metabolism

Succinyladenosine 4.941 1.8023 Purine nucleoside

4-Trimethylammoniobutanoic acid 4.3663 1.7112 Carnitine synthesis

Acetyl-CoA 4.0512 1.9797 Fatty acid metabolism

Inosinic acid 3.8745 1.6973 Purine metabolism

Thiamine pyrophosphate 3.5825 2.1263 Thiamine metabolism

Orotidine 3.3748 1.5296 Pyrimidine metabolism

Uridine 5ʹ-monophosphate 2.8874 1.3929 Pyrimidine metabolism

Guanosine monophosphate 2.8655 1.4323 Purine metabolism

Alpha-Tocopherol 2.6389 1.6576 Active form of vitamin E

AICAR 2.1741 1.4138 Purine metabolism

N-Methyl-proline 1.7265 1.3718 Proline and derivatives

l-Cysteinylglycine disulfide 1.0897 1.5796 Dipeptide

Significant decrease

Pyroglutamic acid − 1.9716 1.3723 Glutathione metabolism

Xylitol − 2.4925 1.3737 Sugar alcohol

l-Glutamic acid − 3.641 1.7814 Glutamate metabolism

3 beta-Hydroxy-5-cholestenoate − 4.3007 1.8348 Primary bile acid biosynthesis pathway

Cysteine-S-sulfate − 4.7517 1.4311 Cysteine biosynthesis

Deoxyinosine − 9.085 1.7714 Purine metabolism

Spermine − 11.513 2.989 Arginine and proline metabolism

Phosphoenolpyruvic acid − 13.415 1.6534 Glycolysis
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(Fig. 7). However, linoleoyl ethanolamide (p-value = 0.00406, AUC = 0.9), heme (p-value = 0.028, AUC = 0.8125), 
and thyroxine (p-value = 0.020, AUC = 0.81875) appeared significantly decreased in the hypoxic group in com-
parison to the normoxic group.

Discussion
We utilized the histological approach to understand the effect of hypoxia on kidney tissues. The Masson’s Tri-
chome Staining revealed that hypoxia caused significant fibrosis in both the cortex and medulla of the kid-
neys, consistent in male and female kidneys (Fig. 1). The results reported in this study align with the previous 
 findings4–6. Furthermore, hypoxia causes limited mitochondrial metabolic water production, Krebs-Szent-
Györgyi cycle molecular crowding and potential deuterium accumulation that have implications in oncogenic 
progression and  fibrosis35,36 as observed in our study (Fig. 1). The untargeted metabolomic profiling identified 
1029 biochemicals, with nearly half of the identified biochemicals belonging to the lipid category (Tables S3 and 
S4). The abundance of lipid metabolites was due to the latest metabolomic tools employing polar and non-polar 
extraction techniques with advanced  chromatography37. The increased prevalence of lipids in the identified 
metabolites can also be attributed to the kidney tissue samples, as tissues contain more lipids than urine, plasma, 
or serum  samples38.

Volcano plot analysis between sex-independent hypoxic and normoxic groups, applying a two-fold change 
and a p-value < 0.05, indicated 19 elevated biochemicals under hypoxic conditions, and 29 biochemicals were 
found to be significantly reduced. Many significantly altered metabolites were lipids consisting of phospholipids, 
fatty acids and derivates, acylcarnitines, acyl glycerol, and sterols (Table S4). Among the non-lipid metabolites, 
pantetheine, an activated form of vitamin B5 necessary for the synthesis of CoA, was found to be significantly 
elevated (FC = 6.1763, and −  log10(p) = 1.5268) in the sex-independent hypoxic group. CoA is crucial for intra-
cellular fat transport and energy  metabolism39. Pantetheine also appeared to be significantly upregulated in 
male hypoxic kidneys (FC = 13.497, and −  log10(p) = 2.629) (Table 3), but it was not observed elevated in the 
female hypoxic group, possibly due to a lesser number of animals in this group. Furthermore, Two-way ANOVA 
and Biomarker discovery analysis revealed pantetheine as a significantly elevated metabolite (p-value = 0.0297, 
AUC = 0.8125) (Figs. 6 and 7). These results align with the previous studies on pantetheine, suggesting that its 

Figure 5.  Analysis of hypoxic vs. normoxic in female mice. (A) Represents the volcano plot with 2FC and 
a p-value < 0.05, (B) Represents the OPLS-DA between the hypoxic and normoxic groups. (C) The pathway 
analysis based on VIP score < 1 from OPLS-DA analysis. (D) Represents the heatmap of the top 25 significant 
features between the hypoxic and normoxic groups; log normalized intensity is presented in the red-blue colors, 
where red represents high and blue indicates low expressions.
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levels are remarkably elevated in response to  stress40, and pantetheine’ administration restores CoA levels and 
improves mitochondrial  function41.

In the sex-independent hypoxic group, 4-Trimethylammoniobutanoic acid and L-carnitine, both from the 
carnitine synthesis pathway, exhibited significant elevation, implying enhanced carnitine synthesis in response to 
hypoxic conditions. This is consistent with previous studies by Knabb et al. and Lou et al. that observed increased 
levels of acylcarnitines and carnitines during hypoxic  conditions42,43. Furthermore, biomarker analysis revealed 
significant upregulation of 4-trimethylammoniobutanoic acid (p-value = 0.00731, AUC = 0.8625) and l-carnitine 
(p-value = 0.0140, AUC = 0.875). Notably, acylcarnitines rank third in abundance in our study (n = 56, Table S4). 
Historically identified over 70 years ago, acylcarnitines, which are believed to encompass over 1000 types in 

Figure 6.  Box plots showing the effect of gender on condition (Hypoxic vs. Normoxic), using two-way 
ANOVA.
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mammals, facilitate the transport of acyl groups for metabolism within the  mitochondria44,45. Additionally, 
Glutamic acid gamma-methyl ester’s elevation in the hypoxic group is consistent with Yang et al.’s suggestion of 
its potential as a biomarker for conditions associated with hypoxia, such as retinopathy of  prematurity46.

Galactonic acid, a breakdown product of galactose, was notably elevated, consistent with Xing et al.’s find-
ings of increased levels in chronic hypoxia, suggesting its potential as a hypoxia  biomarker47. Phenyllactic acid 
(2-hydroxy-3-phenyl propionic acid; PLA), derived from phenylalanine  catabolism48, was also elevated in the 
hypoxic group, aligning with Bakkeren et al.’s observations in newborns with respiratory  distress49. Orotidine is 
a nucleoside formed by attaching orotic acid to a ribose ring via a beta-N1-glycosidic bond and has been associ-
ated with poor kidney  function50. Our study reported significant orotidine upregulation in the hypoxic kidneys, 
which is consistent with the report by Shah et al., who proposed orotidine as a novel biomarker for cardiovascular 
disease risk prediction in type 2 diabetes through a metabolomic  study50. It is presumed that stress (hypoxia) 
causes the upregulation of aspartate catabolism, leading to the elevation of orotidine (Fig. 8A). Furthermore, it 
is reported that glutamine-derived aspartate plays a crucial role in hypoxic conditions or environments causing 
electron transport chain (ETC)  impairment51.

Heme, which breaks down via the oxygen-requiring heme oxygenase, was reduced in hypoxic conditions 
(Fig. 8B), possibly due to increased heme oxygenase  induction52,53. Increased bilirubin levels observed in our 
study also suggest upregulation of heme  catabolism53. N-acetyl-l-aspartic acid is significantly downregulated in 
the hypoxic group, consistent with the study of hypoxia on cerebral metabolites by Rosenberg et al.54 and Mar-
cucci et al.55. Thyroxine is an important hormone reported to decrease significantly in high  altitudes56, possibly 
due to the inactivation of local thyroid hormones by hypoxia Inducible  Factor57.

The pathway analysis revealed that the biosynthesis of unsaturated fatty acids was significantly upregulated, 
which complies with the findings by Kamphorst et al., whereby they proposed that hypoxic cells promote the 
synthesis of unsaturated fatty acids by the breakdown of  phospholipids58. The study also explained the upregula-
tion of glycerophospholipid  metabolism58, which may be due to the breakdown of phospholipids to provide free 
fatty acids for uptake by mitochondria through acyl-carnitines. Analyses of urinary metabolites in response to 
hypoxia by Lou et al. reported upregulation of histidine and purine  metabolism43; a similar pattern was observed 
in our study. Lou et al. proposed a link between the upregulation of these pathways and the induction of Hypoxia-
Induced Factor-1(HIF-1)43. Fan et al. recently reported the enrichment of biosynthesis of unsaturated fatty acids 
and histidine metabolism during their study on exosome metabolites hypoxic preconditioning  participants59.

Figure 7.  Biomarkers identified using the biomarker discovery feature of MetaboAnalyst 5.0.
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Audano et al. comprehensively reviewed the sex-related metabolomic and lipidomic profiles and concluded 
that sufficient experimental evidence pointed to sex as one of the most significant biological variables influenc-
ing metabolomic and lipidomic  profiles38. Our study indicated a wide variation in metabolite distribution in 
male and female kidneys. Considering p-value < 0.05 as a measure of significance in two-way ANOVA showed 
sex-independent elevation of some metabolites (Fig. 6); however, using FDR < 0.05 did not show any common 
metabolite between the genders that were significantly altered, this observation could be due to a small number 
of animals in male and female groups. Further studies are required to discover sex-specific hypoxia biomarkers.

Conclusion
High Altitude Renal Syndrome is characterized by several cardiovascular and renal ailments. Chronic hypoxia 
is believed to affect kidney function and cause renal fibrosis. In this study, we examined the kidney tissues of 
mice exposed to chronic hypoxia by placing them in specifically designed hypoxia chambers. The results of 
Trichome staining reveal significant fibrosis when compared with the kidney tissues obtained from mice raised 
under normoxic conditions. Comprehensive metabolic profiling of kidney tissues showed several metabolites 
that were significantly upregulated. Notable among these metabolites are 4-Trimethylammoniobutanoic acid, 
l-carnitine, pantetheine, galactonic acid, orotidine, alpha-tocopherol, myo-inositol, inosinic acid, and bilirubin. 
The biomarker discovery feature of MetaboAnalyst 5.0 also revealed the discovery of these metabolites, and it 
can be reasonably argued that these metabolites can serve as biomarkers for hypoxia.

Furthermore, several research reports investigating hypoxia in different disease conditions showed similar 
patterns as our study observed, further strengthening the argument. Pathway Analysis based on a comprehensive 
and statistically robust OPLS-DA indicates that histidine and purine metabolism are significantly upregulated 
when the mice are exposed to severe hypoxia. We also investigated the effects of hypoxia on male and female 
mice; the results reveal a wide variation in metabolite distribution. Considering p-value < 1 in two-way ANOVA 
showed significantly altered metabolites independent of sex, but using FDR < 0.05 did not reveal sex-independent 
metabolites that could be associated with hypoxic conditions. This observation could be due to a small number 
of animals in male and female groups. Further studies are needed to determine whether hypoxia affects males 
and females differently. Finally, the present study provides evidence that robust metabolomic studies with the 
simultaneous advancements in UP-HPLC, bioinformatics tools, databases, and highly sensitive and specific 
identification of biochemicals can lead to the discovery of novel biomarkers for different disease conditions that 
will improve real-time diagnosis and management of diseases.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files. Appendix A is uploaded as an Excel file containing the raw data of biochemicals; the first tab 
of the Excel sheets provides the explanations for the rest of the tabs in this excel sheet named “Data.” Appendix 
B is uploaded as an Excel file containing the lipids detected in the current study and their classification; the sheet 
is named “Lipids”.

Received: 8 September 2023; Accepted: 10 October 2023

Figure 8.  Schematic illustration of pathways. (A) Represents the pathway involving orotidine. (B) Represents 
the pathway involving heme and bilirubin.
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