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Avoiding inferior clusterings 
with misspecified Gaussian mixture 
models
Siva Rajesh Kasa * & Vaibhav Rajan 

Clustering is a fundamental tool for exploratory data analysis, and is ubiquitous across scientific 
disciplines. Gaussian Mixture Model (GMM) is a popular probabilistic and interpretable model for 
clustering. In many practical settings, the true data distribution, which is unknown, may be non-
Gaussian and may be contaminated by noise or outliers. In such cases, clustering may still be done 
with a misspecified GMM. However, this may lead to incorrect classification of the underlying 
subpopulations. In this paper, we identify and characterize the problem of inferior clustering solutions. 
Similar to well-known spurious solutions, these inferior solutions have high likelihood and poor 
cluster interpretation; however, they differ from spurious solutions in other characteristics, such as 
asymmetry in the fitted components. We theoretically analyze this asymmetry and its relation to 
misspecification. We propose a new penalty term that is designed to avoid both inferior and spurious 
solutions. Using this penalty term, we develop a new model selection criterion and a new GMM-based 
clustering algorithm, SIA. We empirically demonstrate that, in cases of misspecification, SIA avoids 
inferior solutions and outperforms previous GMM-based clustering methods.

The well-established paradigm of model-based clustering assumes data to be generated by a finite mixture model 
where each component represents a cluster. Gaussian Mixture Models (GMM), in particular, are widely used in 
a variety of applications1. Expectation Maximization (EM) and its variants are, by far, the most popular methods 
to obtain Maximum Likelihood Estimates (MLE) of GMM parameters2,3.

The one-to-one correspondence between fitted components and clusters, that makes model-based cluster-
ing appealing, assumes that the underlying model is correctly specified and each data cluster can be viewed as a 
sample from a mixture component. In real data, the true distribution is rarely known and further, data may be 
contaminated by noise or outliers from a distribution different from the assumed model. In such misspecified 
settings, MLE may fail to recover the underlying cluster structure4.

The behaviour of EM for misspecified GMMs was recently studied by5,6 who theoretically quantify the bias 
in estimates under univariate settings and specific cases, e.g., under- and over-specified number of components. 
They also characterize the convergence of EM iterates, which, for misspecified GMMs, converge to the Kullback-
Leibler projection of the data-generating distribution onto the fitted model class, instead of approximating the 
true model parameters. Others have studied misspecifcation in the Bayesian setting, e.g., to find a modified 
likelihood that is robust to mild perturbations from the model7,8, to find the number of components9,10 and to 
find identifiability conditions and consistency guarantees11. In this work, we study misspecified GMMs in a fre-
quentist parametric setting, with the practical aim of improving clustering accuracy, i.e., inferring correct labels.

It is well known that MLE, even in the absence of misspecification, may give rise to spurious solutions 
that are local maximizers of the likelihood but without adequate interpretability of cluster structure12,13. It is a 
consequence of the unboundedness of the GMM likelihood function for unrestricted component covariance 
matrices14, that results in solutions from EM with fitted ‘degenerate’ component(s) having very small variance 
corresponding to a cluster containing very few closely located data points; in the case of multivariate data, there 
are components with very small generalized variance, lying in a lower-dimensional subspace and close to the 
boundary of the parameter space15. Previous approaches to avoid spurious solutions include multiple restarts15 
and restricting the parameter space in EM to avoid degeneracy12,16–18.

Contamination through noise or outliers, which may be from a population different from the assumed model, 
may also lead to spurious solutions. Approaches to fit contaminated mixtures include trimming and restricting 
the parameter space13,19,20. In addition, constrained GMMs have been proposed to tackle spurious solutions 
and contamination21–24; typical constraints enforce varying degrees of homoscedasticity across the component 
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covariance matrices in terms of volume, orientation and/or shape. Such constrained models reduce the number 
of parameters to be estimated, and thereby enable efficient implementations, e.g., in Mclust25. However, imposing 
such hard modeling constraints may be too stringent and can degrade clustering performance as they do not 
take into account feature dependencies that can vary across the clusters, and may lead to incorrect orientations 
or shapes of the inferred clusters. As a result, pre-determined constraints on means or covariance matrices are 
discouraged and a more data-dependent discovery of cluster structure is recommended, e.g., by Zhou et al. 26 
and Fop et al. 27.

In a different line of work, that, to our knowledge, has not studied misspecification, gradient-based methods 
for MLE of GMMs have been investigated28–31. In general, EM has numerous advantages over gradient-based 
methods as discussed in Xu and Jordan 32. More recently, there has been considerable development of Automatic 
Differentiation for Gradient Descent (AD–GD),

that obviate the need to derive closed-form expressions of gradients and thereby facilitate inference in complex 
models such as deep neural networks as well as mixture models33,34.

In our study, we first compare the clustering performance—in terms of Adjusted Rand Index (ARI)35—of 
GD and EM with misspecified GMMs. Our simulations reveal a previously unreported class of poor clustering 
solutions, with both EM and GD. These solutions, that we call inferior, occur frequently in MLE procedures 
(irrespective of the initialization), have asymmetric fitted covariances that vary in their sizes and have poor 
cluster interpretability. Thus, they differ in their characteristics from spurious solutions. More details are given 
in section "Inferior clustering solutions". Our theoretical analysis on a specific setting of univariate mixtures 
and under-specified number of components yields evidence on the connection between asymmetry of fitted 
components and misspecification. It also motivates the design of a new penalty term, based on the Kullback 
Leibler divergence between pairs of fitted component Gaussians, to avoid inferior clusterings. Closed forms for 
the gradients of this penalized likelihood are difficult to derive and we leverage AD-GD to develop algorithms

for clustering (Sequential Initialization Algorithm aka SIA) and a model selection criterion (Maximum abso-
lute Pairwise difference between KL divergence values aka MPKL). Our functional regularization approach, that 
enforces soft constraints tunable by varying the hyperparameters, avoids both spurious solutions and short-
comings of imposing hard modeling constraints. Our extensive experiments demonstrate the advantage of our 
methods in clustering with misspecified GMMs.

To summarize, our contributions in this paper are:

•	 We conduct an empirical analysis to compare the clustering performance of GD and EM inference on uncon-
strained and misspecified GMMs.

•	 We identify and characterize the problem of inferior clusterings that have high likelihood and low ARI, 
similar to spurious solutions, in both EM and GD. Unlike spurious solutions, these solutions have fitted 
components that are markedly asymmetric with respect to their orientation and sizes, and occur frequently 
with many different initializations. We theoretically examine how asymmetry of fitted components varies 
with misspecification.

•	 We propose a new penalty term that is designed to avoid inferior solutions and prove that the penalized 
likelihood is bounded and hence avoids degeneracy. Using this penalty term, we develop MPKL, a model 
selection criterion and SIA, an AD-GD based clustering algorithm.

•	 Experiments on synthetic and real datasets demonstrate the advantages of SIA, over previous clustering 
methods with both constrained and unconstrained GMMs, in cases of misspecification.

Background
Let f (x; θ) be the density of a K-component mixture model. Let fk denote the kth component density with 
parameters θk and weight πk . The density of the mixture model is given by f (x; θ) =

∑K
k=1 πkfk(x; θk), where 

∑K
k=1 πk = 1 and πk ≥ 0 for k = 1, . . . ,K and θ denotes the complete set of parameters. In a GMM, each indi-

vidual component fk is modeled using a multivariate Gaussian distribution N (µk ,�k) where µk and �k are its 
mean and covariance respectively. Appendix A lists all the symbols used herein.

Given n independent and identically distributed (iid) instances of p-dimensional data, [xij]n×p where index 
i is used for observation, and j is used for dimension, Maximum Likelihood Estimation (MLE) aims to find 
parameter estimates θ̂ from the overall parameter space � of f (θ) such that probability of observing the data 
samples x1, . . . , xn is maximized, i.e., θ̂ = argmax

θ∈�
L(θ) , where, L(θ) = 1

n

∑

i log f (xi; θ) is the empirical expected 

loglikelihood.
Following36, if the observed data are n iid samples from a probability distribution P(η∗) (where η∗ denotes 

the true set of parameters) and the fitted model has the same functional form P(.), then the model is said to be 
correctly specified. Otherwise, the model is said to be misspecified. Note that when the number of dimensions 
are greater than the number of datapoints ( p > n ), there are not enough datapoints to determine if the fitted 
model and data-generating distribution are parameterized by the same model, even along a single dimension 
and so, the notion of misspecification is moot. Appendices B and C give an overview of, respectively, spurious 
solutions and likelihood-based model selection criteria (such as Akaike Information Criterion (AIC) and Bayes-
ian Information Criterion (BIC)).

Recent reviews on Automatic Differentiation (AD) can be found in37,38; a brief review is in Appendix D. 
To obtain MLE of GMMs, EM elegantly solves 3 problems: (1) Intractability of evaluating the closed-forms of 
the derivatives, (2) Ensuring positive definiteness of the covariance estimates �̂k , and (3) Ensuring the con-
straint on the component weights ( 

∑

k π̂k = 1 ). Problem 1 is inherently solved by the use of AD. Problems 2 can 
be addressed through simple reparametrizations in the form of matrix decomposition34,39. Problems 3 can be 
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addresed through the unbounded αk as the log-proportions where logπk = αk − log(
∑K

k
′=1

e
α
k
′
) . Details are 

in Appendix D. Constraints used in EM to mitigate spurious solutions and contamination can also be used in 
AD-GD through changes in the update equations.

Inferior clustering solutions
In this section, we illustrate inferior clustering solutions through an empirical comparison of EM and AD-GD in 
cases of misspecification. We also theoretically analyze the role of asymmetric fitted components in misspecified 
Gaussian mixture models.

Simulation study
We study the clustering solutions obtained by fitting misspecified GMM on Pinwheel data, also known as warped 
GMM, with 3 components and 2 dimensions40. Pinwheel data is generated by sampling from Gaussian distribu-
tions, and then stretching and rotating the data. The centers are equidistant around the unit circle. The variance 
is controlled by parameters r, the radial standard deviation and t, the tangential standard deviation. The warping 
is controlled by a third parameter, s, the rate parameter. Thus, the extent of misspecification (i.e., the deviation 
of the data from the assumed Gaussian distributions in GMM) can be controlled using these parameters. An 
example is shown in Fig. 1. We generate 1800 Pinwheel datasets with different combinations of parameters. In 
addition, we also simulate 1800 3-component, 2-dimensional datasets from GMM with varying overlap of com-
ponents (to analyze as a control case where there is no misspecification in fitting a GMM). For each dataset we 
obtain two clustering solutions, one each using EM and AD-GD. We run both the algorithms till convergence, 
using the same initialization and stopping criterion. We use ARI to evaluate performance where higher values 
indicate better clustering. Details are in Appendix E.

Our experiments on these 3600 datasets show that EM outperforms AD-GD in both cases—when there is 
misspecification and no missspecification. However, when there is misspecification, we find that for both EM 
and AD-GD, there are many inferior solutions that have low ARI and unequal fitted covariances, often with one 
fitted component having relatively large covariance, resulting in a high degree of overlap between components. 
We illustrate this using Pinwheel data generated with parameters r = 0.3 , t = 0.05 and s = 0.4 . Both EM and 
AD-GD are run with 100 different initializations. We group the solutions into 4 sets based on AIC as shown in 
Table 1, which also shows the average AIC and ARI obtained by AD-GD and the number of EM and AD-GD 

Figure 1.   4 clustering solutions obtained with AD-GD using different initializations on Pinwheel data; Sets 
refer to groups in Table 1; in parentheses: (ARI, AIC), best values in bold.

Table 1.   Summary statistics of clustering solutions over 100 random initializations on the Pinwheel dataset 
(see Fig. 1), grouped into 4 sets based on AIC ranges. Mean (Standard Deviation) of parameter estimates from 
AD-GD, EM estimates (in Appendix E) are similar.

Set AIC AD-GD # Solutions

Range AIC ARI π1 π2 π3 |�1| |�2| |�3| EM AD-GD

1 771–773 771.9
(6e−8)

0.625
(2e−16)

0.257
(3e−6)

0.265
(3e−6)

0.477
(1e−6)

0.0002
(1e−9)

0.0005
(4e−9)

0.123
(4e−7) 24 19

2 781–782 781.1
(3e−6)

0.912
(0)

0.306
(1e−5)

0.341
(3e−5)

0.352
(1e−5)

7e−4
(5e−9)

0.01
(5e−9)

0.01
(5e−7) 4 3

3 786–787 786.8
(2e−7)

0.652
(0)

0.257
(5e−6)

0.267
(3e−6)

0.475
(3e−6)

2e−4
3e−9

5e−4
(3e−9)

0.156
(2e−6) 16 27

4 788–850 815.0
(17.84)

0.806
(0.06)

0.28
(0.015)

0.315
(0.010)

0.403
(0.024)

6e−4
(4e−4)

3e−3
(1e−3)

0.047
(0.018) 56 51
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solutions in each set. Table 27 (in Appendix E) show the statistics for EM solutions which are very similar. We 
visualize the clustering for one solution from each of these sets in Fig. 1.

We observe that both EM and AD-GD obtain very similar solutions in terms of AIC and ARI for this data-
set. The best average ARI is that of set 2 (row 2 of Table 1). These solutions are obtained in less than 5% of the 
cases. The overall best ARI, of 0.941, is from a solution in set 4 that has a high AIC value of 813.4 as shown in 
Fig. 1d. The best AIC, of 771.9, is obtained by a solution from set 1 which has considerably lower ARI of 0.625 
as shown in Fig. 1a. Thus, we see solutions with high likelihood and low ARI. We observe that there are many 
such inferior solutions in sets 1, 3 and 4 having a fitted component with large variance, also seen in the specific 
solutions in Fig. 1.

In cases of misspecification, inferior clusterings from both EM and AD-GD, are found to have fitted covari-
ances that differ considerably in their orientations and sizes. We observe this in the solutions in Fig. 1 and through 
the summary statistics in Table 1. We find that such inferior solutions in misspecified models occur frequently 
with many different initializations, and typically when there is a component with large variance. This is different 
from the characterization of spurious solutions (see Appendix B) that are found to occur rarely, only with certain 
initializations and due to a component with small variance1.

We find similar inferior solutions with low ARI and low AIC in cases where Gaussian components are con-
taminated by a Student’s-t distribution and random noise (details in Appendix F). Further, we have observed 
similar effects of misspecification in higher dimensions as well. Illustrations in datasets of up to 100 dimensions 
are in Appendix F.

Misspecification and asymmetric components
We now theoretically examine how asymmetry of fitted components varies with misspecification in the case of 
univariate mixtures, following the setting of5,6,41.

Let the true data generating distribution be G∗ = πN (−µ, σ 2)+ πN (µ, σ 2)+ (1− 2π)N (µ, b2σ 2) , with 
0 < π ≤ 0.5 . Without loss of generality, we assume µ > 0 . When π = 0.5 , the true distribution is a symmetric 
2-component GMM, with the component means equidistant on either side of the real line as shown in Fig. 2a. 
In this case, it has been shown that under some identifiability conditions, fitting a 2-component GMM (i.e., 
without any misspecification) on the data sampled from the true distribution using MLE leads to symmetric 
fitted components whose parameters converge to that of the true distribution32,36. As π is reduced from 0.5, an 
additional Gaussian component with mean µ (that coincides with one of the component means) and variance 
b2σ 2 is introduced. Fitting a 2-component GMM in the case when π < 0.5 leads to a misspecified model. We 
analyze the asymmetry of the fitted components for π < 0.5 with varying misspecification (b).

Let the fitted misspecified distribution be G′(θ̄) = (1− π̄)N (µ̄1, σ̄
2
1 )+ π̄N (µ̄2, σ̄

2
2 ) ,  where 

θ̄ = (µ̄1, σ̄
2
1 , µ̄2, σ̄

2
2 , π̄) and θ̄ ∈ argminθ∈� KL

(
G∗, G′(θ)

)
 . Note that this is a projection to the fitted model and 

is the best possible estimator5. Let erf  be the Gauss error function42 which is an odd function, whose values lies 
in (−1, 1) and is related to the CDF of a standard normal distribution as �(x) = 1

2

[

1+ erf
(

x√
2

)]

.
When misspecification is small, the means of fitted components µ̄1, µ̄2 typically have opposite signs, as the 

true components flank the y-axis. When there is misspecification, we expect erf
(

µ̄1√
2σ̄1

)

 and erf
(

µ̄2√
2σ̄2

)

 to have 
unequal and opposite signs. We define an asymmetry coefficient:

τ(θ̄) = (π̄)erf(
µ̄2√
2σ̄2

)+ (1− π̄)erf(
µ̄1√
2σ̄1

).

Figure 2.   (a) True distribution is a GMM  and a contamination . We fit a 2-component (misspecified) 
GMM . (b) Empirical comparison of τ(θ̄) and its upper bound with varying b.
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τ(θ̄) measures a form of asymmetry in µ
σ

 of the fitted components when there is misspecification. When there is 
no misspecification, since MLE estimates converge to the true parameters asymptotically, τ(θ̄) also converges to 
zero. However, when there is misspecification, the variance of one of the components, say σ1 , tends to be much 
larger than that of the other component (as seen in Table 1); in such cases, erf

(
µ1√
2σ1

)

 would be much closer to 
zero compared to the error function for the other component and τ(θ̄) would converge to a non-zero value. We 
derive bounds on τ(θ̄) as follows (proof in Appendix G):

Theorem 1  Let the true data generating distribution be G∗ = πN (−µ, σ 2)+ πN (µ, σ 2)+ (1− 2π)N (µ, b2σ 2) , 
with 0 < π ≤ 0.5 . Let the fitted misspecified distribution be G′(θ̄) = (1− π̄)N (µ̄1, σ̄

2
1 )+ π̄N (µ̄2, σ̄

2
2 ) , with asym-

metr y  coe f f i c ient  τ(θ̄) ,  where  θ̄ = (µ̄1, σ̄
2
1 , µ̄2, σ̄

2
2 , π̄) and θ̄ ∈ argminθ∈� KL

(
G∗, G′(θ)

)
 .  Let 

C2 := (1− 2π)(− log b+ 0.5b2 − 0.5)+ π
2µ2

σ 2  and Cw := 1−2w
2 erf

(
−µ√
2σ

)

 . Then,

Note that C2 and Cw depend only on the true parameters (π ,µ, σ , b) and are constants with respect to the 
fitted model. Assuming that the true parameters are known, these bounds provide a certification on whether the 
fitted parameters θ̄ indeed correspond to the maximum likelihood, thus helping to filter out fitted parameters 
corresponding to spurious solutions and undesirable local optima.

We empirically compare the upper bound and observed value of τ(θ̄) when µ = 5.0, σ = 10,π = 0.35 
by varying the values of b (the behaviour of the lower bound is qualitatively similar). For a given value of 
b ∈ {0.1, 0.2, . . . , 6} , we simulate 50 datasets and pick the maximum of τ(θ̄) among these 50 output solutions. 
The upper bound and the observed maximum are plotted in Fig. 2b.

At around b = 1 (when there is no misspecification), the upper bound reaches its minimum. As b moves away 
from 1, the upper bound increases which illustrates that as misspecification increases, the asymmetry in the fitted 
components also increases. Additional plots for other values of (µ, σ ,π) are in Appendix G. We observe that, 
if one of the components has a relatively large variance, then many datapoints may be wrongly assigned to this 
component leading to poor clustering.

A penalized clustering method
A new penalty term
Our analysis in the previous section naturally leads to the goal of reducing the asymmetry in the fitted compo-
nents to improve clustering with misspecified GMMs. To this end, we develop a new functional penalty term 
that (i) penalizes differences in orientations and sizes of the fitted components to avoid inferior solutions and 
(ii) bounds the penalized likelihood to avoid spurious solutions during ML estimation.

Our penalty term is based on the KL-divergence between component Gaussians. Let Nk denote the multi-
variate Gaussian distribution N (µk ,�k) . The KL-divergence KL(N1,N2) is given below where each term can 
provide useful penalties:

 

A	 Penalizes the difference in size of the covariance matrices of the two components. Even if the directions of 
principal axes of the two covariance matrices are different, this term will be zero if the component determi-
nants are exactly the same, since log(1) = 0.

B	 Penalizes the difference in orientations, i.e., if the directions of principal axes of the component covariance 
matrices are vastly different. When �1 and �2 are equal, this penalty term becomes zero.

C	 Penalizes the assignment of a single cluster to faraway outlier points which have an extremely low likelihood 
of being observed. If some outlier points are assigned a single cluster, then the cluster center, µ1 , would be 
different from the cluster center µ2 of non-outlier data, and so, the Mahalonobis distance between the cluster 
centers, �µ1 − µ2� , would be high, with higher penalization.

KL-divergence is not symmetric about �1 and �2 . If there is an order of magnitude difference in the covari-
ance matrices �1 and �2 , it can be detected through the values of KL(N1,N2) and KL(N2,N1) . The differ-
ence in their values primarily stems from the difference between the terms (µ2 − µ1)

T�−1
2 (µ2 − µ1) and 

(µ2 − µ1)
T�−1

1 (µ2 − µ1) , and tr{�−1
2 �1} and tr{�−1

1 �2} . The difference in these two KL divergence values pro-
vides signal about the overlap or asymmetry of the two Gaussians. This notion is generalized to a K-component 
GMM, through the combinatorial KL divergences, KLF (forward) and KLB (backward), where 1 ≤ k1, k2 ≤ K : 
KLF :=

∑

k1<k2
KL

(
Nk1 ,Nk2

)
;KLB :=

∑

k2<k1
KL

(
Nk1 ,Nk2

)
 . Well separated equal-sized clusters typically have 

similar values of KLF and KLB (By well-separated we refer to the case where the means of the Gaussian distri-
butions representing the two clusters are far apart from each other relative to their spreads (as dictated by their 
respective covariance matrices). In this scenario, the values of both KLF and KLB are both dominated by the term 
B and term C i.e. the trace term and the Mahalonobis distance term. The difference between KLF and KLB will 

−
√
2C2 + 2Cw ≤ τ(θ̄) ≤

√
2C2 + 2Cw .

1

2
[log |�2|

|�1|
︸ ︷︷ ︸

A

+ tr{�−1
2 �1} − p

︸ ︷︷ ︸

B

+ (µ2 − µ1)
T�−1

2 (µ2 − µ1)
︸ ︷︷ ︸

C

]
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be mainly due to the differences in terms B, C between the pairwise KL-Divergences. Now consider a scenario, 
where the spread of one of the cluster is much higher compared to the other one. In this not-well-separated case, 
the terms B,C will differ more significantly between the pairwise KL-Divergences. This effect will be later seen 
clearly in Fig. 3 where the KLF and KLB values are high when the clusters not well separated.). We denote both 
the values by KLDivs = {KLF,KLB}. We note that these two sums (KLF + KLB) together give the sum of Jeffrey’s 
divergence between all components43. In the clustering outputs shown in Fig. 1, we see that in solution (c) from 
set 3, where clustering is poor, KLF= 258 and KLB= 494 (the difference is high), while in solution (d) from set 
4, which has better clustering, KLF= 127 and KLB= 64 (with low difference).

Our proposed penalty term is a weighted sum of the KLF and KLB terms: −w1 × KLF − w2 × KLB , with 
negative weights (−w1,−w2) . With positive weights GD will further shrink the smaller clusters. Negative weights 
lead to reduced overlap as well as clusters of similar volume. In our experiments, we found that choosing w1 = w2 
works in almost all cases. Further, choosing w1 = w2 makes the penalized objective invariant to permutation in 
the component labels. In general, we can say that for all positive values of w1,w2 , the weighted penalty term (made 
up of KLF, KLB) will be always positive as both KLF and KLB are summation of KL divergences. Alternatively we 
also take a closer look at the individual terms that make up KLF and KLB. Term C is the Mahalonobis term which 
will always be positive. Term A+B is known as the Burg Matrix Divergence or the LogDet Divergence, which is 
again guaranteed to be positive44. However, the same cannot be said for the individual terms A and B separately. 
E.g., if we were to consider the contribution of the log determinant terms towards the penalty in isolation, it is 
possible that the aggregate of the log determinant terms can be negative. As a minor side point, we also want to 
point out that when we set w1 = w2 , as we did in our experiments, the log determinant terms cancel out each 
other in the final expression and thus, only terms B and C would contribute to the penalty.

Optimization of likelihood with these penalty terms can be implemented effortlessly through AD-GD where 
gradients in closed forms are not required. However, the use of such complex penalties is difficult within EM. 
We cannot obtain closed forms of the covariance estimates. Closed forms for the mean update can be derived 
(Appendix H) but is laborious and each mean update depends on means for all other components, and hence 
cannot be parallelized in EM.

Sequential initialization algorithm (SIA)
SIA consists of two steps. In Step I of SIA, we use the loglikelihood L as the objective and run EM or AD-GD to 
fit a GMM. Typically, the output at the end of Step I will have unequal KL-divergences for misspecified models. 
The parameters at the end of Step I are used to initialize the algorithm in step II where we modify the objective 
function to:

After the second optimization step the likelihood decreases but the KL-divergence values, KLF and KLB, come 
closer. The complete algorithm is presented in Algorithm 1.

In SIA, after Step I we know the likelihood and model parameters of the unpenalized fitted model. In Step 
II, we choose w1,w2 in such a way that the overall likelihood of the model doesn’t reduce drastically, to find 
solutions (with less dissimilar covariances) close to the solution after Step I. In our experiments, the values of 
w1,w2 have been kept equal and chosen from {0, 0.25, 0.5, 1, 1.25} using the MPKL criterion (described below).

SIA objective is bounded
We consider maximum likelihood estimation of parameters θ of a two-component GMM, from n samples, each 
of p-dimensions, using SIA. We prove that our penalized log-likelihood M is bounded, and thus SIA alleviates 
the problem of degeneracy and spurious solutions in unconstrained GMMs.

Theorem 2  Let C denote a constant dependent only on p, n,w1,w2, c and independent of θ . Assume that the spectral 
norm of the generalized variances obtained using MLE, �1,�2 , is bounded by c < ∞ (as a regularity condition) 
and, without loss of generality, assume |�1| ≤ |�2| and that the loglikelihood L → ∞ when the first component 

(1)M = L− w1 × KLF − w2 × KLB

Algorithm 1.   SIA.
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collapses on a datapoint, i.e., |�1| → 0 . For non-negative weights w1,w2 , and any iteration t, SIA objective function 
M is always bounded:

The proof, in Appendix G, also clarifies that the result generalizes to arbitrary number of components. The 
bound is given in terms of w2 because we assume |�1| ≤ |�2| (the objective is not symmetric with respect to w1 
and w2 ). Hence, w1 does not appear in the theorem statement. Also note that, w1 and w2 are the only controllable 
hyper-parameters. By setting w2 = 0 , we can see that the maximum of unpenalized likelihood is unbounded. 
If a � collapses, the log-likelihood may increase but the trace term and the determinant in the penalization will 
explode. Hence, by having negative weights −w1,−w2 we can ensure that M is bounded and control the behavior 
of the algorithm. Note that both |�1|, |�2| will not collapse to zero in a maximum-likelihood estimation approach 
because if both collapse the log-likelihood goes to negative infinity (which is easy to verify). A visualization of the 
likelihood surface, with and without penalty terms, is shown in Appendix I. The fact that there exists an upper 
bound to the penalized likelihood (even when the generalized variance of one of the components collapses to 
zero), irrespective of its tightness, is sufficient to show that SIA avoids degenerate and spurious solutions.

MPKL: a model selection criterion
We define the Maximum absolute Pairwise difference between KL divergence values (MPKL) for a K-component 
GMM as:

MPKL is an indicator of how well the clusters are separated. It is invariant to permutation in cluster labels and 
can be used as a criterion for selecting the number of clusters. For a chosen range of number of clusters ( 2, . . . , L ), 
we compute MPKL for each value and choose K that minimizes MPKL: argminK∈[2,...,L]MPKL . Note that MPKL 
criterion is independent of SIA and can be potentially useful for any GMM-based method, even in the absence 
of suspected misspecification. In our experiments (Evaluation on real datasets and Appendix L.2), we show that 
use of MPKL aids both GD and EM based methods.

Computational complexity
The computational complexity is dominated by evaluating KLF and KLB which involves O(K2) matrix inversion 
steps ( O(p3) ). Therefore, the overall time complexity of both SIA and MPKL is O(K2p3) . This is comparable to 
most GMM inference methods (e.g., EM) due to the O(p3) matrix inversion step. Wall-clock times of EM, AD-GD 
and SIA implementations are compared in Appendix J.

Illustrative examples
Figure 3 shows the clustering solution (set 3) obtained on the Pinwheel data discussed in Inferior clustering solu-
tions, after steps I and II of SIA. After step II, compared to the clustering after step I, the likelihood decreases, 
both the KLF and KLB values decrease, the ARI increases, and the clusters have less overlap. The same is observed 
for the other three sets of clustering solutions. Similar illustrations on datasets contaminated with Student’s-t 
and random noise are in Appendix F.

Simulation studies
We simulate over 2000 datasets from mixtures with non-Gaussian components and with varying (i) cluster 
separation (ii) covariance structures and imbalance across component sizes and (iii–iv) number of components. 
In all these settings, we vary the dimensionality as well. Table 2 shows a summary of all the settings and the 
sections in which the experiments are discussed. Experiments to evaluate MPKL as a model selection criterion 
are in Appendix L.2.

M ≤ −1

2
(1+ w2)

(

log(| w2

1+ w2
�2|)+ p

)

+ C.

(2)max
1≤k1,k2≤K

|KL
(
Nk1 ,Nk2

)
− KL

(
Nk2 ,Nk1

)
|

Figure 3.   Clustering using SIA: compare with Fig. 1.
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We evaluate the clustering performance of misspecified GMM using four inference techniques—EM , AD-GD, 
MClust (that implements EM for GMMs with 14 different, including equi-covariance, constraints) and our SIA 
algorithm. Note that in SIA, EM and AD-GD, the same model (unconstrained GMM) is fitted; the difference 
lies only in the inference approach. MClust fits different models (constrained GMMs) altogether. We use it as a 
baseline method to compare the performance of the softer regularization-based approach in SIA with the harder 
constraint-based approach in MClust, two different ways of providing inductive bias to the models.

All the algorithms are initialized using K-Means and are run till convergence. In MClust, instead of the default 
initialization with model-based agglomerative clustering, we use K-Means for a fair comparison; the best among 
its 14 internal models are selected using BIC.

Varying cluster separation
We simulate data from p-dimensional mixture model with 3 Gaussian components, N (0.5� (1, . . . , 1)p, Ip) , 
N ((0, . . . , 0)p, Ip) , N (−0.5�(1, . . . , 1)p, Ip) , where � is a scaling factor which controls the cluster separation and I2 
is a unit covariance matrix. We evaluate the performance for � values in {3, 4, 5, 7} and p values in {2, 3, 5, 10, 20} . 
For each value of p, we sample 100× p datapoints from each of the 3 components. These sampled datapoints are 
cubed so that none of the components is normally distributed. 50 datasets are simulated for each setting. The 
results for different values of p are given in Tables 3, 4, 5, 6 and 7. At higher values of p, SIA outperforms all other 
methods and at lower values of p, SIA outperforms EM and GD. When the dimensionality is small and the cluster 
separation is poor, we find that the performance of Mclust is slightly better than that of SIA.

Varying covariance structures and unbalanced mixtures
We sample from a 2 component p-dimensional GMM whose means are (−0.5, . . . ,−0.5)p and (0.5, . . . , 0.5)p 
and covariances matrices are �k = (�

1/2
k (�

1/2
k )T ) . The parameters of �1/2

k  are sampled randomly to capture 
different covariance structures. We demonstrate in Appendix N that this sampling approach indeed yields diverse 
covariance structures. The simulated datapoints are then cubed (for misspecification). Keeping the number of 

Table 2.   Summary of simulation experiments; K: no. of components, p: dimensionality, n: no. of data points, r: 
ratio of weights, µ : means, � : covariances. In each case we use p = 2, . . . , 20.

Condition(s) Varied K µ � r n Sections

1 Cluster separation 3 varied unit 1 300p  Varying cluster separation

2 Covariance and mixture weights 2 Fixed Varied {0.2, 0.5, 1} {120p, 150p, 200p}
Varying covariance 
structures and unbalanced 
mixtures

3 #components Under-specified Fixed Unit 1 150  L.1.1

4 #components Over-specified Fixed Unit 1 100 L.1.2

Table 3.   ARI (mean and SD) on varying � and p = 2. Significant values are in bold.

� 3 4 5 7

SIA 0.021
(0.052)

0.073
(0.147)

0.135
(0.270)

0.281
(0.325)

AD-GD 0.021
(0.052)

0.064
(0.146)

0.129
(0.218)

0.278
(0.334)

EM 0.024
(0.042)

0.043
(0.060)

0.111
(0.206)

0.284
(0.355)

Mclust 0.104
(0.019)

0.189
(0.038)

0.226 
 (0.036)

0.447
(0.224)

Table 4.   ARI (mean and SD) on varying � and p = 3. Significant values are in bold.

� 3 4 5 7

SIA 0.119
(0.081)

0.213
(0.090)

0.399
(0.099)

0.881 
(0.069)

AD-GD 0.105
(0.059)

0.198
(0.073)

0.381
(0.094)

0.873
(0.071)

EM 0.075
(0.038)

0.221
(0.117)

0.395
(0.178)

0.632
(0.358)

Mclust 0.139
 (0.018)

0.228 
(0.041)

0.290
(0.081)

0.731
(0.228)
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data points ( N1 × p ) in cluster 1 constant at 100× p , we vary the number of datapoints ( N2 × p ) in cluster 2 
as {20× p, 50× p, 100× p} . We simulate 50 different datasets for each setting. We vary the dimensionality p 
as {2, 3, 5, 10, 20} . The results are given in Tables 8, 9 and 10. We observe that when the dimensionality is low, 
clustering performance is better at higher imbalance. Appendix K shows an illustration. At higher values of p, 
clustering performance is better at lower imbalance. Overall, we find that SIA performs on par or better than 
EM, AD-GD and MClust.

Evaluation on real datasets
We evaluate SIA on real datasets: (I) Wine45, (II) IRIS46, (III) Abalone47), (IV) Urban Land cover48, (V) LUSC 
RNA-Seq49), (VI) Breast Cancer50, (VII) Crabs51, (VIII) Wholesale52, (IX) Ceramics53, and (X) HTRU​54.

The datasets are diverse with respect to values of n, p and K  and such that their underlying clusters do not 
appear to be Gaussian or well-separated (as seen through their scatter-plots). EM, AD-GD, MClust and SIA are 

Table 5.   ARI (mean and SD) on varying � and p = 5. Significant values are in bold.

� 3 4 5 7

SIA 0.163
(0.110)

0.504
 (0.129)

0.757
(0.103)

0.926
(0.036)

AD-GD 0.178
(0.075)

0.451
(0.088)

0.678
(0.089)

0.908
(0.048)

EM 0.143
(0.116)

0.316
(0.195)

0.527
(0.297)

0.856
(0.254)

Mclust 0.184 
(0.013)

0.321
(0.154)

0.610
(0.262)

0.839
(0.169)

Table 6.   ARI (mean and SD) on varying � and p = 10. Significant values are in bold.

� 3 4 5 7

SIA 0.559
(0.109)

0.836
(0.130)

0.893 
(0.239)

0.983
(0.015)

AD-GD 0.553
(0.109)

0.773
(0.220)

0.846
(0.235)

0.949
(0.038)

EM 0.340
(0.189)

0.477
(0.325)

0.571
(0.412)

0.835
(0.294)

Mclust 0.265
(0.052)

0.626
(0.270)

0.727
(0.259)

0.829
(0.237)

Table 7.   ARI (mean and SD) on varying � and p = 20. Significant values are in bold.

� 3 4 5 7

SIA 0.850 
(0.162)

0.893 
(0.172)

0.947 
(0.469)

0.966
(0.441)

AD-GD 0.846
(0.058)

0.843
(0.279)

0.861
(0.491)

0.926
(0.441)

EM 0.684
(0.234)

0.750
(0.345)

0.879
(0.263)

0.995
(0.005)

Mclust 0.328
(0.008)

0.747
(0.256)

0.779
(0.250)

0.796
(0.249)

Table 8.   ARI (mean and SD) for different p and N2 = 20. Significant values are in bold.

p 2 3 5 10 20

SIA 0.192 
(0.333)

0.128
(0.241)

0.077 
(0.086)

0.048 
(0.056)

0.0311
(0.035)

AD-GD 0.168
(0.328)

0.122
(0.244)

0.020
(0.079)

0.001
(0.007)

0.001
(0.01)

EM 0.162
(0.343)

0.084
(0.234)

0.064
(0.088)

0.0344
(0.054)

0.030
(0.035)

MClust 0.168
(0.329)

0.086
(0.181)

0.052
(0.079)

0.045
(0.028)

0.035 
(0.015)
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initialized using K-Means, with 10 different random initializations within K-Means, and the best result obtained 
is reported.

Table 11 shows the dataset statistics and the ARI obtained (using the provided ground truth) by each method.
In datasets IV and V, the number of observations is lesser than the dimensions ( n < p ), EM fails to run and 

AD-GD assigns all the points to a single cluster.

Case study
The Wine dataset contains the results of a chemical analysis of wines, yielding 13 features, from 3 different culti-
vars. We use this dataset, without the labels of wine types, and fit EM, AD-GD, MClust and SIA for K ∈ {2, 3, 4} . 
The log-likelihood (LL), MPKL, KLDivs, AIC and ARI values are shown in Table 12. For each K we show the 
results for multiple runs with different initializations.

For K = 2 , among the 3 EM solutions, while clustering S1 has better LL, its MPKL is higher (worse) than those 
obtained by the other clustering outputs (S2 and S3). So, even among EM solutions, by trading off likelihood 
for an improvement in MPKL, we can choose better clustering solutions with higher accuracy. The LL of SIA is 
better than that of AD-GD (which was used in step 1 of SIA) indicating that its penalty term can aid in escaping 
local maxima. The ARI from SIA (S5) is comparable to the best results from EM. We observe similar trends for 
K = 3 . Among EM solutions (S6 and S7), the solution with better MPKL (S7) achieves a better ARI. Again, the 
LL of SIA (S9) is better than that of AD-GD (S8), which was used in step 1 of SIA. The best ARI is achieved by 
SIA which also has the lowest MPKL value. For K = 4 , we observe that AD-GD solution (S12) does not have high 
LL, nor does it have a low MPKL value. When SIA step-2 is initialized with the output of EM (S13), we observe 
a decrease in MPKL and an improvement in ARI over both EM and AD-GD. The confusion matrices of models 
with the best MPKL values for each K is in Table 13. Misspecification of the components is evident in the data 
scatterplot and S9 visually has the most well separated clusters (both in Appendix M).

Conclusion
In this paper, we illustrate and discuss the problem of inferior solutions that occur while clustering with misspeci-
fied GMMs. They differ in their characteristics from spurious solutions in terms of the asymmetry of component 
orientation and sizes, and frequency of occurrence. Our theoretical analysis highlights a new relation between 
such asymmetry of fitted components and misspecification. Further investigation of this connection would be 
interesting to explore in the future.

We propose a new penalty term based on the Kullback Leibler divergence between pairs of fitted compo-
nents that, by design, avoids inferior solutions. We prove that the penalized likelihood is bounded and avoids 
degeneracy. Gradient computations for this penalized likelihood is difficult but Automatic Differentiation can 
be done effortlessly. We develop algorithms SIA for clustering and MPKL for model selection, and evaluate their 
performance, on clustering synthetic and real datasets with misspecified GMMs. The superiority of SIA for mis-
specification is primarily demonstrated through extensive experimentation. Our simulation study reveals that 
SIA works well in several cases of misspecification that we examine, particularly when the cluster separation 
is low. At high cluster separation, the effect of misspecification on clustering is less acute and other methods, 
like MClust, also perform well, and the performance of SIA is comparable. Although the penalty term in SIA 
is designed to penalize component asymmetry, SIA performs well even when there are significant differences 
with respect to orientations and sizes of the true components in our simulation study. This is because SIA does 

Table 9.   ARI (mean and SD) for different p and N2 = 50. Significant values are in bold.

p 2 3 5 10 20

SIA 0.163
 (0.259)

 0.117 
(0.170)

0.099 
 (0.102)

0.086 
 (0.055)

0.245 
(0.215)

AD-GD 0.122
(0.259)

0.112
(0.171)

0.068
(0.101)

0.052
(0.066)

0.208
(0.242)

EM 0.158
(0.258)

0.105
(0.173)

0.078
(0.095)

0.070
(0.054)

0.061
(0.061)

MClust 0.154
(0.322)

0.102
(0.148)

0.052
(0.088)

0.025
(0.028)

0.017
(0.015)

Table 10.   ARI (mean and SD) for different p and N2 = 100. Significant values are in bold.

p 2 3 5 10 20

SIA 0.088
(0.073)

 0.134 
(0.105)

 0.089
(0.112)

0.108 
(0.077)

0.474
(0.221)

AD-GD 0.066
(0.075)

0.125
(0.106)

0.081
(0.114)

0.094
(0.084)

0.538
(0.260)

EM 0.084
(0.070)

0.108
(0.098)

0.073
(0.088)

0.089
(0.078)

0.078
(0.075)

MClust 0.131 
(0.240)

0.110
(0.087)

0.057
(0.079)

0.012
(0.014)

0.003
(0.006)
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not use hard constraints on the orientations and sizes and the functional penalization approach enables a data-
dependent discovery of the underlying clusters. Nevertheless, it is possible in some cases for SIA to fit symmetric 
components when the underlying clusters have covariances with different orientations and sizes. The use of our 
proposed MPKL criterion in conjunction with other likelihood-based criteria like AIC or BIC, as discussed in 
our case study, can guide the user to find good clustering solutions in such cases. Statistical guarantees with this 
penalized likelihood approach and extensions to high-dimensional settings require further work and would be 
of theoretical and practical interest.

Data and code availability
Python implementation of our algorithms and experiments available at https://​bitbu​cket.​org/​cdal/​sia/.

Table 11.   Clustering performance (ARI and RI) on ten real datasets. Significant values are in bold.

ARI RI

Dataset n p K SIA EM AD-GD MClust SIA EM AD-GD MClust

I 178 13 3 0.63 0.462 0.375 0.62 0.835 0.742 0.721 0.829

II 150 4 3 0.92 0.90 0.90 0.90 0.965 0.957 0.957 0.957

III 4177 8 3 0.130 0.121 0.089 0.072 0.587 0.582 0.577 0.566

IV 168 148 9 0.11 – 0 – 0.613 – 0 –

V 130 206 2 0.023 – 0 −0.01 0.513 - 0 0.496

VI 569 30 2 0.610 0.593 0.213 0.593 0.805 0.797 0.621 0.797

VII 200 5 4 0.822 0.818 0 0.322 0.933 0.931 0 0.744

VIII 400 6 6 0.188 0.116 0.112 0.132 0.651 0.626 0.599 0.548

IX 88 17 2 0.866 0.783 0.9101 1.0 0.933 0.891 0.955 1.0

X 17898 8 2 0.402 0.349 0.348 0.344 0.770 0.739 0.738 0.736

Table 12.   Clustering results for wine dataset. Significant values are in bold.

S K Algorithm LL AIC KLF KLB MPKL ARI

1 2 EM −2983.6 6385.3 86.3 39.5 46.8 0.46

2 2 EM −3117.4 6652.9 17.2 14.8 2.3 0.57

3 2 EM −3083.0 6584.0 22.2 17.36 4.8 0.59

4 2 AD-GD −3081.6 6581.2 56.1 29.6 26.5 0.55

5 2 SIA −3072.0 6562.0 42.1 27.5 14.6 0.57

6 3 EM −2901.0 6430.0 321.29 91.44 229.8 0.46

7 3 EM −2915.7 6459.4 93.25 118 51.68 0.62

8 3 AD-GD −3030.04 6688.8 165.9 152.1 50.7 0.38

9 3 SIA −2921.45 6470.9 57.7 60.8 14.66 0.63

10 4 EM −2637.7 6113.4 2.86e8 407.7 134e8 0.52

11 4 EM −2660.7 6158.0 513e7 362.1 513e7 0.52

12 4 AD-GD −2910.7 6659.4 1192.4 364.0 486.65 0.35

13 4 SIA −2850.5 6539.0 519.0 304.9 214.05 0.67

Table 13.   Results for the best model for each K (S3, S9, S13 in Table 12). 1© , 2© , 3© : 3 wine types.

K 1© 2© 3©

2
59 40

71 8

3

56 6

56 7

3 9 41

4

35 3

63 0

75 5 48

17

https://bitbucket.org/cdal/sia/
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