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Estimating global identifiability 
using conditional mutual 
information in a Bayesian 
framework
Sahil Bhola * & Karthik Duraisamy 

A novel information-theoretic approach is proposed to assess the global practical identifiability of 
Bayesian statistical models. Based on the concept of conditional mutual information, an estimate 
of information gained for each model parameter is used to quantify the identifiability with practical 
considerations. No assumptions are made about the structure of the statistical model or the prior 
distribution while constructing the estimator. The estimator has the following notable advantages: 
first, no controlled experiment or data is required to conduct the practical identifiability analysis; 
second, unlike popular variance-based global sensitivity analysis methods, different forms of 
uncertainties, such as model-form, parameter, or measurement can be taken into account; third, 
the identifiability analysis is global, and therefore independent of a realization of the parameters. 
If an individual parameter has low identifiability, it can belong to an identifiable subset such that 
parameters within the subset have a functional relationship and thus have a combined effect on the 
statistical model. The practical identifiability framework is extended to highlight the dependencies 
between parameter pairs that emerge a posteriori to find identifiable parameter subsets. The 
applicability of the proposed approach is demonstrated using a linear Gaussian model and a non-linear 
methane-air reduced kinetics model. It is shown that by examining the information gained for each 
model parameter along with its dependencies with other parameters, a subset of parameters that can 
be estimated with high posterior certainty can be found.

With the growth in computational capabilities, statistical models are becoming increasingly complex to make 
predictions under various design conditions. These models often contain uncertain parameters which must 
be estimated using data obtained from controlled experiments. While methods for parameter estimation have 
matured significantly, there remain notable challenges for a statistical model and estimated parameters to be 
considered reliable. One such challenge is the practical identifiability of model parameters which is defined as 
the possibility of estimating each parameter with high confidence given different forms of uncertainties, such 
as parameter, model-form, or measurement are present1–3. Low practical identifiability of the statistical model 
can lead to an ill-posed estimation problem which becomes a critical issue when the parameters have a physical 
interpretation and decisions are to be made using their estimated values4, 5. Further, such identifiability deficit 
can also lead to an unreliable model prediction, and therefore such statistical models are not suitable for practical 
applications6, 7. Therefore, for a reliable parameter estimation process and model prediction, it is of significant 
interest that the practical identifiability is evaluated before any controlled experiment or parameter estimation 
studies are conducted8, 9.

In frequentist statistics, the problem of practical identifiability is to examine the possibility of unique estima-
tion of model parameters θ8. Under such considerations, methods examining identifiability are broadly clas-
sified into local and global identifiability methods. While the former examines the possibility that θ = θk is a 
unique parameter estimate within its neighborhood N(θk) in the parameter space, the latter is concerned with 
the uniqueness of θk when considering the entire parameter space. Local sensitivity analysis has been widely 
used to find parameters that produce large variability in the model response10–13. In such an analysis, parameters 
resulting in large variability are considered relevant and therefore assumed to be identifiable for parameter esti-
mation. However, the parameters associated with large model sensitivities could still have poor identifiability 
characteristics14. Another class of frequentist identification methods is based on the analysis of the properties 
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of the Fisher information matrix (FIM). Staley et al.15 proposed that the positive definiteness of the FIM is 
the necessary and sufficient condition for the parameters to be considered practically identifiable. Similarly, 
Rothenberg16 showed that the identifiability of the parameters is equivalent to the non-singularity of the FIM. 
However, subsequent findings17, 18 have reported that models with singular FIM could also be identifiable. Weijers 
et al.19 extended the classical FIM analysis and showed that even if an individual parameter has low identifi-
ability it can belong to an identifiable subset, such that the subset is practically identifiable. Parameters within 
such subsets have functional relationships with each other, thus resulting in a combined effect on the model 
response. It has been shown that such identifiable subsets can be found by examining the condition number 
(E-criterion) and determinant (D-criterion), and selecting parameter pairs with the smallest condition number 
and largest determinant. Similarly, Machado et al.20 considered the D to E ratio to examine practical identifiability 
and to find the identifiable subsets. Another popular identification technique is likelihood profiling4, 21–23. The 
method is based on finding the likelihood profile of a parameter by maximizing the likelihood with respect to 
the rest of the parameters. Parameters for which its likelihood profile is shallow are deemed to have low practi-
cal identifiability. In addition to evaluating practical identifiability, likelihood profiling could also be used to 
find functional relationships between parameters, which is helpful for model reparameterization24, 25. However, 
due to the several re-optimizations required to obtain the likelihood profiles, the method does not scale well 
with parameter space and could quickly become computationally intractable. While methods based on FIM or 
likelihood profiling have gained significant popularity they only examine local identifiability. This means that 
the estimate of practical identifiability is dependent on θk for which the analysis is conducted and is only valid 
within its neighborhood N(θk) . To overcome the limitations of local identifiability, global identifiability methods 
using Kullback-Leibler divergence26 and identifying functions27 have been proposed. However, such methods 
are computationally complex and not suitable for practical problems. Moreover, since such methods are based 
on frequentist statistics, they are unable to account for parametric uncertainty and therefore unable to provide 
an honest representation of global practical identifiability.

There have been few studies examining global practical identifiability in a Bayesian framework. Early attempts 
were based on global sensitivity analysis (GSA) that apportions the variability (either by derivatives or variance) 
of the model output due to the uncertainty in each parameter6, 28–30. Unlike local sensitivity analysis, GSA-based 
methods simultaneously vary model parameters according to their distributions, thus providing a measure of 
global sensitivity that is independent of a particular parameter realization. However, global parameter sensitivity 
does not guarantee global practical identifiability31. Pant et al.32 and Capellari et al.33 formulated the problem of 
practical identifiability as gaining sufficient information about each model parameter from data. An information-
theoretic approach was used to quantify the information gained, such that larger information gain would mean 
larger practical identifiability. However, assumptions about the structure of parameter-data joint distribution 
were made when developing the estimator. A similar approach was used by Ebrahimian et al.34 where the change 
in parameter uncertainty moving from the prior distribution to the estimated posterior distribution was used to 
quantify information gained. Pant35 proposed information sensitivity functions by combining information theory 
and sensitivity analysis to quantify information gain. However, the joint distribution between the parameters 
and the data was assumed to be Gaussian.

Framed in a Bayesian setting, the information-theoretic approach to identifiability provides a natural exten-
sion to include different forms of uncertainties that are present in practical problems. In this work, a novel estima-
tor is developed from an information-theoretic perspective to examine the practical identifiability of a statistical 
model. The expected information gained from the data for each model parameter is used as a metric to quantify 
practical identifiability. In contrast to the aforementioned methods based on information theory, the proposed 
approach has the following novel advantages: first, the estimator for information gain can be used for an a priori 
analysis, that is, no data is required to evaluate practical identifiability; second, the framework can account for 
different forms of uncertainty, such as model-form, parameter, and measurement; third, the framework does 
not make assumptions about the joint distribution between the data and parameters as in the previous methods; 
fourth, the identifiability analysis is global, rather than being dependent on a particular realization of model 
parameters. Another contribution of this work is an information-theoretic estimator to highlight dependencies 
between parameter pairs that emerge a posteriori, however, in an a priori manner. Combining the knowledge 
about information gained about each parameter and parameter dependencies using the proposed approach, it 
is possible to find parameter subsets that can be estimated with high posterior certainty before any controlled 
experiment is performed. Broadly, this can dramatically reduce the cost of parameter estimation, inform model-
form selection or refinement, and associate a degree of reliability to the parameter estimation.

The manuscript is organized as follows. In "Bayesian parameter inference" the Bayesian paradigm for param-
eter estimation is presented. In "Quantifying information gain" differential entropy and mutual information 
are presented as information-theoretic tools to quantify the uncertainty associated with random variables and 
information gain, respectively. In "Estimating practical identifiability" an a priori estimator is developed to quan-
tify global practical identifiability in a Bayesian construct. In "Estimating parameter dependence" the problem 
of estimating parameter dependencies is addressed. An a priori estimator is developed to quantify parameter 
dependencies developed a posteriori. The practical identifiability framework is applied to a linear Gaussian 
statistical model and methane-air reduced kinetics model; results are presented in "Numerical experiments". 
Concluding remarks are presented in "Concluding remarks and perspectives".

Quantifying practical identifiability in a Bayesian setting
In this section, we first present the Bayesian framework for parameter estimation. Next, we utilize the concepts of 
differential entropy and mutual information from information theory to quantify information contained in the 
data about uncertain parameters of the statistical model. Thereafter, we extend the idea of mutual information to 
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develop an a priori estimator to quantify practical identifiability in a Bayesian setting. While in most statistical 
models low practical identifiability is due to insufficient information about model parameters, it may often be 
the case that identifiable subsets exist. Parameters within such subsets have functional relations and exhibit a 
combined effect on the statistical model, such that the subset is practically identifiable. To find such identifiable 
subsets, we develop an estimator to highlight dependencies between parameter pairs that emerge a posteriori.

Bayesian parameter inference
Consider the observation/data y ∈ Y of a physical system which is a realization of a random variable Y : � → R

n 
distributed as p(y), where Y is the set of all possible realizations of the random variable. Herein, we will use the 
same lower-case, upper-case, and symbol notation to represent a realization, random variable, and the set of all 
possible observations, respectively. Consider another real-valued random variable � : � → R

m distributed as 
p(θ) : Rm → R

+ which denotes the uncertain parameters of the model. The data is assumed to be generated by 
the statistical model given as

where F (θ , d) : Rm × R
ℓ → R

n is the forward model which maps the parameters and model inputs d ∈ R
ℓ to 

the prediction space. For simplicity, consider the input of the model d as known. The random variable ξ is the 
additive measurement noise or uncertainty in our measurement. Once the observations are collected using con-
trolled experiments, the prior belief of the parameter distribution p(θ |d) can be updated to obtain the posterior 
distribution p(θ |y, d) via the Bayes’ rule

where p(y | θ , d) is called the model likelihood and p(y | d) is called the evidence.

Quantifying information gain
Updating parameter belief from the prior to posterior in (2) is associated with a gain in information from the 
data. This gain can be quantified as the change in the uncertainty of the parameters � . As an example, consider 
a 1D Gaussian prior and posterior distribution such that the information gain can be quantified as a change in 
variance (a measure of uncertainty) of the parameter distribution. A greater reduction in parameter uncertainty 
is a consequence of more information gained from the data.

In general, the change in parameter uncertainty between the prior and posterior distributions for a given 
input of the model d ∈ D is defined as

where U is an operator quantifying the amount of uncertainty or the lack of information for a given probability 
distribution. Thus, the expected information gained about the parameters is defined as

One popular choice for the operator U is the differential entropy32, 33, 36 which is defined as the average Shannon 
information37 for a given probability distribution. Mathematically, for a continuous random variable Z : � → R

t 
with distribution p(z) : Rt → R

+ and support Z , the differential entropy is defined as

Using differential entropy to quantify the uncertainty of a probability distribution, the change in uncertainty (or 
expected information gain) of � can be evaluated as 

(1)y � F (θ , d)+ ξ ,

(2)p(θ |y, d) =
p(y | θ , d)p(θ | d)

p(y | d)
,

(3)�U (d, y) � U (p(θ | d))−U (p(θ | y, d)),

(4)�U (d) � U (p(θ | d))−

∫

Y

U (p(θ | y, d)) dy.

(5)H(p(z)) = H(Z) � −

∫

Z

p(z) log p(z) dz.

(6a)�U (d) = H(� | d)−H(� | Y , d),

(6b)= H(� | d)+H(Y | d)−H(�,Y | d),

(6c)= −

∫

�

p(θ | d) log p(θ | d) dθ +

∫

�,Y

p(θ , y | d) log p(θ | y, d) dθ dy,

(6d)=

∫

�,Y

p(θ , y | d) log
p(θ , y | d)

p(θ | d)p(y | d)
dθ dy,

(6e)� I(�;Y | d).
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 The quantity I(�;Y | d) is called mutual information between the random variables � and Y given the model 
inputs D = d38. In the case of discrete random variables the mutual information is measured in bits, whereas in 
the case of continuous variables the units are nats.

Remark 1  The mutual information I(�;Y | d) is always non-negative38. This means that updating the parameter 
belief from the prior to the posterior cannot increase parameter uncertainty.

Estimating practical identifiability
In a Bayesian framework where the parameters are treated as random variables, practical identifiability can be 
determined by examining information gained about each model parameter32, 35. Parameters for which the data is 
uninformative cannot be estimated with a high degree of confidence and therefore are practically unidentifiable. 
While mutual information in (6e) is a useful quantity to study information gained from data about the entire 
parameter set, it does not apportion information gained about each parameter. Therefore, to examine practical 
identifiability, we define a conditional mutual information

where �∼i are all parameters except �i and E�∼i [·] denotes the expectation over p(θ∼i | d) . Using such condi-
tional mutual information for practical identifiability is based on the intuition that on average high information 
gained about �i means high practical identifiability. We can thus present the following definitions for identifi-
ability in a Bayesian setting.

Definition 1  (Local identifiability) Given a statistical model with parameters � , a parameter �i ∈ � is said to 
be locally identifiable if sufficient information is gained about it for a particular realization θ∼i of �∼i.

Definition 2  (Global identifiability) Given a statistical model with parameters � , a parameter �i ∈ � is said 
to be globally identifiable if sufficient information is gained about it on average with respect to the distribution 
p(θ∼i| d).

The expectation over possible realizations of �∼i in (7) therefore provides a statistical measure of global 
practical identifiability8. On the contrary, evaluating (7) at a fixed θ∼i will result in a local identifiability measure, 
which means that the information gained about �i will implicitly depend on θ∼i.

Typically, (7) does not have a closed-form expression and must be estimated numerically. Using the definition 
of differential entropy in (5) the conditional mutual information can be written as 

Remark 2  In terms of differential entropy, the conditional mutual information in (7) can be defined as 

 In case the parameters are uncorrelated,

While this formulation does not involve any conditional distributions involving the parameters or data, it requires 
joint distributions, namely, p(θi , θ∼i | d) , p(θ∼i , y | d) , p(θi , θ∼i , y | d) . Typically, such joint distributions do not 
have a closed-form expression and must be approximated.

In the special case where �i perfectly correlates with �∼i such that the realization of θ∼i provides sufficient 
information about θi , the term inside the logarithm in (8c) becomes identically unity. For such a case, the data 
is not informative about �i and the effective parameter dimensionality meff  becomes less than m. For a more 
general case, Monte-Carlo integration can be used to approximate the high dimensional integral as

(7)I(�i;Y | �∼i , d) �E�∼i
[I(�i;Y | �∼i = θ∼i , d)],

(8a)I(�i;Y | �∼i , d) =

∫

�i ,�∼i ,Y

p(θi , θ∼i , y | d) log
p(θi , y | θ∼i , d)

p(θi | θ∼i , d)p(y | θ∼i , d)
dθi dθ∼i dy,

(8b)=

∫

�i ,�∼i ,Y

p(θi , θ∼i , y | d) log
p(y | θi , θ∼i , d)p(θi | θ∼i , d)

p(θi | θ∼i , d)p(y | θ∼i , d)
dθi dθ∼i dy,

(8c)=

∫

�i ,�∼i ,Y

p(θi ,θ∼i , y | d) log
p(y | θi , θ∼i , d)

p(y | θ∼i , d)
dθi dθ∼i dy.

(9a)I(�i;Y | �∼i , d) � H(�i | �∼i , d)−H(�i | �∼i ,Y , d),

(9b)= H(�i ,�∼i | d)+H(�∼i ,Y | d)−H(�∼i | d)−H(�i ,�∼i ,Y | d).

(10)I(�i;Y | �∼i , d) = H(�i | d)+H(�∼i ,Y | d)−H(�i ,�∼i ,Y | d).
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where (θki , θ
k
∼i) is drawn from the distribution p(θi , θ∼i | d) ; yk is drawn from the likelihood distribution 

p(y | θki , θ
k
∼i , d) ; and nouter is the number of Monte-Carlo samples. Typically, conditional evidence p(y | θ∼i , d) 

does not have a closed-form expression, and therefore p(yk | θk∼i , d) must be numerically approximated. One 
approach is to rewrite the conditional evidence p(yk | θk∼i , d) by means of marginalization as

For simplicity, assume that the parameters are uncorrelated prior to observing the data, and are also independent 
of the model inputs d. As a result, (12) can be re-written as

This results in a low-dimensional integral over a univariate prior distribution p(θi) . Evaluating (13) using the 
classical Monte-Carlo integration can dramatically increase the overall cost of estimating the conditional mutual 
information in (11), especially if the likelihood evaluation is computationally expensive. In the special case where 
the priors are normally distributed, this cost can be reduced by considering a ζ-point Gaussian quadrature rule. 
Using the quadrature approximation in (13) gives

where θζi  and γ ζ are the ζ th quadrature point and weight, respectively; ninner is the number of quadrature points. 
Here, we use the Gauss-Hermite quadrature rule, which uses the tth order Hermite polynomial and will be 
exact for polynomials up to order 2t − 139. In a much more general case where the prior distributions can be 
non-Gaussian (however, can still be evaluated), the cost of estimating (13) can be reduced by using importance 
sampling with a proposal distribution q(θi) . Using importance sampling we can rewrite (13) as

where w(θi) = p(θi)/q(θi) are the importance sampling weights. In the case where the proposal distribution q(θi) 
is Gaussian, the quadrature rule can be applied to (15) as

Combining the estimator for conditional evidence ((14) or (16)) with (11) results in a biased estimator for 
conditional mutual information40, 41. While the variance is controlled by the numerical accuracy of estimating 
the high-dimensional integral in (11), the bias is governed by the accuracy of approximating the conditional 
evidence in (12). This means that the variance is controlled by nouter Monte-Carlo samples and bias by ninner 
quadrature points.

In practice, estimating conditional evidence can become computationally expensive, especially when 
the variability in the output of the forward model is high with respect to �i given �∼i = θ∼i , that is, large 
∇θiF (θ , d)|�∼i=θ∼i . For such statistical models, conditional evidence can become near zero such that numerical 
approximation by means of vanilla Monte-Carlo integration or Gaussian quadrature in (14) can be challenging41. 
Using an estimator based on importance sampling for conditional evidence as shown in (16) can alleviate this 
problem by carefully choosing the density of the proposal q(θi) . As an example, consider the case where the addi-
tive measurement noise ξ is normally distributed as N (0,Ŵ) such that the likelihood of the model is distributed 
as p(y | θ) = N (F (θ , d),Ŵ) , and yk is sampled according to N (F (θki , θ

k
∼i , d),Ŵ) . In the case where model 

predictions have large variability with respect to the parameter �i for a given �∼i = θ∼i the model likelihood 
can become small. For such a case, the importance-sampling-based estimator given in (16) can be used by con-
structing a proposal around the sample θki  , such as q(θi) = N (θki , σ

2
proposal) where σ 2

proposal is the variance of the 
proposal distribution. This results in a robust estimation of conditional evidence and prevents infinite values for 
conditional mutual information. Here, we consider (16) to estimate conditional evidence.

Remark 3  Assessing the practical identifiability in a Bayesian framework is dependent on the prior distribution. 
Although the framework presented in this article is entirely an a priori analysis of practical identifiability, prior 
selection can affect estimated identifiability. Prior selection in itself is an extensive area of research and is not 
considered a part of this work.

(11)I(�i;Y | �∼i , d) ≈ Î(�i;Y | �∼i , d) =

nouter
∑

k=1

log
p(yk | θki , θ

k
∼i , d)

p(yk | θk∼i , d)
,

(12)p(yk | θk∼i , d) �

∫

�i

p(yk , θi | θ
k
∼i , d) dθi =

∫

�i

p(yk | θi , θ
k
∼i , d)p(θi | θ

k
∼i , d) dθi .

(13)p(yk | θk∼i , d) =

∫

�i

p(yk | θi , θ
k
∼i , d)p(θi) dθi .

(14)p(yk | θk∼i , d) ≈ p̂(yk | θk∼i , d) =

ζ=ninner
∑

ζ=1

[

p(yk | θ
ζ
i , θ

k
∼i , d)

]

γ ζ ,

(15)p(yk | θk∼i , d) =

∫

�i

[

p(yk | θi , θ
k
∼i , d)w(θi)

]

q(θi) dθi ,

(16)p(yk | θk∼i , d) ≈ p̂(yk | θk∼i , d) =

ζ=ninner
∑

ζ=1

[

p(yk | θ
ζ
i , θ

k
∼i , d)w(θ

ζ
i )

]

γ ζ .
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Physical interpretation of identifiability in an information‑theoretic framework
Assessing practical identifiability using the conditional mutual information described in (7) provides a relative 
measure of how many bits (or nats) of information is gained for a particular parameter. In practical applications 
where this information gain can vary on disparate scales, it is useful to associate a physical interpretation to iden-
tifiability. Following Pant et al.32, consider a hypothetical direct observation statistical model given as ψ � θi +� , 
where � ∼ N (0, σ 2

�) is the additive measurement noise. Given this observation model, we can define an infor-
mation gain equivalent variance C (�i) as the measurement uncertainty in the direct observation model given 
I(�i;�) = Î(�i;Y | �∼i , d) . Large C (�i) would mean that the information gained about �i (using (7)) for 
the statistical model (1) would lead to higher measurement uncertainty if the parameter is observed directly.

If the prior distribution p(θi) can be approximated by means of an equivalent normal distribution N (µe , σ
2
e ) 

then I(�i;�) is given as

such that

This information gain equivalent variance only depends on the information gained for the model parameter, and 
thus, can be used as a metric to compare different model parameters.
Estimating parameter dependence
In most statistical models, unknown functional relationships or dependencies may be present between param-
eters such that multiple parameters have a combined effect on the statistical model. Such parameters can form an 
identifiable subset where an individual parameter will exhibit low identifiability, however, the subset is collectively 
identifiable. This means that the data is uninformative or weakly informative about an individual parameter 
within the subset, whereas it is informative about the entire subset. As an example, consider the statistical model: 
y = θ1θ2 ∗ d + ξ for which individually identifying �1 or �2 is not possible as they have a combined effect on the 
statistical model. However, it is clear that �1 and �2 belong to an identifiable subset such that the pair (�1,�2) 
is identifiable. Thus, considering the statistical model given by y = θ3 ∗ d + ξ where θ3 = θ1 ∗ θ2 will have bet-
ter identifiability characteristics. For such statistical models, the traditional method of examining correlations 
between parameters is often insufficient, as it only reveals linear functional relations between random variables.

To highlight the parameter dependencies, consider the statistical model given in (1) such that we are interested 
in examining the relations between �i ∈ � and �j ∈ � that emerge a posteriori. While the conditional mutual 
information presented in "Estimating practical identifiability" provides information on the practical identifiabil-
ity of an individual parameter, it does not provide information about dependencies developed between pairs of 
parameters. To quantify such dependencies, we define a conditional mutual information between parameter pairs

which evaluates the average information between the variables �i and �j that is obtained a posteriori. Here, �∼i,j 
is defined as all the parameters of the statistical model except �i and �j.

A closed-form expression for (19) is typically not available, and therefore a numerical approximation is 
required. In integral form, (19) is given as

where 

 via Bayes’ theorem.

Remark 4  In terms of differential entropy, the conditional mutual information in (19) can be defined as 

(17)I(�i;�) �
1

2
log

(

1+
σ 2
e

σ 2
�

)

,

(18)C (�i) � σ 2
� = σ 2

e (exp{2Î(�i;Y | �∼i , d)} − 1)−1.

(19)I(�i;�j | Y ,�∼i,j , d) � E�∼i,j [EY [I(�i;�j | Y = y,�∼i,j = θ∼i,j , d)]],

(20)

I(�i;�j | Y ,�∼i,j , d) �

∫

�i ,�j ,�∼i,j ,Y

p(θi , θj , θ∼i,j , y | d)
[

log
[

p(θi , θj | y, θ∼i,j , d)
]

−

log
[

p(θi | y, θ∼i,j , d)p(θj | y, θ∼i,j , d)
]

]

dθi dθj dθ∼i,j dy,

(21a)p(θi , θj | y, θ∼i,j , d) �
p(y | θi , θj , θ∼i,j , d)p(θi , θj , | θ∼i,j , d)

p(y | θ∼i,j , d)
,

(21b)p(θi | y, θ∼i,j , d) �
p(y | θi , θ∼i,j , d)p(θi | θ∼i,j , d)

p(y | θ∼i,j , d)
,

(21c)p(θj | y, θ∼i,j , d) �
p(y | θj , θ∼i,j , d)p(θj | θ∼i,j , d)

p(y | θ∼i,j , d)
,

(22a)I(�i;�j | Y ,�∼i,j , d) � H(�i | Y ,�∼i,j , d)−H(�i | �j ,Y ,�∼i,j , d),
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Such a formulation requires evaluating joint distributions, namely, p(θi , θ∼i,j , y | d) , p(θj , θ∼i,j , y | d) , 
p(θ∼i,j , y | d) , and p(θi , θj , θ∼i,j , y | d) . Typically, such joint distributions do not have a closed-form expression 
and must be approximated.

For the sake of illustration, assume that the parameters are uncorrelated with each other prior to observing 
the data. As a consequence of this assumption, any relations developed between �i and �j are discovered solely 
from data. Furthermore, it is also reasonable to assume that prior knowledge of the parameters is independent 
of the input of the model d. Substituting (21a) through (21c) into (20) we obtain

Similar to "Estimating practical identifiability" we can estimate the conditional mutual information in (23) using 
Monte-Carlo integration as Î(�i;�j | Y ,�∼i,j , d) ≈ I(�i;�j | Y ,�∼i,j , d) where

where θki  , θkj  , and θk∼i,j are drawn from the prior distributions p(θi) , p(θj) , and p(θ∼i,j) , respectively; yk is drawn 
from the likelihood distribution p(y | θki , θ

k
j , θ

k
∼i,j , d) . The conditional evidence in (24) can be obtained by means 

of marginalization 

 Similar to "Estimating practical identifiability" the conditional evidence in (25a) through (25c) can be efficiently 
estimated using importance sampling along with Gaussian quadrature rules. However, it should be noted that 
(25a) is an integral over a two-dimensional space, and therefore requires n2inner quadrature points.

Numerical experiments
This section presents numerical experiments to validate the information-theoretic approach to examine practi-
cal identifiability. The estimate obtained for global identifiability is compared with the variance-based global 
sensitivity analysis by means of first-order Sobol indices computed using SALib42, 43 (see S1 in the supplemen-
tary material). First, a linear Gaussian statistical model is considered for which practical identifiability can be 
analytically examined through the proposed information-theoretic approach. This model is computationally 
efficient and is therefore ideal for conducting estimator convergence studies. Next, the practical identifiability of 
a reduced kinetics model for methane-air combustion is considered. Reduced kinetics models are widely used in 
the numerical analysis of chemically reactive flows since embedding detailed chemistry of combustion is often 
infeasible. Such reduced kinetic models are often parameterized such that constructing models with practically 
identifiable parameters is desirable to improve confidence in the model prediction.

Application to a linear Gaussian model
The identifiability framework is now applied to a linear Gaussian problem for which closed-form expressions 
are available for the conditional mutual information in (7) and (19) (see S2 in the supplementary material). 
Consider the statistical model

where F (θ , d) = Aθ and A ∈ R
n×m is called the feature matrix. The prior distribution is given 

by p(θ) = N (µ�,��) where µ� ∈ R
m and �� ∈ R

m×m . Model likelihood is therefore given by 

(22b)
= H(�i ,�∼i,j ,Y | d)+H(�j ,�∼i,j ,Y | d)

−H(�∼i,j ,Y | d)−H(�i ,�j ,�∼i,j ,Y | d).

(23)

I(�i;�j | Y ,�∼i,j , d) =

∫

�i ,�j ,�∼i,j ,Y

p(θi , θj , θ∼i,j , y | d)
[

log
[

p(y | θi , θj , θ∼i,jd)
]

+ log
[

p(y | θ∼i,j , d)
]

− log
[

p(y | θi , θ∼i,j , d)
]

− log
[

p(y | θj , θ∼i,j , d)
]

]

dθi dθj dθ∼i,j dy.

(24)Î(�i;�j | Y ,�∼i,j , d) =

k=nouter
∑

k=1

log
p(yk | θki , θ

k
j , θ

k
∼i,j , d)p(y

k | θk∼i,j , d)

p(yk | θki , θ
k
∼i,j , d)p(y

k | θkj , θ
k
∼i,j , d)

,

(25a)p(yk | θk∼i,j , d) �

∫

�i ,�j

p(yk | θi , θj , θ
k
∼i,j , d)p(θi , θj) dθi dθj ,

(25b)p(yk | θki , θ
k
∼i,j , d) �

∫

�j

p(yk | θj , θ
k
i , θ

k
∼i,j , d)p(θj) dθj ,

(25c)p(yk | θkj , θ
k
∼i,j , d) �

∫

�i

p(yk | θi , θ
k
j , θ

k
∼i,j , d)p(θi) dθi .

(26)y = F (θ , d)+ ξ ; ξ ∼ N (0,Ŵ),
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p(y | θ) = N (Aθ ,Ŵ) where Ŵ ∈ R
n×n . Here, µ�,�� , and Ŵ are all constants and are considered known. The 

evidence distribution for this model is given by p(y) � N (µY ,�Y ) = N (Aµ�,A��A
T + Ŵ) , such that no 

model-form error exists. Consider a feature matrix

where di|ni=1
 are n linearly-spaced points in an interval [−1, 1] , and m = 3 , which means that the statistical model 

has 3 uncertain parameters. Assume an uncorrelated measurement noise Ŵ = σ 2
ξ I with σ 2

ξ = 0.1 . For the purpose 
of parameter estimation, synthetic data is generated using (26) assuming θ∗ = [1, 2, 3]T and n = 100.

Parameter identifiability
The goal of the framework developed in "Estimating practical identifiability" is to assess the practical identifiabil-
ity of the statistical model in (26) before any controlled experiment is conducted. Consider µ� = 0 and �� = I . 
Using such an uncorrelated prior distribution for the identifiability study ensures that the information obtained 
is only due to the observation of the data (as discussed in "Estimating parameter dependence"). Using historical 
parameter estimates can improve the prior (Remark 1) which can affect the identifiability analysis. However, we 
have not considered any such prior refinement.

Figure 1 illustrates the convergence of error in estimating information gain for each parameter using the esti-
mator developed in "Estimating practical identifiability". As expected, for a fixed number of quadrature points, 
increasing the number of Monte-Carlo integration points decreases the variance in estimation. However, for a 
fixed nouter increasing the number of quadrature points reduces the bias in the estimate. Figure 2 illustrates the 
variance and bias convergence of error in estimating parameter dependencies as described in "Estimating param-
eter dependence". As expected and observed, the variance in error is controlled by the accuracy of Monte-Carlo 
integration, that is, by nouter , and the bias is controlled by the quadrature approximation, that is, through ninner.

The first-order Sobol indices, estimated information gain, and information gain equivalent variance C (�i) 
are shown in Figure 3. The estimated first-order Sobol indices (see S3 in the supplementary material for con-
vergence study) show that the considered linear Gaussian forward model has the largest output variability 
due to uncertainty in �1 , followed by �2 and �3 . This implies that the forward model is most sensitive to the 
parameter θ1 , followed by θ2 and then θ3 . This is not surprising since di|ni=1

 are points in the interval [−1, 1] . Thus, 
according to the first-order Sobol indices, the relevance of the parameters follows the order: θ1 , θ2 , and θ3 . The 
estimated information gained agrees well with the truth. Further, the obtained trend suggests that the data is 
most informative about �1 , followed by �2 , and then �3 . As discussed in "Estimating practical identifiability", 
practical identifiability follows the same trend. Furthermore, as reported in previous work31, it can be seen that 
parameters with good identifiability characteristics also exhibit high model sensitivity. Using the hypothetical 
direct observation model described in "Estimating practical identifiability", the smallest measurement uncertainty 
is obtained for the variable �1 , followed by �2 and �3 . That is, parameters with high practical identifiability are 
associated with low measurement uncertainty in a direct observation model.

Figure 4 illustrates the variability of the first-order Sobol indices and the estimated information gain with 
measurement noise variance σ 2

ξ  . The first-order Sobol indices only account for the parameter uncertainty, and 
therefore remain unchanged with an increase in measurement noise. However, the estimated information gain 

(27)A =











d1 d21 . . . dm1
d2 d22 . . . dm2
...

...
. . .

...
dn d2n . . . dmn











,

Figure 1.   Convergence of the variance in practical identifiability estimator of a linear Gaussian statistical model 
(left); the number of quadrature points ninner = 50 is considered and the number of Monte-Carlo integration 
samples nouter is varied. Bias convergence for practical identifiability estimator in case of a linear Gaussian 
statistical model (right); nouter = 104 is considered and ninner is varied. For a given ninner increasing nouter 
reduces the variance, whereas increasing ninner for a given nouter decreases the bias in the estimate.
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Figure 2.   Convergence of the variance in practical identifiability for estimating parameter dependencies 
of a linear Gaussian statistical model (left); the number of quadrature points ninner = 50 is considered and 
the number of Monte-Carlo integration samples nouter is varied. Bias convergence for estimating parameter 
dependencies in the case of a linear Gaussian statistical model (right); nouter = 104 is considered and ninner 
is varied. For a given ninner increasing nouter reduces the variance, whereas increasing ninner for a given nouter 
decreases the bias in estimating the parameter dependencies.

Figure 3.   First-order Sobol indices (left), information gain (center), and information gain equivalent variance 
C (�i) (right) for linear Gaussian model. Sobol indices show that the output of the statistical model has 
the largest variability due to uncertainty in �1 , followed by �2 and �3 . Variable �1 exhibits the largest gain 
in information and therefore the highest practical identifiability, followed by �2 and then �3 . For a direct 
observation model, the variable �1 has the lowest measurement uncertainty, followed by �2 and �3.

Figure 4.   First-order Sobol indices (left) and estimated information gain (right) vs. measurement noise 
variance σ 2

ξ  for linear Gaussian model. Increasing measurement noise covariance does not affect the variability 
of the output with respect to the parameters and therefore the first-order Sobol indices remain unchanged. 
However, the information gain decreases with increasing measurement noise covariance.
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and thereby the practical identifiability decreases with measurement noise. This observation corroborates the 
intuition that large measurement uncertainty will lead to large uncertainty in the parameter estimation.

Figure 5 shows the second-order Sobol indices and the true and estimated dependencies between the param-
eter pairs for the linear Gaussian model. Examining the second-order Sobol indices (see S3 in the supplementary 
material for convergence study) shows that there are negligible interactions between parameter pairs. Estimated 
parameter dependencies agree well with the truth; the trend is preserved. The bias observed is due to the error 
in approximating the conditional evidence, as shown in Figure 2. It can be clearly seen that the parameters �1 
and �3 have high dependencies. This means that these parameters compensate for one another such that they 
will have a combined effect on the output of the statistical model. These parameters are associated with the 
features di|ni=1

 and d3i|ni=1
 which, in fact, have a similar effect on the statistical model for di|ni=1

∈ [−1, 1] . This obser-
vation also shows that the low practical identifiability of �3 is mainly due to the underlying dependency with �1 
such that the pair (�1,�3) has a combined effect in the statistical model. 

Parameter estimation
For the linear Gaussian model, the joint distribution p(θ , y) can be written as

such that the analytical posterior distribution is given as p(θ | y) = N (µ�post ,��post ) , where 
µ�post = µ� +��A

T�−1
Y (y − µY ) and ��post = �� −��A

T�−1
Y A�� using Gaussian conditioning.

Samples from the posterior distribution and the aggregate posterior prediction are shown in Figure 6. Vari-
ables �1 and �3 have a negative correlation, whereas �2 is uncorrelated with other parameters. This means 
that the parameter variables �1 and �3 have (linear) dependencies on each other, and �2 does not have such 
dependencies. These dependencies were suggested during the a priori analysis conducted on the statistical model 
as illustrated in Figure 5. Aggregate posterior prediction agrees well with the data and exhibits high certainty.

Figure 7 illustrates the change in variance of the parameter �i defined as �(σ 2
�i
) � σ 2

�i
− σ 2

�i,post
 versus σ 2

ξ  . 
Parameter �2 exhibits the smallest posterior uncertainty, followed by �1 and �3 for all σ 2

ξ  . While �1 has the 
largest estimated information gain (Figure 3(center)), it exhibits dependencies with �3 (Figure 5(right)), thereby 
resulting in larger posterior uncertainty in comparison to �2 . In practical applications, where model selection 
or parameter selection is critical, examining the information gain and parameter dependencies can therefore aid 
in finding parameters that can be estimated with high certainty. Increasing the measurement noise results in a 
smaller change in parameter variance, that is, the parameters exhibit larger posterior uncertainty. This is also 
shown by the variation of estimated information gain with measurement noise (Figure 4(right)). On the contrary, 
the first-order Sobol indices remain unchanged with measurement noise (Figure 4(left)).

Application to methane chemical kinetics
Accurate characterization of chemical kinetics is critical in the numerical prediction of reacting flows. Although 
there have been significant advancements in computational architectures and numerical methods, embedding 
the full chemical kinetics in numerical simulations is almost always infeasible. This is primarily because of the 
high-dimensional coupled ordinary differential equations that have to be solved to obtain concentrations of a 
large number of involved species. As a result, significant efforts have been made to develop reduced chemical 
kinetics models that seek to capture features such as ignition delay, adiabatic flame temperature, or flame speed 
observed using the true chemical kinetics44–47. These reduced mechanisms are typically formulated using a 
combination of theory and intuition, leaving unresolved chemistry, resulting in uncertainties in the relevant 

(28)p(θ , y) � N (µ�,Y ,��,Y ) = N

([

µ�

µY

]

,

[

�� ��A
T

A�� �Y

])

,

Figure 5.   Second-order Sobol indices (left), true parameter dependencies (center), and estimated parameter 
dependencies (right) for linear Gaussian model. The second-order Sobol indices show negligible interactions 
between parameter pairs. The obtained estimate of parameter dependency agrees well with their true values; the 
trend is preserved. �1 and �3 have the largest dependency on one another, and therefore are expected to have a 
combined effect on the output of the statistical model.
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rate parameters48. Selecting a functional form of the modeled reaction rate terms that lead to reliable parameter 
estimation is highly desirable7, 49. This means that for high confidence in parameter estimation and thereby model 
prediction, the underlying parameterization of reaction rate terms must exhibit high practical identifiability.

Shock tube ignition is a canonical experiment used to develop and validate combustion reaction mechanism50. 
In such experiments, the reactant mixture behind the reflected shock experiences elevated temperature and 
pressure, followed by mixture combustion. An important quantity of interest in such experiments is the time 
difference between the onset of the reflected shock and the ignition of the reactant mixture, defined as the ignition 
delay tign51. Ignition delay is characterized as the time of maximum heat release or steepest change in reactant 
temperature and is therefore a key physio-chemical property for combustion systems.

To illustrate the practical identifiability framework we will consider stoichiometric methane-air combustion in 
a shock tube under an adiabatic, ideal-gas constant pressure ignition assumption. Typically, the chemical kinetics 
capturing detailed chemistry of methane-air ignition is computationally expensive due to hundreds of associated 
reactions. To model the reaction chemistry, consider the classical 2-step mechanism proposed by Westbrook 
et al.52 that accounts for the incomplete oxidation of methane. This reduced mechanism consists of a total of 6 
species (5 reacting and 1 inert species, namely, N2 ) and 2 reactions (1 reversible), thus drastically reducing the 
cost of evaluating the chemical kinetics. The reactions involved in this reduced chemical kinetics model are

where the overall reaction rates are temperature-dependent and are modeled using the Arrhenius rate equation as

(29)CH4 +
3

2
O2

k1
−→ CO+ 2H2O,

(30)CO+
1

2
O2

k2f
−−⇀↽−−
k2b

CO2,

Figure 6.   Correlation plot for samples obtained from the true posterior distribution (left) and the obtained 
aggregate posterior prediction (right) for linear Gaussian model. A negative correlation is observed between �1 
and �3 , whereas �2 is uncorrelated from other parameters. Aggregate posterior prediction agrees well with the 
data and exhibits high certainty.

Figure 7.   Change in parameter variance �(σ 2
�i
) vs. measurement noise covariance σ 2

ξ  for linear Gaussian 
model. Increasing measurement noise results in a smaller change in parameter variance from the prior to the 
posterior. Largest reduction in variance is observed for �2 , followed by �1 and �3.
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where A = 2.8× 109 is the pre-exponential factor, R is the ideal gas constant, and T is the temperature in Kelvin. 
To solve the resulting reaction equations CANTERA v2.6.053 is used. Figure 8 illustrates the temperature 
evolution using the 2-step mechanism and GRI-Mech 3.054 for an initial temperature To = 1500K , initial pressure 
Po = 100kPa , and at a stoichiometric ratio φ = 1 . The GRI-Mech 3.0 mechanism consists of detailed chemical 
kinetics with 53 species and 325 reactions. As noticed, the 2-step mechanism under-predicts the ignition delay 
by nearly an order of magnitude. To improve the predictive capabilities of the 2-step mechanism a functional 
dependency for the pre-exponential factor can be introduced as logA = G (To,φ) , where

Here, θ1, θ2 , and θ3 are the uncertain model parameters. Similar parameterization has been used for n-dodecane 
reduced chemical kinetics48. It should be noted that while a more expressive functional form for the pre-exponen-
tial factor can be chosen in (34), the goal of the framework is to ascertain practical identifiability. For parameter 
estimation, consider the detailed GRI-Mech 3.0 to be the ‘exact solution’ to the combustion problem which can 
then be used to generate the data. Consider logarithm of ignition temperature at To = 1100, 1400, 1700 and 2000K 
at φ = 1.0 and Po = 100kPa as the available data for model calibration. Assume an uncorrelated measurement 
noise Ŵ = σ 2

ξ I with σ 2
ξ = 0.1.

Parameter identifiabiliy
The practical identifiability framework is now applied to the methane-air combustion problem to examine the 
identifiability of the model parameters in (34) before any controlled experiments are conducted. Consider an 
uncorrelated prior distribution for the model parameters as θ1 ∼ N (0, 1); θ2 ∼ N (0, 1); θ3 ∼ N (0, 1) . Such 
priors result in pre-exponential factors in an order similar to those previously reported52, and are therefore 
considered suitable for the study. Similar to "Application to a linear Gaussian model" historical estimates of the 
model parameters are not considered for examining identifiability.

The first-order Sobol indices , estimated information gain, and information gain equivalent variance C (�i) 
are shown in Figure 9. The information gain is estimated using nouter = 12000 Monte-Carlo samples, and 
ninner = 5 quadrature points. Examining the first-order Sobol indices (see S3 in the supplementary material 
for convergence study), the output of the forward model exhibits the largest variability due to uncertainty 
in the variable �1 . Followed by similar variability in the model output with respect to �2 and �3 . The largest 
information gain is observed for the variable �1 , followed by similar gains for �2 and �3 . This means that �1 
will have the highest practical identifiability, followed by a much lower identifiability for �2 and �3 . Using the 
hypothetical direct observation model as described in "Estimating practical identifiability", the variable �1 with 
the largest practical identifiability exhibits the lowest measurement uncertainty, followed by similar uncertainty 
for �2 and �3.

Figure 10 shows the second-order Sobol indices and estimated parameter dependencies. The second-order 
Sobol indices (see S3 in the supplementary material for convergence study) follow the trend S2,3 > S1,2 ≈ S1,3 , 
suggesting that there are underlying interactions between the parameters �2 and �3 . As observed, the low 
identifiability of �2 and �3 suggested in Figure 9 is primarily due to the underlying dependencies between 
pairs (�1,�2) and (�1,�3) . To estimate the parameter dependencies nouter = 12000 Monte-Carlo samples, and 

(31)k1 �Ae
−48400
RT [CH4]

−0.3[O2]
1.3,

(32)k2f �3.98× 1014e
−40000
RT [CO][H2O]

0.5[O2]
0.25,

(33)k2b �5× 108e
−40000
RT [CO2],

(34)G (To,φ) � 18+ θ1 + tanh (θ2 + θ3 ∗ φ)
To

1000
.

Figure 8.   Temperature evolution for stoichiometric methane-air combustion at To = 1500K , Po = 100kPa by 
means of 2-step mechanism52 in comparison with GRI-Mech 3.0. Ignition delay time tign at which mixture 
releases maximum heat is under-predicted by nearly an order of magnitude by the 2-step mechanism.
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ninner = 5 and 10 quadrature points are used for single and two-dimensional integration space, respectively. 
Similar magnitude of parameter dependencies obtained for the pairs (�1,�2) and (�1,�3) in addition to simi-
lar information gain for �2 and �3 also suggest underlying symmetry with respect to �1 . This means that the 
interchange of �2 and �3 will not affect the output of the statistical model, which can be clearly seen in (34) for 
φ = 1 . This is also evident from the second-order Sobol indices which suggest that there is a combined effect on 
the output of the statistical model due to interactions between �2 and �3.

Parameter estimation
Now, let us consider the parameter estimation problem which seeks p(θ | y) , that is the posterior distribution. 
Typically, a closed-form expression for the posterior distribution is not available due to the non-linearities in the 
forward model or the chosen family of the prior distribution. As an alternative, sampling-based methods such as 
Markov Chain Monte Carlo (MCMC) that seek samples from an unnormalized posterior have gained significant 
attention. These methods construct Markov chains for which the stationary distribution is the posterior distribu-
tion. The Metropolis-Hastings algorithm is an MCMC method that can be used to generate a sequence of samples 
from any given probability distribution55. The adaptive Metropolis algorithm is a powerful modification to the 
Metropolis-Hastings algorithm and is used here to sample from the posterior distribution56.

Figure 11 illustrates the correlation between samples obtained using the Adaptive Metropolis algorithm and 
the obtained aggregate posterior prediction for ignition delay time. Any (linear) correlation is not observed 
between the variables; however, the joint distribution between pairs (�1,�2) and (�1,�3) show similarities. 
These similarities were also observed during the a priori analysis quantifying parameter dependencies as shown 
in Figure 10. 

The obtained aggregate prediction shows dramatic improvement over the 2-step mechanism in predicting 
ignition delay time over a wide range of temperatures. Using a functional form as (34) for the pre-exponential 
factor also improved the mixture temperature evolution, as shown in Figure 12. However, the adiabatic flame 
temperature, which is defined as the mixture temperature upon reaching equilibrium, is still being over-predicted. 

Figure 9.   First-order Sobol effect indices (left), information gain (center), and information gain equivalent 
variance C (�i) (right) for methane-air combustion model. Sobol indices show that the largest variability in the 
output of the statistical model is to uncertainty in �1 ; �2 and �3 exhibit similar variabilities. Variable �1 exhibits 
the information gain and therefore highest practical identifiability; �2 and �3 have similar information gain. 
Variable �1 exhibits the lowest measurement uncertainty for the direct observation model, followed by similar 
uncertainty for �2 and �3.

Figure 10.   Second-order Sobol indices (left) and estimated parameter dependencies (right) for methane-air 
combustion model. The trend S2,3 > S1,2 ≈ S1,3 suggests that there are underlying interactions between the 
parameters �2 and �3 . Pairs ( �1 , �2 ) and ( �1 , �3 ) have nearly the same dependencies on one another. Pair ( �2 , 
�3 ) exhibit low dependencies.
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Figure 11.   Correlation plot for samples obtained from the posterior distribution (left) and the obtained 
aggregate posterior prediction (right) for the methane-air combustion model. Correlation plots do not reveal 
any relations among variables. Aggregate posterior prediction agrees well with the data and exhibits high 
certainty.

Figure 12.   Aggregate temperature evolution for methane-air combustion model. Aggregate prediction agrees 
well with the GRI-Mech 3.0 detailed mechanism.

Figure 13.   Aggregate species concentration evolution for methane-air combustion model. Aggregate prediction 
agrees well with the GRI-Mech 3.0 detailed mechanism.
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An improvement in the prediction of the evolution of species concentration over time is also noticed, as shown 
in Figure 13.

Concluding remarks and perspectives
Examining the practical identifiability of statistical models is useful in many applications, such as parameter 
estimation, model-form development, and model selection. Estimating practical identifiability prior to conduct-
ing controlled experiments or parameter estimation studies can assist in a choice of parametrization that can be 
associated with a high degree posterior certainty, thus improving confidence in estimation and model prediction.

In this work, a novel information-theoretic approach based on conditional mutual information is presented 
to assess global practical identifiability of a statistical model in a Bayesian framework. The proposed frame-
work examines the expected information gain for each parameter from the data before performing controlled 
experiments. Parameters with higher information gain are characterized by having higher posterior certainty, 
and thereby have higher practical identifiability. The adopted viewpoint is that the practical identifiability of a 
parameter does not have a binary answer, rather it is the relative practical identifiability among parameters that 
is useful in practice.

In contrast to previous numerical approaches used to study practical identifiability, the proposed approach 
has the following notable advantages: first, no controlled experiment or data is required to conduct the practical 
identifiability analysis; second, different forms of uncertainties, such as model-form, parameter, or measurement 
can be taken into account; third, the framework does not make assumptions about the distribution of the data 
and parameters as in the previous methods; fourth, the estimator provides knowledge about global identifiability 
and is therefore not dependent on a particular realization of the parameters. To provide a physical interpretation 
to practical identifiability in the context of examining information gain for each parameter, an information gain 
equivalent variance for a direct observation model is also presented. The practical identifiability framework is 
then extended to examine dependencies among parameter pairs. Even if an individual parameter exhibits poor 
practical identifiability characteristics, it can belong to an identifiable subset such that parameters within the 
subset have functional relationships with one another. Parameters within such an identifiable subset have a 
combined effect on the statistical model and can be collectively identified. To find such subsets, a novel a priori 
estimator is proposed to quantify the expected dependencies between parameter pairs that emerge a posteriori.

To illustrate the framework, two statistical models are considered: (a) a linear Gaussian model and (b) a 
non-linear methane-air reduced kinetics model. For the linear Gaussian model, it is shown that parameters with 
large information gain and low parameter dependencies can be estimated with high confidence. The variance-
based global sensitivity analysis (GSA) also illustrates that parameter sensitivity is necessary for identifiability. 
However, as conclusively shown, the inability of variance-based GSA to capture different forms of uncertainties 
can lead to unreliable estimates for practical identifiability. The information gain equivalent variance obtained 
using a direct observation model shows that parameters with high practical identifiability will be associated 
with low measurement uncertainty if observed directly. In the case of the methane-air reduced kinetics model, 
it is shown that parameters with large dependencies can have low information gain and therefore low practi-
cal identifiability. Further, the proposed estimator can capture non-linear dependencies and reveal structures 
within the parameter space before performing controlled experiments. Such non-linear dependencies cannot be 
observed when considering a posteriori parameter correlations, as only linear relations can be well understood.
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