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Bifurcation analysis 
of a tuberculosis progression model 
for drug target identification
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Elisa Domínguez‑Hüttinger 1*

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The emergence and rapid 
spread of drug‑resistant M. tuberculosis strains urge us to develop novel treatments. Experimental 
trials are constrained by laboratory capacity, insufficient funds, low number of laboratory animals 
and obsolete technology. Systems‑level approaches to quantitatively study TB can overcome these 
limitations. Previously, we proposed a mathematical model describing the key regulatory mechanisms 
underlying the pathological progression of TB. Here, we systematically explore the effect of parameter 
variations on disease outcome. We find five bifurcation parameters that steer the clinical outcome 
of TB: number of bacteria phagocytosed per macrophage, macrophages death, macrophage killing 
by bacteria, macrophage recruitment, and phagocytosis of bacteria. The corresponding bifurcation 
diagrams show all‑or‑nothing dose–response curves with parameter regions mapping onto bacterial 
clearance, persistent infection, or history‑dependent clearance or infection. Importantly, the 
pathogenic stage strongly affects the sensitivity of the host to these parameter variations. We 
identify parameter values corresponding to a latent‑infection model of TB, where disease progression 
occurs significantly slower than in progressive TB. Two‑dimensional bifurcation analyses uncovered 
synergistic parameter pairs that could act as efficient compound therapeutic approaches. Through 
bifurcation analysis, we reveal how modulation of specific regulatory mechanisms could steer the 
clinical outcome of TB.

Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb)1. It is con-
sidered the oldest pandemic and according to the World Health Organization (WHO) in 2021 there were 1.6 
million deaths due to TB and 10.6 million people suffered active  disease2, tuberculosis being the leading cause 
of death from a single infectious agent before the SARS-CoV-2 pandemic. In endemic countries, the initial or 
primary TB infection establishes itself in the lungs during childhood and is usually controlled by the immune 
system; only 10% of these cases will suffer progressive disease. In this primary TB infection, even in those cases 
that are controlled by the immune system, not all bacteria are eliminated; some bacteria remain in the tissues 
in a quiescent state with little or no reproductive activity for the rest of the life of the infected individual. This 
infectious state is called latent infection, it is clinically asymptomatic and a quarter of humanity suffers from 
this condition but only 10% of this population will develop active TB at some point in their  lives3. TB is treated 
with a combination of 4 antibiotics for 6 to 9 months, which results in a high rate of treatment abandonment. 
This situation has provoked relapses and the emergence of Multidrug-resistant TB (MDR-TB)4, 5, which further 
complicates treatment by increasing its cost and  toxicity5.

The emergence and rapid spread of drug-resistant4 and hyper  virulent6. M. tuberculosis strains have created 
the necessity to develop novel treatments that are more effective and less toxic. Present-day conditions in tuber-
culosis in vivo experimental assays are characterized by restricted lab capacity, insufficient funds, low number 
of laboratory animals due to efforts of Animal Ethics Committees and outdated technology. A systems-level 
approach that quantitatively studies this progressive disease and overcomes current wet lab limitations is much 
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needed. Systems biology is a discipline capable of proposing and validating hypotheses regarding complex human 
diseases that currently  prevail7–9. Through mechanistic modelling, TB has been studied across multiple life scales 
and mathematical  formalisms10, from host–pathogen interactions at the cellular  level11 to single hybrid multi-
compartment models of granuloma  formation12. Thus, researchers have been able to describe some physiological 
determinants behind the persistence of a mycobacterial  infection13 and predict how certain cellular interactions 
lead to different disease  outcomes14.

Our previously proposed tuberculosis progression  model15 is a tool that allows creating and testing hypotheses 
regarding disease outcome. The mathematical model describes the key regulatory mechanisms that account for 
the pathological progression of TB through three phases observed on in vivo mouse models.  Previously15, we 
showed how random variations in model parameters that quantify the strength of the individual reactions of 
our mechanistic model segregate the long-term behavior into two qualitatively different phenotypes: bacterial 
clearance or persistent infection. Therefore, we speculated that specific model parameters could act as knobs 
that can steer the model to a desired outcome. To address this, a more comprehensive analysis on the influence 
of parametric variations on model variables dynamics is needed. Bifurcation analysis is a tool to map parameter 
variations to the outcome of a dynamical  system16, 17. Several types of bifurcations can be predicted by Early 
Warning  Signals18, 19 that could serve as risk biomarkers to stratify patients before they develop symptoms.

Here we systematically explore the effect of parameter variations on disease outcomes with the objective of 
identifying and characterizing the key mechanisms that determine the clinical phenotype. Our results pinpoint 
the five bifurcation parameters that segregate the phenotypic space into all-or-nothing long-term behaviors. 
We further explore the impact of the disease stage on the resulting bifurcation diagrams to identify the precise 
window of time in which treatment would be more effective. We complemented this analysis by investigations 
on the effects of parameter variations on the pace of progression across disease stages and uncovered additional 
constraints for optimal treatment scheduling. Moreover, this analysis suggested that latent TB can be repro-
duced by our model—originally developed for progressive TB—by adequately changing parameters to mimic 
genotypes with a significantly slower progression between disease stages. Finally, simultaneous variations of 
bifurcation parameter pairs identified synergistic effects that could inform the design and optimization of com-
pound treatments.

Through bifurcation analysis, our model proves to be a powerful tool to quantitatively assess the influence of 
its mechanisms in determining the dynamic phenotype, opening the door to more in silico experimentation that 
will enable the design of optimal treatments that consider the right doses for the right patient at the right time.

Results
Mathematical model of the immunopathological progression of TB
We  previously15 proposed and calibrated a mathematical model of TB that captures the course of progres-
sive TB in mice. The model is a mechanistic representation of the regulatory interplay between macrophages, 
which are the key immunological players in the host response to TB infection, and the bacteria M. tuberculosis. 
We distinguish between free and phagocytic forms of bacteria and macrophages with the four state variables: 
free macrophages ( M), macrophages containing phagocyted M. tuberculosis ( Mf  ), free M. tuberculosis ( T ) and 
phagocyted M. tuberculosis ( Tf  ), which interact dynamically through a series of mechanisms depicted in Fig. 1A 
and described in the “Methods” section. A key feature of our model is that it explicitly represents progression 
through three experimentally observed phases: Phase 1 (Ph1), a preparation phase where non activated (M0) 
macrophages interact with the  bacteria20; Phase 2 (Ph2), a pro-inflammatory phase where adaptive immune 
response activates the M1  macrophages21, and Phase 3 (Ph3), an anti-inflammatory phase where macrophages 
acquire a M2  phenotype22. Bacteria react to the phenotypic changes of macrophages by adapting their virulence 
through these 3  phases23–25. Our simple model reflects these complex processes by allowing specific parameters 
to dynamically adapt to persisting infection. Namely, parameters associated with macrophage pathogen-response 
capabilities (phagocytosis, cell recruitment, antimicrobial mechanisms) and those associated with bacterial viru-
lence (killing rate of macrophages by bacteria); resulting in three phase-specific parameter sets (Tables 1 and 2). 
The transition between phases is modelled by inputting the time integral of M. tuberculosis to switch-like value 
changes in modulable parameters (Fig. 1B), as described in the “Methods” section. This integral-over-time of M. 
tuberculosis represents the history of infection in the respiratory tract, enacted by slowly activating and decaying 
Dendritic Cells that have migrated from the site of infection to the lymph  nodes26. In turn, switch-like changes in 
modulable parameter values (Table 2) reflect phenotypic adaptations of M. tuberculosis27 and  macrophages28 to 
abruptly changing inflammatory microenvironments occurring through T-cell differentiation triggered by suf-
ficiently large accumulation of Dendritic  Cells29 (Fig. 1C). This way, the historic population of bacteria functions 
as a capacitor triggering phase changes when surpassing the threshold values. This occurs at critical time 1, the 
time at which the change from Ph1 to Ph2 occurs, and critical time 2, when Ph2 changes to Ph3. Model Eq. (1) 
are described in the “Methods” section. The parameter values in Tables 1 and 2 were obtained  previously15 by 
parameter optimizations using multiple in vivo and in vitro datasets. Here we show how the model reproduces 
a validation dataset derived from a progressive pulmonary TB mouse model assay that was not used for the 
model calibration (Fig. 1D).

Five bifurcation parameters segregate clinical phenotypes into persistent infection and 
clearance
Previously15, we observed that any genotypic variant (encoded as random variations in the parameter space) 
resulted in one of two possible long term behaviours: bacterial clearance or invasive infection. To ask which 
parameters are more likely to underly this phenotypic segregation, we systematically searched for parameters 
that sort out the space of stable solutions into monostable and bistable (see “Methods”). The search resulted in 
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five parameters: average T phagocytized per Mf  ( PTf  ), death of M (β1) death of Mf  by T ( Fβ5 ), recruitment of 
M ( Fα1 ) and phagocytosis (Fδ) (Fig. S1).

Next, we performed bifurcation analyses on these five parameters, by varying the values around their Ph1-
specific nominal value (Table 1) on a one-by-one basis. For all parameters, the resulting bifurcation diagrams 

Figure 1.  Mathematical model of the immunopathological progression of TB. (A) Graphical representation 
of the key mechanisms that describe the regulatory interplay between macrophages and bacteria. Dotted lines 
represent phase-dependent rates. (B) Historic bacteria population triggers phase changes when the threshold 
values KM1 and KM2 are surpassed at critical times 1 and 2. (C) Phase changes are reflected by adaptations in 
the values of the model parameters described in Table 2, which can transiently increase (top), stepwise increase 
(middle) or stepwise decrease (bottom). (D) The mathematical model with nominal parameters taken  from17 
reproduces the validation data set extracted  from48, corresponding to BALBc mice challenged intratracheally 
with 2.5 ×  105 CFU of H37Rv bacteria.
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show a switch-like dose response curve, with two possible stable equilibrium points corresponding to uncon-
trolled infection and bacterial clearance (red lines on Fig. 2). All five bifurcation diagrams corresponding to the 
i = [1,…,5] bifurcation parameters Pi show a bistable region [Pi−, Pi+] in which these two scenarios stably coexist.

The five bifurcation diagrams for Ph1 show three distinct dynamical behaviors (Fig. 2A–C).
The first class of bistable bifurcation diagram shows an abrupt transition from bacterial clearance to persistent 

infection when the bifurcation parameter is increased to P+i  . Once surpassed this threshold, long term recovery 
can only be achieved if Pi is decreased below P−i  (Fig. 2A). This behavior is shown by the bifurcation param-
eters: Average T phagocytized per Mf  ( PTf  ) and death of Mf  by T ( Fβ5 ). The bifurcation diagram for PTf  shows 
bacterial clearance for values below PTf − ∼ 9 CFU/Mac and persistent infection when above PTf +~61 CFU/
Mac (Fig. 2D, top), suggesting that bacteria benefit from being phagocytized in large numbers. Consistent with 
our predictions, live cell imaging has demonstrated that the number of Mtb internalized by individual cells 
determines macrophage fate; phagocytosis of large aggregates is more cytotoxic than multiple small aggregates 
containing similar numbers of  bacilli30. The second bifurcation parameter leading to such abrupt recovery-
to-persistence behavior is Fβ5 . A higher rate of killing of phagocytic macrophages by free bacteria causes the 
bacterial population to thrive (Fig. 2D, top right). This result is consistent with recent observations suggesting 
that extracellular Mtb aggregates can evade phagocytosis by killing macrophages in a contact-dependent but 
uptake-independent  manner31. Also, Mtb can secrete bacterial membrane vesicles containing toxins, virulence 
factors, nucleic acids, and other molecules that affect the phagocytic capacity of host  cells32.

In the second type of behavior, increases in the bifurcation parameter beyond P+i  result in an abrupt and 
irreversible transition from bacterial clearance to persistent infection, as the value for recovery P−i < 0 and hence 
biologically unattainable (Fig. 2B). This behavior emerges from varying the death rate of M (β1), while its value 
increases, chances of bacteria reaching its carrying capacity also do so (Fig. 2D, middle). A macrophage popula-
tion with a shorter lifespan means a slower accumulation of macrophages at the site of infection, resulting in a 
reduced antimicrobial force. As β1 encapsulates multiple macrophage death mechanisms, including efferocytosis, 
autophagia, necroptosis and pyroptosis -which have been shown to vary across resident alveolar macrophages and 

Table 1.  Model parameters.

Description Parameter
Nominal value (Ph1) (adapted 
 from17)

LTBI (Ph1) (heuristically 
determined) Units

Death of M β1 0.002 0.003 1/d

Proliferation of T α2 2.67 0.07 1/d

Proliferation of Tf α3 1.47 0.81 1/d

# T phagocytized by M PTf 19.2 3.1 CFU
Mac

Carrying capacity K , K̃ 2.4× 107 6.5 ×107 CFU
lung

Mf cellular interior released extracel-
lularly to induce phagocytosis σ 9.2 12.7 1

d

Scaling factor for Mf-dependent Tf 
carrying capacity ξ 1 1 lung

CFU

Phagocytosis Fδ 1.7× 10−9 3 ×10−9 1
Mac·d

Death of Tf by Mf Fγ 1677.7 3074 1
Mac·d

Apoptosis Fβ3 3377 3163 1/d

Recruitment of M Fα1 8 ×106 6 ×106 1/d

Death of M by T Fβ4 6× 10−10 7 ×10−11 1
d·CFU

Death of Mf by T Fβ5 0.096 0.025 1
d·CFU

Necrosis Fβ6 2× 10−4 1× 10−4 1/d

Death of Mf F̂β2 168 306 1/d

Table 2.  Parameter adaptations (fold changes between phases).

Description Symbol Fold change in phase 2 respect to phase 1 value Fold change in phase 3 respect to phase 2 value

Phagocytosis Fδ 184.7 0.003

Death of Tf by Mf Fγ 313.7 0.0005

Apoptosis Fβ3 0.4 0.005

Recruitment of M Fα1 6.6 0.0001

Death of M by T Fβ4 7.2 0.147

Death of Mf by T Fβ5 26.4 0.189

Necrosis Fβ6 1000 102.6

Death of Mf F̂β2 8.7 0.3
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inflammatory macrophages and the microenvironment conditions they’re  subject33–37, it is plausible to think that 
this parameter can vary even orders of magnitude around the nominal value. Indeed, it has been experimentally 
shown that, in the context of a mouse model of pulmonary TB, macrophage death can increase up to two orders 
of magnitude when the highly virulent Beijing strain 9,501,000 is  used38, 39. Further experiments are required 
to determine whether differences in host condition can lead to even larger variation in macrophage death rates.

Finally, in the third type of bifurcation diagram, an inverse relation between parameter value and disease 
severity is observed. Here, increasing the parameter value up to P+i  results in a transition from persistent infection 
to remission. Once in remission, decreasing the parameter value below P−i  results again in a persistent infection 
(Fig. 2C). This behavior is displayed by the rates of phagocytosis (Fδ) and of recruitment of M ( Fα1 ) (Fig. 2D, 

Figure 2.  Bifurcation analysis quantitatively describes how mechanisms segregate clinical phenotypes. (A–C) 
Schematic representation of the three types of bifurcation diagrams found on the analysis: (A) Rising the 
bifurcation parameter to P+ results in an onset of infection which prevails until the parameter is decreased to 
P− . (B) Irreversible onset of infection when P+ is reached. (C) Rising the parameter value to P+ results in stable 
clearance of infection, which prevails unless the parameter is decreased to P− . Bistability is observed in all cases 
between P− and P+ . (D) Bifurcation diagrams for Average T phagocytized per Mf  (PTf), death of Mf  by T ( Fβ5 ) 
(Top; an reversible off-to-on switch as depicted in (A)); Death of M ( β1 ) (Middle; irreversible off-to-on- switch 
as depicted in (B)), and Phagocytosis ( Fδ ) and Recruitment of M ( Fα1 ) (Bottom; irreversible on-to-off switch as 
depicted in (C)). Red lines represent asymptotically stable solutions and blue lines are unstable solutions. Dotted 
vertical arrows are the threshold parameter values when an abrupt change in stability occurs (i.e., a bifurcation). 
Parameter values in the x-axis are shown in log10 scale.
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bottom). Our results show that a higher phagocytosis rate leads to bacterial clearance. As the only mechanism 
of bacteria eradication in our model is intracellular, Fδ is strictly necessary for infection control. There is a wide 
range of phagocytic receptors that interact with a variety of phagocytosis signaling cascades, and receptors have 
various degrees of ligand specificity, making Fδ a modulable  mechanism40. Mycobacteria display numerous 
and diverse ligands on their surface which can engage with multiple macrophage receptors of multiple types 
 simultaneously41. Augmenting Fα1 also leads to bacterial clearance. As with β1 , this mechanism is arguably vital 
for maintenance of macrophage population at the site of the infection and subsequently crucial for controlling 
bacterial growth. Nevertheless, a high and persistent macrophage recruitment could result in excessive inflam-
mation, which has been shown to have counter effects for the  host42, 43. A combination of increased macrophage 
efficiency and controlled inflammation could result in an efficient and non-toxic treatment.

Disease phase affects the sensitivity of the clinical phenotype to changes in the bifurcation 
parameters
Following the Ph1 analysis, we studied how disease progression affects the bifurcations. For this, we conducted a 
similar bifurcation analysis as in the previous section but this time varying the parameters around their specific 
Ph2 and Ph3 nominal values (Table 2). While a switch-like bistable bifurcation diagram is observed across all 
phases and for all bifurcation diagrams of the model, progression from Ph1 to Ph2 and to Ph3 dramatically shifts 
the threshold values P− and P+ (Fig. 3).

For PTf  , Fβ5 and β1 , P+ increases from Ph1 to Ph2 and decreases to its lowest value in Ph3, while for Fδ and 
Fα1 this threshold has a staggered growth through the three phases. For Fδ , P− is also constantly increasing 
indicating that the bistable window gets shifted to the right. In contrast, P− in Fα1 decreases across the phases, 
which means that the bistable region keeps growing steadily through the phases (Fig. 3C). For Fβ5 and PTf  , P− 
< 0 in Ph3, causing a shift from a reversible to an irreversible switch.

For PTf  , the switch becomes irreversible from Ph2, meaning that a therapeutic intervention through decreas-
ing this mechanism is exclusive to Ph1. It is worth pointing out that PTf +Ph.2 ≫ PTf +Ph.1 ≫ PTf +Ph.3 , sug-
gesting that M1 macrophages can internalize many bacteria without necessarily leading to persistent infection. 
Clinical evidence shows that thanks to the adaptive immune response most infected individuals contain the 
bacilli and never develop active  disease44. The bistable region for Fβ5 gets pushed to the right several orders of 
magnitude in Ph2, resulting in an ideal timing for therapeutic interventions over Ph1. In Ph3 the switch becomes 
irreversible, hence bacterial clearance can no longer be achieved by tuning Mf death by T, and therefore a treat-
ment focused on this mechanism would be exclusive to patients on the first two phases of disease progression.

For β1 the switch remained irreversible across the three phases, with the position of its right (and only) 
threshold dramatically increasing by three orders of magnitude between Ph1 ( β1+Ph1 = 0.00719 ) and Ph2 

Figure 3.  Disease progression affects the sensitivity of the clinical phenotype to changes in the bifurcation 
parameters. (A) Bifurcation diagrams for the five bifurcation parameters across the 3 phases. Unstable solutions 
are not shown for clarity. Dotted vertical arrows denote threshold parameter values when an abrupt change 
in stability happens, from bacterial clearance to invasive infection or vice versa. (B) Right (P−) and left (P+) 
threshold parameter values enclosing the bistable region change as the disease progresses. Each row corresponds 
to one of the 5 bifurcation parameters, and the columns are the P− (left panel) P+ (right panel) threshold 
parameter values for each phase, normalized to its phase 1—specific threshold value. (C) Size of the bistable 
region. For negative P−, ΔP corresponds to P+.
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( β1+Ph2 = 0.66 ). This threshold displacement indicates that Ph2 is less vulnerable to increased macrophage 
mortality, suggesting that activated macrophages are better at controlling the infection even when their lifespan 
is shortened. This robustness is lost in Ph3 ( β1+Ph3 = 0.0003 ), showing again the increased efficacy of M1 mac-
rophages over M2 and non-activated ones.

For Fδ , the switch remains bistable with a larger hysteresis region during Ph2 ( �Fδ
Ph1 = 3.45−9 , 

�Fδ
Ph2 = 4.2−3 ) but becomes irreversible for Ph3. Further, during Ph3, Fδ+ increases far beyond an attainable 

value (above 31 orders of magnitude of the nominal value), suggesting that targeting the strength of phagocyto-
sis to achieve bacterial clearance is only possible for the first two phases. This large phase-dependent variation 
in the sensitivity of the infection outcome to changes in the phagocytosis rate could be explained by changes 
in the metabolic activity of M1 and M2 macrophages. Experimental manipulation of the hypoxia-inducible 
factor-1 alpha (HIF-1a) can dramatically affect the infection outcome, by interfering with the metabolic repro-
gramming that characterizes M1 to M2  transitions45, while simultaneously affecting the phagocytic capacity of 
 macrophages46. It remains to be elucidated whether other treatments such as mycobacterial proteins P27 and 
PE-PGRS33, which affect intercellular bacillary load in alveolar  macrophages47, are more effective during the 
early phases of infection.

Finally, Fα1 showed a reversible switch for the three phases, with Fα1 > Fα1
+ leading to bacteria eradication. As 

the disease progresses Fα1+ increases, requiring a more aggressive therapy for clearing the infection. Increase in 
Fα1

+ is mirrored by an increase in the length of the bistability region ( �Fα1 ), suggesting that once bacterial clear-
ance has been achieved, this phenotype is more robust to decreases in macrophage recruitment. Nevertheless, a 
therapeutic intervention of a Ph3 patient would be the most difficult due to the risk of excessive inflammation.

Overall, the results above show the importance of considering the disease phase when designing a therapeutic 
intervention in progressive diseases.

Two‑dimensional bifurcation analysis reveals crosstalk among mechanisms.
To analyze the dynamic interplay between pathophysiological mechanisms, we performed bifurcation analysis 
varying two parameters simultaneously around their Ph1 specific nominal values (Table 1). Each panel on Fig. 4 
shows a 2-dimensional bifurcation diagram with the bistable region (cyan) limited by the bifurcation curves 
( P−i , P

−
j ) and ( P+i , P

+
j ) , as well as the mono-stable regions for bacterial clearance (yellow) and for persistent infec-

tion (blue). While all possible combinations of the five bifurcation parameters were performed (Supplementary 
Fig. 4), here we show only the ones with the biggest potential for treatment design.

The pair Pi: # T phagocytized by M ( PTf  ) × Pj: Death of Mf by T ( Fβ5 ) shows synergistic effects, since the cor-
responding bifurcation curves ( P−i , P

−
j ) and ( P+i , P

+
j ) show that there is a non-additive relation between these 

Figure 4.  Two-dimensional bifurcation analysis exposes synergistic and antagonistic effects of compound 
regulation for two (A) and three (B) parameters simultaneously. Dotted white lines are (P−i , P

−
j )  and (P+i , P

+
j ) 

bifurcation curves that delimitate the bistable space. Nominal Ph1 parameter values (Table 1) are shown as white 
dots.
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two parameters. We see bacterial clearance at all values of PTf  when Fβ5 is below 0.0158. This contrasts with the 
1-dimensional analysis (Fig. 2A) showing persistent infection when PTf > 61CFU/Mac . Similarly, Fβ5 alone 
leads to persistent infection when above 0.32 1

CFU ·d
 but remains bistable if PTf  is small enough. These results 

suggest that macrophages can deal with greater amounts of internalized bacteria if the extracellular activity of 
the pathogen is reduced.

The pair Pi: # T phagocytized by M ( PTf  ) × Pj: Phagocytosis (Fδ ) shows a linear but opposite relation. While 
large values of PTf  at low Fδ results in unresolved infection, increasing Fδ can result in bacterial clearance even 
for high PTf  . This suggests that a higher phagocytosis rate could compensate for a possible rise in PTf  due to 
bacteria-induced alterations of the macrophage. Augmenting Fδ could therefore be an effective nontoxic thera-
peutic approach; indeed, phagocytosis has been shown to have a central role in the resolution of  inflammation36.

Similarly, the pair Pi: # T phagocytized by M ( PTf  ) × Pj: recruitment of M ( Fα1 ) shows a linear but opposite 
relation. A transition from persistent infection to clearance can be achieved if PTf  is reduced or if Fα1 is increased; 
and if PTf  is sufficiently small, then smaller increases in Fα1 are sufficient for a transition to a healthy phenotype. 
In vitro experiments show that macrophages internalize 7 mycobacterium per cell in  average27, making a PTf  
reduction strategy plausible and more convenient than rising Fα1 which can cause inflammatory damage.

Along the same line, the Pi: Phagocytosis (Fδ ) × Pj: Death of M ( β1 ) bifurcation diagram shows a linear but 
opposite relation between these two mechanisms. While increasing the phagocytosis rate can lead to effective 
bacterial clearance, macrophage death rate must be small enough, otherwise even high values of Fδ will result 
in persistent infection.

The Pi: Phagocytosis (Fδ ) × Pj: Recruitment of M ( Fα1 ) bifurcation diagram shows a synergistic relation 
between these two mechanisms. Our analysis suggests that, while increasing either of these rates alone could 
result in bacterial clearance, increasing both simultaneously would dramatically reduce the intervention effort; 
smaller increases would be sufficient to achieve remission.

Figure 4B shows the Pi: # T phagocytized by M ( PTf  ) × Pj: recruitment of M ( Fα1 ) diagram when the value of 
Fδ is raised. The bistable area increases, resulting in a smaller Fα1 value (up to one order of magnitude) needed to 
converge to the healthy phenotype. This suggests that phagocytosis can drive bacterial clearance without higher 
levels of inflammation.

In summary, our analysis predicts different types of combinatorial effects between pathogenic mechanisms. 
Of particular relevance are the synergistic parameter pairs ( PTf × Fβ5 and Fδ × Fα1 ), where a desired clinical 
phenotype can be achieved with less treatment effort when both mechanisms are modulated simultaneously than 
when they are varied one at the time. Thus, these pairs could constitute particularly promising unconventional 
therapeutic targets.

Modulation of speed of transition across disease phases
A key aspect of our model is that the disease is not stagnant in a specific phase, but rather transitions between 
them dynamically. Hence, we explored how parameter variations modulate the speed of transitions across phases. 
This is important to better design the timing of treatments, e.g., if a treatment works best in Ph2, we want to 
know how long it will take a given patient to arrive at that phase, and how long it will last. To study this, we 
quantified the impact of variation of all model parameters on the critical times at which the disease progresses 
from Ph1 to Ph2 (critical time 1) and from Ph2 to Ph3 (critical time 2). Among all parameters, only the growth 
rate of free bacteria ( α2 ) and the carrying capacity ( K ) show a significant effect on these critical times (Fig. 5); 
interestingly, none of the bifurcation parameters had a major effect on these transition times (Supplementary 
Fig. 3). This is consistent with experimental results, showing that the single most important factor affecting the 
phase transition speed is the bacterial growth kinetics, which in turn depends on the specific bacterial  strain48 
and on endocrine factors of the  host49.

Parameter α2 showed a strong influence on critical time 1 (Fig. 5a), peaking at 39 days for α2 = 0.1 and quickly 
decreasing up to 9 days for α2 = 0.6 . A similar trend is observed for critical time 2, with a rapid decrease from 39 
days at α2 = 0.3 to a minimal value of 16 days at α2 = 5.7 . For values equal and less than 0.2, no transition to Ph3 
is observed. As shown in the previous section, therapeutic interventions have a strong dependence on time. This 
means that patients infected with highly virulent strains of M. tuberculosis, which have higher α2  rate6, 48 could 
have a shorter window for successful treatment intervention. Parameter K has a minor effect on critical time 1 but 
strongly affects critical time 2 (Fig. 5a). None of the two parameters showed bifurcations (Supplementary Fig. 3).

Manipulation of parameter values that affect transition times allowed us to reproduce the disease dynamics 
observed in latent TB infections (LTBI). A latent TB infection is defined as a state of persistent immune response 
against M. tuberculosis antigens without evidence of clinical manifestation of active TB  disease50. Due to the low 
number of bacteria in the tissue in latent infections, the clinical diagnosis of these does not focus on the identi-
fication of the bacteria or their components but on their indirect detection through evidence of cellular immune 
response to bacterial  antigens51. In vivo models of chronic infection similar to latent infection in  mice56 show 
the appearance of Th1 lymphocytes and the subsequent activation of M1 macrophages 90 days after  infection53 
(Fig. 5b), that is, more than 80 days later than in a progressive  infection54, 55. This proinflammatory adaptive 
immune response is maintained throughout the LTBI assay  in53 without transitioning into a Th2 recruited anti-
inflammatory response. From the above, we can conclude that a latent infection has a Ph1 to Ph2 transition but 
not to Ph3. Hence, we can interpret latent infection as Ph2 that converges ultra-slowly towards bacterial clear-
ance or persistent infection (i.e., the critical time 2 → ∞ ). Although detection of bacteria by culture should be 
impossible in latent infections (detection limit shown as a dotted line in Fig. 5b), the in vivo model  of53 conforms 
to the operational definition of an experimental latent infection consisting of a stable population of bacteria 
in the tissue without the presence of symptomatic disease in a long period of time and without spontaneous 
reactivation of the  infection52.
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Our model was able to mimic bacterial population dynamics in the first 90 days and replicates the recruit-
ment time of the adaptive immune response (critical time 1) and the non-recruitment of the anti-inflammatory 
response. This was achieved by decreasing the initial numbers of free bacteria in the system, which is consistent 
with the lower bacterial challenge used in LTBI assays vs. progressive infection ones. Additionally, all the Ph1 
parameters of the system were varied slightly (Table 1), to mimic the difference in the genetic background used 
for the LTBI (B6D2F1 mouse strain) with respect to the progressive infection model (BALB/c strain) used for 
the original calibration of the data. Consistent with our theoretical results (Fig. 5a), parameter α2 had to vary 
by one order of magnitude from its nominal value to reproduce the higher critical time 1 observed in the LTBI.

Subsequent in silico experiments (Supplementary Fig. 2) show that this convergence is even slower than the 
maximum lifespan of a mouse under laboratory  conditions56, suggesting that a latent infection will not reactivate 
unless there is an external forcing (sudden immunocompromise, old age, etc.).

Discussion
Here we presented a quantitative characterization of the influence of specific disease mechanisms on the clinical 
outcome of Mtb infection, which we achieved through bifurcation analysis of our minimal mathematical model 
of tuberculosis progression. Our results pinpoint five specific mechanisms and report how changes in their 
magnitude secern genotypes (parameter sets) into clinically relevant phenotypes (stable solutions). Additionally, 
we characterized the influence of disease progression on the sensitivity to variations in these key mechanisms, 
exposing the importance of the disease stage in the mechanisms’ ability to determine disease outcomes. We also 
revealed synergic effects between disease mechanisms through 2-dimensional bifurcation analyses. Finally, we 

Figure 5.  Parameter variation affects the transitory state of the model. (a) Variations in T growth rate (α2) 
and in bacterial carrying capacity (K) affect the speed of progression across phases. (b) Model captures latent 
tuberculosis infection (LTBI) cellular dynamics. Top: Phase 2-specific cellular markers Th1, Th2 and M1 
macrophages rise sharply at the critical time 1 = 90 days post infection in a B6D2F1 mouse model of LTBI (data 
 from53). Bottom: Mathematical model reproduces the mouse model of latent tuberculosis infection described in 
(Arriaga et al.53); the simulated total bacterial loads remain below the limits of detection for almost all the course 
of the simulation, and the simulated critical time 1 for onset of adaptive immune responses (dotted vertical 
green line) coincides with the corresponding experimental value (dotted vertical orange line spanning from top 
to bottom panel)  from53.
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identified the model parameters that control the pace of phase transitions, and with this, could reproduce latent 
tuberculosis infection.

Our bifurcation analysis suggests that the number of bacteria a macrophage accumulates is crucial to its 
survival, a prediction that is supported by experimental  data30. There are two ways for Mtb to accumulate 
inside macrophages: By trapping macrophages into phagocytizing multiple bacteria simultaneously or through 
converting macrophages into permissive niches. According  to30, Mtb aggregate naturally unless the medium is 
transformed, for example by using a non-ionic detergent such as Tween 80. A non-toxic way to transform the 
host’s extracellular environment could be explored as a therapeutic approach. On the other hand, Mtb’s ability 
to block phagosome maturation, evade autophagy and manipulate the inflammasome turns macrophages into 
bacteria  reservoirs44 which will continue to phagocytose without eliminating already internalized bacteria until 
reaching a potentially lethally high PTf  . Besides known antibiotics like Rifampicin and Ethambutol than can 
eliminate bacteria inside or outside  macrophages57, novel immunotherapies based on antimicrobial peptides that 
do not depend on bacterial replication (like conventional antibiotics do) have been proved to reduce pulmonary 
bacillary loads in TB  infection58. Experimental  evidence31 shows yet another risk caused by bacteria aggregation, 
namely, the capacity of Mtb aggregates to kill macrophages extracellularly. Our predictions on the dangerous 
consequences of rising Mf death by T reaffirm the necessity to stop bacteria from grouping in big numbers 
on the extracellular environment. Our results also suggest that increased macrophage death can result in an 
uncontrolled infection, the greatest susceptibility to these fluctuations being in phase 3. Chemotherapeutic or 
other pharmacological  regimes59 as well as  aging60 can alter the lifespan of alveolar macrophages, making those 
patients vulnerable to developing an aggressive symptomatic disease if infected with Mtb. Our results suggest that 
increasing phagocytosis and macrophage recruitment can lead to a favorable outcome, and that the manipulation 
effort to achieve this goal increases as disease progresses. Due to the multiple evidence pointing that an excessive 
inflammation is highly detrimental to the  organism42, 61, a therapy focused on promoting phagocytosis could be 
safer than rising macrophage recruitment. Recent studies have demonstrated that silencing the transcriptional 
factor Klf10 in macrophages promotes bacterial clarification by augmenting IFN-γ levels which boosts phago-
cytosis and bacilli  destruction62.

Tuberculosis is a progressive disease that displays multiple facets of the immune system. Here, we studied 
the influence of disease progression on the susceptibility of the host to modulations in the parameter strength 
driving the clinical outcome of the infection. For β1 , Fα1 and Fβ5 , it is during Phase 2 that less effort is required 
to achieve bacterial clearance; further, the host is most robust to persistent infection. Immunotherapies that 
regulate the host response rising macrophage activation, recruitment, phagocytic and antimicrobial capability 
using adenovirus based-vectors to produce antimicrobial peptides like catheldicins and defensins and pro-Th1 
cytokines like IFN-γ and IL-12 have been  proposed63, 64. Driving the organism to a Phase 2-like phenotype 
through these immunotherapies will make β1 , Fα1 and Fβ5 manipulation more efficient. It is important to keep in 
mind that certain comorbidities like AIDS and diabetes present a dramatic decrease in  CD4+ T-cells65, making 
it almost impossible for an adaptive immune response to be recruited. Parameters Fδ and PTf  showed that a 
therapeutic intervention through these mechanisms is only possible in Phase 1, highlighting the importance of 
early detection and treatment of TB. Only β1 and Fα1 were able to lead the system to bacteria clearance on Phase 
3, this phase being the one with the highest parameter thresholds for remission (i.e., more resource consuming). 
Experimental evidence shows that blocking cytokines like IL-4 and IL-10 that play an anti-inflammatory role in 
late active TB may constitute an efficient therapeutic  strategy66.

Two-dimensional bifurcation analysis revealed synergic effects between mechanisms, showing how compound 
manipulation could lead to a more efficient therapeutic approach. In the Fδ × Fα1 diagram, a synergistic effect was 
found when both parameters increased simultaneously, requiring almost half the recruitment needed to drive 
the system to bacterial clearance when Fδ is raised by two units, reducing the risk of excessive inflammation. An 
immunotherapy that increases IFN-γ62 and blocks IL-4 and IL-10  cytokines66 will increase Fδ and prevent Fα1 
from decreasing, resulting in an efficient nontoxic therapy. Phagocytosis and recruitment synergy also showed to 
work even in scenarios where PTf  rises. The other synergy observed was between PTf × Fβ5 , demonstrating that 
healthy macrophages can bear large intracellular bacilli loads. To achieve the goal of less toxic and less resource 
consuming therapies, crosstalk among mechanisms must be considered.

In addition to the model mechanism’s ability to determine dynamic phenotypes, they also influence its tran-
sient state. While it is essential to obtain the equilibrium behavior of the system, the path followed to get there 
is equally important, especially in terms of resource efficiency. While none of the 5 bifurcation parameters alter 
the transition times between phases, α2 and K are capable of dramatically accelerate disease progression as their 
values increase. Variation in bacteria proliferation levels has been documented through different strains of M. 
tuberculosis, Strain 09005186 produces twice the CFU at 21 days post-infection in BALB/c mice than our nominal 
H37Rv model  strain48. Strain 09005186’s higher α2 would result in quicker phase transitions, narrowing the time 
windows for efficient treatment, hence knowing Mtb strain is fundamental for effective therapy design. On the 
other hand, α2 values closer to zero would lead to ultra-slow disease progression, which is a hallmark of latent 
tuberculosis infection. LTBI is the most persistent infection state  worldwide51, which we could mathematically 
replicate as an ultra-slow Ph2 that will take longer to converge than the lifespan of organisms.

Our model is deterministic, and hence, its main limitation is that it reproduces only the mean field behaviors 
of the macrophage and bacteria populations. A stochastic version of our model that includes intrinsic noise in 
the individual reactions as well as extrinsic noise in rate constants would allow us to simulate a distribution of 
heterogeneous phenotypes, and to explore how the shape of these distributions could be modulated by therapeu-
tic interventions. Additionally, while in our model we make the simplifying assumption that bacterial killing by 
macrophages is only intracellular, it is plausible that extracellular mechanisms also shape the disease outcome. 
Finally, phagocytosis was modeled with a Gause-type approach, but alternatively, a Leslie-Gower formulation 
might be  explored67.
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Future work involves the recalibration of our model with clinical longitudinal data to attain translational 
 medicine68 and to replicate the synergy between antibiotics and immunotherapy that has been observed 
 experimentally64, 69, as previously done for S. pneunomiae  infection7.

The five bifurcation parameters found correspond to mechanisms that are predicted by our model to deter-
mine the outcome of TB infection. Therapeutic interventions targeting these single mechanisms must contem-
plate disease progression stage as well as the state of the other mechanisms (genetic and microenvironmental 
backgrounds). Through bifurcation analysis, our model proves to be a powerful tool to quantitatively assess the 
influence of its mechanisms on the determination of the dynamic phenotype, opening the door to further in 
silico experimentation that will lead to the design of experiments and new efficient treatments.

Methods
Model equations
The model of TB progression (Fig. 1A) represents the dynamical coupling between free macrophages ( M), 
macrophages containing phagocyted Mycobacterium tuberculosis ( Mf  ), free Mycobacterium tuberculosis ( T ) and 
phagocyted Mycobacterium tuberculosis ( Tf  ) as:

This is a system of four ordinary differential equations (ODEs) where the ‘dot’ in Ṁ = dM
dt   represents the rate 

of change of variable M in time (similarly for Mf, T and Tf).
Equation (1) represents the dynamics of free macrophages ( M ). Every term on the right-hand side of (1) 

corresponds to a specific aspect in the interaction of the state variables that contributes to the growth or decay of 
M in time. More specifically, the arrival of M to the site of infection is stimulated by Mf (recruitment term); the 
phagocytosis of T by M can be enhanced by the cell interior released by Mf  upon necrosis, where the number 
of T that can be phagocyted by a single macrophage is controlled by the scaling factor PTf  that represents the 
average bacteria phagocytized by macrophages in vivo. The third term corresponds to the natural death of M 
and final term accounts for the death of M caused by T.

Equation (2) represents the dynamics of macrophages that have phagocytized (Mf). The individual terms 
correspond to M phagocytizing T , the natural death of Mf  , the death of Mf  caused by T , apoptosis and necrosis, 
respectively.

Equation (3) represents the dynamics of free M. tuberculosis ( T ). The first term corresponds to the logistic 
growth of T . The second term is the release of T into the extracellular medium due to the necrosis of Mf  , and the 
last one is M phagocytizing T . The number of T released during necrosis is controlled by the scaling factor PTf .

Finally, Eq. (4) represents the bacteria that have been phagocytized ( Tf  ). The first term corresponds to the 
logistic growth of Tf  , with a carrying capacity that is conditioned by the population of Mf  since Tf  cannot pro-
liferate outside of it. The second term is M engulfing T and the last one is the death of Tf  caused by Mf .

Notice that in our model the biomass conversion due to phagocytosis follows a kind of mass-energy conserva-
tion law typical of Gause-type predator–prey  models70.

Parameters marked with an F in Eq. (1) (such as Fα1, Fδ , etc ) change through the three phases of progression 
depending on the value of:

This integral can be interpreted as the “history” of bacterial load until time t  . The transition from phase 1 to 
phase 2 is specified at a certain instant critical time 1 in which X attains a given threshold value X = K1

m (Fig. 1B). 
The new value of such parameter for phase 2 is then given by the formula:

(1)
Ṁ =

Recruitment
︷ ︸︸ ︷

Mf · Fα1 −

Phagocytosis
︷ ︸︸ ︷

M ·
T

PTf
· Fδ ·

(
1+Mf · Fβ6 · σ

)
−

Death
︷ ︸︸ ︷

M · β1 −

Death by T
︷ ︸︸ ︷

M · T · Fβ4,

(2)Ṁf =

Phagocytosis
� �� �

M ·
T

PTf
· Fδ ·

�
1+Mf · Fβ6 · σ

�
−

Death by T
� �� �

Mf · T · Fβ5 −Mf ·






Death
����

�Fβ2 +

Apoptosis
����

Fβ3 +

Necrosis
����

Fβ6




,

(3)
Ṫ =

Proliferation
︷ ︸︸ ︷

α2 · T ·

(

1−
T

K

)

+

Necrosis
︷ ︸︸ ︷

Mf · Fβ6 · PTf −

Phagocytosis
︷ ︸︸ ︷

M ·
T

PTf
· Fδ ·

(
1+Mf · Fβ6 · σ

)
,

(4)
Ṫf =

Proliferation
︷ ︸︸ ︷

α3 · Tf ·

(

1−
Tf

(
1+ K̃ ·Mf · ξ

)

)

+

Phagocytosis
︷ ︸︸ ︷

M ·
T

PTf
Fδ ·

(
1+Mf · Fβ6 · σ

)
−

Death byMf
︷ ︸︸ ︷

Mf · Tf · Fγ .

X =

∫ t

0

(
T + Tf

)
dx.
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Similarly, transition from phase 2 to phase 3 occurs at such instant critical time 2 such that X = K2
m and the 

new parameter value for phase 3 is given by

Let us explain the ingredients of fi(X) , with i = 1, 2 , in more detail. The abrupt and immediate change in 
parameter values is modelled in a phenomenological way by two Hill functions ( Xni ·ji

Xni ·ji+Ki
m
ni ·ji

, i = 1, 2 ) that depend 
on the integral X. The constants Ki

m , i = 1,2, represent the threshold values of X where the system changes phases. 
The Hill coefficient, ni , i = 1,2, defines the steepness of the Hill function; the higher it is, the more abrupt its 
change. Pimin and Pimax are the minimal and maximal parameter values, respectively, between the phase changes. 
The constant ji is 1 if the Hill function increases and ji = − 1 if it decreases, where i = 1, 2 . As shown in Fig. 1C 
we can see three behaviors: Transient increase or “up-down” ( j1 = 1, j2= − 1), stepwise increase or “up-up” 
( j1 =  j2 = 1) and stepwise decrease or “down-down” ( j1 =  j2 = − 1). Each of the phase-dependent parameters has 
associated an ( j1, j2) pair as shown in Fig. 1C, as well as maximal and minimal value pairs between phases 
( Pimin, P

i
max) . To facilitate the implementation of our model, we show in Table 2 the fold-changes in the values 

of these phase dependent parameters resulting from applying fi(X).
Model equations can be found on https:// github. com/ eliez erflo res/ Tuber culos is- model in MATLAB file Tuber 

culos is_ ODEs.m  and in SBML files TBModelPh1.xml, TBModelPh2.xml and TBModelPh3.xml (one file per 
phase).

Model simulation
The solution of the model (Eq. 1) was approximated by numerical integration using ode15s function in MAT-
LAB. Initial conditions in Fig. 1D, correspond to the first experimentally determined datapoint, as discussed in 
detail  in15. Initial conditions used in Fig. 5B are described in the “Simulation of latent tuberculosis infection” 
section.

Identification of bifurcation parameters
To find potential bifurcation parameters, we randomly sampled 500 parameter sets two orders of magnitude 
around the previously fitted Phase 1  values15. We used the Latin Hypercube method in MATLAB to sample from 
this multidimensional uniform distribution. For each parameter set we computed the number of stable equilib-
rium points, as described  in15. We identified those parameters that segregate the monostable from the bistable 
regimes by systematically performing a two-sample t-test using ttest2 function in MATLAB and selected 
those parameters that rejected the null hypothesis (no difference between mono-and bistable regimes) with a p 
value below or equal to 0.001.

1‑D bifurcation analysis
For each of the five bifurcation parameters, we varied their values one at the time. For each parametric com-
bination, we obtained all the steady state solutions of Eq. (1) using vpasolve function in MATLAB. We only 
stored positive real solutions, classifying them as stable or unstable according to the eigenvalues in their Jacobian 
matrices (all real parts are negative = stable). We explored values of the bifurcation parameters until we found the 
beginning and the end of the bistable section, i.e., the parameter interval at which the number of stable steady 
states increases or decreases. The exploration started around the nominal value P̂i of the i-th bifurcation param-
eter by considering the interval [ ̂Pi · 0.1, P̂i · 10] with 100 steps, i.e., a step size of (P̂i · 10− P̂i · 0.1)/100 . The 
last values of Pi registered before a change of stability was observed are the bifurcations given by the threshold 
values P−i  (for a change of mono to bistability) or P−i  (for a change of bi to mono-stability). We performed this 
assay three times, one for each phase parameter set.

2‑D bifurcation analysis
Using the same methodology as for the 1-D bifurcation diagrams we varied two parameters simultaneously and 
obtained their solutions. Stable solutions were classified as (a) monostable persistent infection, (b) bistable, and 
(c) monostable bacterial clearance. As for the 1-D diagrams, we explored the interval [ ̂Pi · 0.1, P̂i · 10] with 100 
steps, i.e., a step size of (P̂i · 10− P̂i · 0.1)/100 around the nominal values P̂i , resulting in 100 × 100 matrices with 
each cell being a solution classified as (a), (b) or (c). We then visualize the matrix using imagesc on MATLAB. 
Additionally, for some parameter combinations (like PTf × Fα1 ), we changed the value of a third parameter, this 
single change was maintained while the other two parameters varied around their thresholds. We explored all 
possible bifurcation parameter combinations and showed only those who were the most interesting. We only 
performed this assay for parameters in phase 1 state.

Simulation of latent tuberculosis infection
The mathematical model was able to replicate in vivo data of a LTBI in B6D2F1. In the experimental  assay53, 
mice were infected with 4 ×  103 H37Rv bacteria. For our numerical integrations we considered an initial condi-
tion of 1 ×  103 for free bacteria ( T ) because we assumed that not all the inoculated bacteria reach the infection 

(5)f1(X) =
(
P1max − P1min

)
+ P1min

(

Xn1·j1

Xn1·j1 + K1
m
n1·j1

)

.

f2(X) =
(
P2max − P2min

)
+ P2min

(

Xn2·j2

Xn2·j2 + K2
m
n2·j2

)

.

https://github.com/eliezerflores/Tuberculosis-model
https://github.com/eliezerflores/Tuberculosis-model/blob/main/Tuberculosis_ODEs.m
https://github.com/eliezerflores/Tuberculosis-model/blob/main/Tuberculosis_ODEs.m
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site. Macrophage ( M ) initial condition was 173,654.91, a number obtained by averaging macrophage counts on 
 homeostasis71. Mf  and Tf  initial values were zero. As for the parameters, we started selecting a random parameter 
set (previously generated by a Latin hypercube sampling from the nominal parameter set as explained  in15) that 
had a critical time 1 near 90. We then varied Fβ5 , Fδ and Fα1 heuristically until we obtained the desired outcome 
(Table 1).

Data availability
The code is stored in our GitHub folder https:// github. com/ eliez erflo res/ Tuber culos is- model/ and will be made 
publicly available upon acceptance.
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