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Memory‑induced alignment 
of colloidal dumbbells
Karthika Krishna Kumar 1,3, Juliana Caspers 2,3, Félix Ginot 1, Matthias Krüger 2 & 
Clemens Bechinger 1*

When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-
relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects 
including a non-trivial recoil of the probe when the driving force is removed. Here, we experimentally 
and theoretically investigate the transient recoil dynamics of non-spherical particles, i.e., colloidal 
dumbbells. In addition to a translational recoil of the dumbbells, we also find a pronounced angular 
reorientation which results from the relaxation of the surrounding fluid. Our findings are in good 
agreement with a Langevin description based on the symmetries of a director (dumbbell) as well as a 
microscopic bath-rod model. Remarkably, we find an instability with amplified fluctuations when the 
dumbbell is oriented perpendicular to the direction of driving. Our results demonstrate the complex 
behavior of non-spherical objects within a relaxing environment which are of immediate interest for 
the motion of externally but also self-driven asymmetric objects in viscoelastic fluids.

Newtonian liquids typically exhibit relaxation times on the order of microseconds1,2 which are significantly 
shorter than the typical timescales of embedded micron-sized colloidal particles ( ≈ seconds). Accordingly, 
above these timescales such liquids remain in equilibrium even when it is perturbed by e.g. a driven colloidal 
particle. The situation is rather different when considering viscoelastic fluids which can store and dissipate energy 
on timescales on the order of seconds. Therefore, pronounced memory effects (non-Markovian behavior) can 
be expected in such systems due to the slow relaxation of the fluid’s mesoscopic microstructure and which has 
been confirmed using microrheological techniques3–10. In equilibrium, the mean squared displacement (MSD) 
of an embedded probe shows anomalous diffusion with a subdiffusive plateau at intermediate times11–13. Beyond 
equilibrium, so-called recoil experiments, where first a driving force is applied to a colloidal particle which 
is then suddenly removed, provide a useful method to explore how the motion of particles is modified when 
coupled to a slowly relaxing environment13–16. Previous studies have revealed rather general double-exponential 
recoil dynamics which can be quantitatively described by so-called bath particle models, where the response of 
the fluid is mimicked by harmonically coupled fictitious bath particles16,17. So far, such studies have been only 
conducted with spherical colloidal particles which produce only axially-symmetric strain fields in the fluid upon 
shear. However, strain fields induced by anisotropic particles are considerably more complex and may not only 
affect the translational but also the orientational dynamics of such particles within a relaxing viscoelastic fluid.

In this work, we investigate the recoil dynamics of colloidal dumbbells which are driven by an optical twee-
zers through a viscoelastic fluid. In addition to recovering a double-exponential translational recoil, we find a 
memory-induced alignment (MIA) of the dumbbell along the driving axis. This alignment strongly depends on 
the initial dumbbell orientation relative to the applied driving force and shows a maximum around 45 degrees. 
To explain the origin of this alignment, we derive a nonlinear Langevin description accounting for orientation. 
Based on system symmetries (of a director), this model provides the correct dependence on initial orientation 
as well as on driving velocity. Finally, we introduce a microscopic model that fits experimental observations and 
explains the mechanism behind angle-dependent instabilities. Notably, this model requires nonlinear couplings, 
as the phenomenon of MIA is inherently nonlinear: in linear order, it is forbidden by symmetry.

Materials and methods
In our study, we use a viscoelastic solution of 8mM equimolar cetyl pyridinium chloride (CPyCl) and sodium 
salicylate (NaSal). A small amount of silica particles with diameter 2.73µm is added to the fluid which is con-
tained in a sealed rectangular capillary with 200µm height and kept at a constant temperature of 25 ◦ C. At 
concentrations above the critical micellar concentration ( > 4mM ), the fluid forms giant worm-like micelles also 
known as ’living polymers’ due to dynamic self-healing18. Opposed to polymer solutions, worm-like micelles 
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within the semi-dilute regime exhibit a particular simple relaxation behavior which is well described by a Maxwell 
model with a single relaxation time19,20(it should be noted that the Maxwell behavior with a single relaxation 
time is not in contradiction to the double-exponential relaxation observed in recent micro-rheological stud-
ies, there the second or short timescale arises due to the finite coupling of the particle with the fluid13). For the 
formation of dumbbells, we exploit the presence of depletion forces21 which arise in such systems and which 
lead to stable aggregates (see SM). The dumbbells are trapped by extended optical tweezers, generated by a laser 
beam ( � = 532 nm ) focused with a 100× oil immersion objective (NA = 1.45) into the sample cell. The beam 
is periodically deflected with a frequency of 120Hz by a piezo-driven mirror and yields two static (in the lab 
frame) three-dimensional optical traps with a spacing of almost one particle diameter as shown in Fig. 1a. The 
intensity of the beam is controlled by an acousto-optic modulator (AOM) to turn the trap ‘on’ during shear and 
’off ’ during recoil. Drag forces on the dumbbells are exerted by a translational piezo-driven stage, which is mov-
ing the sample in the x−direction. In general, each experiment is started with the dumbbell inside a stationary 
trap to guarantee identical starting conditions for each measurement. The dumbbell is then dragged through 
the fluid with constant velocity v ranging from 0.025 to 0.3µm/s during the shearing time tsh . As a trade-off 
between reaching a non-equilibrium steady state (NESS) and having reasonable duration of our experiments to 
yield sufficient statistics, we used a shearing time of tsh = 50 s . Note, however, that even when tsh is more than 
one order of magnitude larger than the relaxation time of the fluid, τ ∼ 3 s we do not fully reach a NESS. This 
is due to the fact that equilibration times in presence of a trap (non-reciprocal force conditions) are larger than 
the fluid’s relaxation time itself16.

At time t = 0 the trap is turned off, which leads to a recoil motion of the dumbbell, owing to the accumulated 
strain in the viscoelastic fluid. We measure the transient trajectories for 20 s until the system fully relaxes. This 
protocol is typically repeated over 50 times to yield well-defined averaged recoil curves. This is necessary due 
to the stochastic nature of such trajectories, which are sensitive to thermal noise. Using video microscopy, the 
motion of the dumbbells and individual particles is recorded and the position coordinates are afterward deter-
mined using a custom MATLAB algorithm22.

Typical snapshots of the dumbbell before (trap on) and after a recoil (trap off) and the corresponding trajec-
tories of the particles are shown in Fig. 1b, c (See also supplementary video 1). In the following, we will use δx 
for the distance between the initial and final positions of the dumbbell’s center of mass (COM), θ0 for the angle 
just before release, and δθ for the amplitude of the orientational alignment motion. As a first observation, the 
center of mass of the dumbbell exhibits a bi-exponential recoil motion, similar to what was previously reported 
for simple spherical particles16. Surprisingly, depending on their position relative to the COM, the particles 
exhibit different trajectory shapes during the recoil (see Fig. 1c). The front particle (1) follows an almost straight 
trajectory in contrast to the back particle (2) which shows an additional motion in the perpendicular direction, 
resulting in an oblique trajectory. This difference results in the angular reorientation of the dumbbell which leads 
to an alignment of the dumbbell towards the axis of driving. In Fig. 2 we show the typical evolution of the orien-
tation of the dumbbell during a recoil during several experiments. The stochastic nature of the system appears 
clearly with a large spread between individual recoils (faded colored lines). When averaging over all trajectories 
we obtain a well-defined average (black line), starting at θ0 and reaching θ0 − δθ after ∼ 5 s . Note, that θ0 slightly 
deviates from the orientation of the optical trap due to the presence of drag forces acting on the dumbbell once it 
is sheared through the fluid (see SM). In the following, we will mainly focus on this orientational component of 
the motion with amplitude δθ . Because it originates (similar to the translational recoil) from the non-Markovian 
behavior of the fluid, in the remainder of this study we will refer to it as memory-induced alignment (MIA).
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Figure 1.   (a) Schematic drawing of the experimental setup. An oscillating mirror mounted onto a piezo-driven 
post is deflecting a laser beam through an objective into the sample cell where it creates an extended optical 
trap. (b) Snapshots of a dumbbell at the start t = 0 and the end of a recoil experiment ( t ∼ 20 s ). The initial 
angle of the dumbbell’s long axis θ0 decreases during the recoil by δθ . (c) Corresponding trajectories of the single 
particles forming the dumbbell particles demonstrate the complex particle motion during recoil. The horizontal 
dotted line is along the direction of shear.
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Symmetries
To study the symmetries of the system we vary the initial angle that the dumbbell forms with the recoil direction. 
In Fig. 3a we show the resulting MIA amplitudes for a shear velocity v = 0.2µm/s (dark blue symbols), and 
v = 0.3µm/s (light blue symbols) using tsh = 50 s . This reveals a non-monotonic behavior with a peak around 
45◦ , where the alignment between the dumbbell axis and the shear direction is largest. As expected, larger driving 

δθ

Figure 2.   Temporal evolution of angle θ made by the axis of the dumbbell with recoil direction for different 
recoil runs (colored lines) and the average curve (thick black line) for θ0 ∼ 40◦ , v = 0.3µm/s and tsh = 50 s . 
The angle made by the dumbbell after release ( t > 0 ) deviates significantly from the initial angle θ0 at t < 0 . The 
black dashed line denotes the standard deviation in the spread of the trajectories.
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Figure 3.   (a) Amplitudes of MIA for fixed shear time tsh = 50 s and two different shear velocities, v = 0.2µm/s 
(dark blue) and v = 0.3µm/s (light blue), as a function of initial angle θ0 . Open symbols correspond to 
experimental data, the solid line shows simulation results of the model introduced in Fig. 4b. The curves show 
a maximum around θ0 = 45◦ and decrease to 0 towards θ0 = 0◦ and 90◦ . (b) and (c) Show individual recoils 
(colored lines) and their mean (thick black curve) for θ0 = 0◦ and 90◦ , for fixed shear time tsh = 50 s and shear 
velocity v = 0.3µm/s . Even though the mean curve remains constant in both cases, the individual trajectories 
show a huge spread at θ0 = 90◦ compared to θ0 = 0◦ signaling an instability when the dumbbell axis is 
perpendicular to the recoil axis. (d) Sketch of a director (top) and a vector (bottom). While driving left or right 
is equivalent for a director (green arrows), this is not the case for a vector (green and red arrows lead to different 
scenarios).
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velocities result in larger MIA amplitudes. For the translational recoil, the initial orientation θ0 has negligible 
influence on the amplitudes (see SM). At θ0 = 0◦ and θ0 = 90◦ the dumbbells are parallel and perpendicular to 
the recoil direction, respectively, and we observe no significant change in their orientation. However, the two 
complementary orientations induce a very different behavior at the level of individual trajectories. In Fig. 3b and 
c we show individual recoils for θ0 = 0◦ and θ0 = 90◦ , ( v = 0.3µm/s ). One can see that while for θ0 = 0◦ there 
is almost no change in θ at the level of individual trajectories (see Fig. 3b), for θ0 = 90◦ there are individual tra-
jectories that deviate significantly from 90◦ in both positive and negative directions (see Fig. 3c). One hypothesis 
is that this angle corresponds to an instability, and any thermal fluctuation can lead to MIA in either direction. 
The average MIA thus stays null, however, the variance of the trajectories strongly increases. As will be shown 
below, the angle of 90◦ indeed corresponds to an unstable configuration in flow.

Discussing the symmetries of the colloidal dumbbell, we aim for a Langevin description, allowing us to 
understand the underlying principles of MIA and translational recoil, torque and force. A dumbbell has an axis 
of symmetry connecting the centers of the spheres and at the lowest order, it is described by a director n̂ , i.e., the 
mentioned axis, and its COM coordinate x . The resulting Langevin equations in the phase space spanned by n̂ 
and x can be developed based on symmetries. We consider the case of a given or prescribed motion, where the 
stochastic observables are the resulting forces and torques23. As motion is prescribed, a description via n̂ and x 
is useful in the presence of a (strong) optical trap, i.e. during shear. The connection between dynamics with trap 
on and trap off is non-trivial13,16,24, and we do not discuss it here for simplicity. The following equations thus 
describe the buildup of forces and torques before release.

Starting with the COM, we note that the force F acting on the dumbbell must for any n̂ be antisymmetric 
upon changing the direction of driving, hence scales with odd powers of ẋ . The lowest order term is therefore 
linear in ẋ,

Ŵx denotes a memory kernel and ξF denotes noise whose properties will not be relevant for the discussion of 
resulting forces and torques. Therefore, we omit any statements on the noise terms appearing in the following. 
The memory kernel has two distinct contributions due to the mentioned anisotropy of the considered object,

The first term is proportional to the identity matrix, resulting in a force parallel to the direction of driving, which 
resembles the memory function of a spherical object in an isotropic fluid. The second term is a contribution due 
to the non-spherical shape of dumbbells, and it is dictated by the symmetry of the director n̂ . Due to its lack 
of direction, its orientation is given modulo π . Due to this π symmetry, the force must scale ∝ n̂

2 . The dots in 
Eq. (1) represent higher order terms in driving23 in ẋ and angular velocity ω = n̂× ˙̂n . As the first term in Eq. (1) 
represents the leading term, it is valid if the orientation of the director varies only slowly compared to relaxation 
times, and n̂ carries no time argument. We refer to n̂ as initial orientation in our experiments. Figure 1b indicates 
that COM recoil is not perfectly anti-parallel to the direction of trap motion, reflecting the presence of the second 
term in Eq. (2). As the effect is small, it will not be analyzed in detail. Allowed (by symmetry) higher order terms 
include ∝ ẋ × ω , yielding the recently observed memory induced Magnus force25.

Next, we collect contributions to the torque τ in analogy to Eq. (1). It must be antisymmetric under changes 
of the direction of angular driving and therefore contains odd powers of ω , i.e., in lowest order the expected 
linear term,

with noise ξ τ and Ŵω(|t − s|) ∝ 1 due to symmetries. Notably, in our experiments, ω = 0 during drive, and no 
torque builds up according to Eq. (3). Therefore, the set of linear equations (1) and (3) do not yield the observed 
MIA. It is insightful to consider, for a moment, an object with the symmetries of a vector m̂ (with prescribed 
direction), e.g., dumbbells made of differently sized spheres (compare sketch in Fig. 3d). In that case, the 2π 
symmetry allows no torque if m̂ and ẋ are parallel, which yields, to lowest order, a term ∝ (m̂× ẋ) . The leading 
terms of torque are

Equation (4) shows that the coupling of COM driving and torque already appears in linear order for a vector 
object. In our experiments, the spheres have equal sizes and are characterized by a director. For a director, that 
term does not exist. The observed MIA thus results from a nonlinear term. It is straightforward to note that, for 
dumbbells (directors), the direction of MIA must be invariant under an inversion of driving velocity (see Fig. 3d), 
i.e. it must be of even orders in ẋ . Due to the π symmetry of a director, no torque is possible if n̂ and ẋ are either 
parallel or perpendicular (compare also Fig. 3a). This yields, to lowest order, a term ∝ (ẋ × n̂)(ẋ · n̂) , which is 
the only quadratic term that obeys the symmetries. Taking memory into account,

(1)F(t) =
∫

t

−∞
dsŴx(t − s) · ẋ(s)+ ξF(t)+ · · ·

(2)Ŵx(t) = Ŵs(t)1+ Ŵn(t)n̂⊗ n̂.

(3)τ (t) =
∫ t

−∞
dsŴω(t − s) · ω(s)+ ξ τ (t)+ · · ·,

(4)τ (t) =
∫

t

−∞
dsŴω(t − s) · ω(s)+

∫
t

−∞
dsŴm(t − s)(m̂× ẋ(s))+ ξ τ (t)+ · · ·

(5)

τ (t) =
∫

t

−∞
dsŴω(t − s) · ω(s)+

∫
t

−∞
ds

∫
t

−∞
ds′ Ŵ(2)

x (t − s, t − s
′)(ẋ(s)× n̂)(ẋ(s′) · n̂)+ ξ τ (t)+ · · ·



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17409  | https://doi.org/10.1038/s41598-023-44547-z

www.nature.com/scientificreports/

The dots in Eq. (5) represent higher order terms in ω and ẋ , as well as all couplings of the two. For our specific 
experimental system, where there is no angular driving and shear velocity is applied in x-direction, ẋ = (ẋ, 0, 0)T , 
and using n̂ = (cos θ0, sin θ0, 0)

T we find for τ = τ êz,

This functional form ∝ sin θ0 cos θ0 has a maximum at 45◦ and is symmetric around this angle. Indeed, for 
small driving velocities, our experiments follow well this expected behavior, as seen in Fig. 3a (dark blue). Note 
that at higher driving velocities, some deviations are observed for θ0 > 40◦ . The implications for the observed 
fluctuations and instabilities (Fig. 3b and c) will be discussed in detail in section “Fluctuations and instabilities”.

Microscopic model
Having analyzed the symmetries of MIA and translational recoil, we move on to microscopic modeling26–30. In 
this intent, we experimentally investigated the dependence on shear velocity v as well as the temporal behavior 
of recoils. Figure 4a (open symbols) shows the v dependence for initial angle θ0 ∼ 40◦ , and tsh = 50 s . While the 
MIA amplitude increases quadratically with shear velocity in agreement with our discussion of symmetries in 
section “Symmetries” (see Eq. (5)), the translational component (inset) increases linearly13,16, for v � 0.2µms−1 . 
The temporal behavior of recoils are shown in SM. Interestingly, we find that the MIA curves also follow a bi-
exponential decay, similar to the translational recoil as found before13,15,16 (see SM). The timescales of translational 
recoil, τ (t)s = 0.1 s and τ (t)l = 2.7 s , are very similar to the ones observed in13. This indicates that the timescales 
are rather independent of the specific size and shape of the probe, but incorporate the relaxation of the fluid. For 
the MIA we find slightly shorter timescales of τ (o)s = 0.065 s and τ (o)l = 1.29 s.

How can MIA be obtained by extending previous bath particle models13,16,31–33? Naturally, in order to describe 
dumbbells and angular behavior, the spherical particles of Refs.13,16 acquire now a rod like shape, see Fig. 4b. The 
mentioned two relaxation times require two such bath particles13,16. However, as the model and analysis for rods 
is more complicated, we restrict to a single bath rod. While this model naturally only yields single exponential 
decay of MIA and translational recoils, the challenge and novelty is a microscopic mechanism for the translation-
orientation coupling of Eq. (5). More timescales can easily be obtained by adding more bath particles.

The colloidal dumbbell is thus a rod of length l and COM x = (x, y)T and orientation angle θ . γ and γθ are its 
translational and orientational friction coefficients, respectively. For the bath rod, the parameters carry index 
or superscript b. The interaction between the particles differs from previous models16 in two ways; (1) Springs 
connect the ends of rods (see the sketch), x1,2 = x ∓ l/2(cos θ , sin θ)T and xb1,2 = x

b ∓ lb/2(cos θb, sin θb)
T respec-

tively, to allow for transmission of torques. (2) While linear for small forces, the springs turn non-linear for larger 
ones, allowing for the nonlinear coupling of Eq. (5). Indeed, using purely harmonic springs does not yield MIA. 
Optical tweezers are modelled by traps of strength κx and κθ , respectively, confining COM and angle to x0(t) and 
θ0 . The final set of stochastic equations describing the model system reads (for i = 1, 2)

(6)τ(t) =
∫

t

−∞
ds

∫
t

−∞
ds′ Ŵ(2)

x (t − s, t − s
′)ẋ(s)ẋ(s′) sin θ0 cos θ0 + ξτ (t)+ · · ·.
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Figure 4.   (a) Amplitudes of MIA and translational (inset) recoils as a function of shear velocity v for 
experiments (open symbols) and simulations (solid line) with fixed initial angle θ0∼40◦ and shear time 
tsh = 50 s . While MIA increases quadratically with v, translational recoil is linear in v. (b) Sketch of the 
microscopic model: The colloidal dumbbell is modeled as a rod of length l (gray), coupled to a bath rod (green) 
of length lb via a nonlinear spring.
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where ξ i denotes Gaussian white noise

The interaction potential is, as mentioned, required to be anharmonic, i.e.,

where the length scale lint =
√
kBT/κ2 ensures that the κi ( i = 2, 4, 6 ) carry the same units of energy divided 

by length squared.
The sign of translation-rotation coupling, i.e., the sign of MIA depends on the relative length of l and lb as 

well as on the sign of κ4 . We chose lb > l , which requires, to match experiments, κ4 < 0 , i.e., a weakening at 
larger extension. To retain stability, a positive κ6 > 0 is required, and higher order terms, represented by dots in 
Eq. (12) are not needed for our purposes. For l = lb there is no MIA.

Solving these equations in simulations, we start by comparing to experimental mean squared displacements 
(MSD) of freely diffusing dumbbells (absence of trapping), for both COM and angle. This yields the parameters 
for the linear part of our model. Comparing MIA then fixes κ4 , noticing that the precise value of κ6 is not very 
relevant. Once fixed (see SM), the model parameters are kept constant throughout the entire paper, i.e., for all 
different protocols.

The velocity dependence of MIA amplitude (model results shown as solid lines in Fig. 4a) is very well 
described by the model, and nicely follows a ∝ v2 trend for the velocities shown. Also for the dependence on 
θ0 , the model is in very good agreement with experiments and also with expected symmetries, i.e., it follows a 
sin θ0 cos θ0 shape (see Fig. 3a, dark blue line). However, for the larger velocity of v = 0.3µm/s , experimental 
data deviates from that dependence, and this large velocity is clearly beyond the regime of Eq. (5) as well as of the 
model (light blue line). This might be expected from Fig. 4a (inset), which shows the translational recoil ampli-
tude δx for varying driving speed v and fixed initial angle θ0 = 40◦ . It clearly shows that the onset of a nonlinear 
regime for v > 0.2µms−1 observed in the experiments is not captured by the model. A systematic deviation 
of experiments from the simulation can also be seen towards smaller v due to experimental imperfections that 
dominates at such short shear regime where recoil amplitudes are quite weak.

To further check the validity of the model, we vary the duration of shear ( tsh ) keeping v = 0.3µm/s and 
θ0 = 40◦ constant. The resulting MIA (main graph) and translational (inset) amplitudes from experiments (open 
symbols) and simulations (solid line) are shown in Fig. 5. We observe a quadratic increase in the MIA amplitudes 
for short values of tsh , in agreement with simulations, and expected from symmetries. In contrast, the transla-
tional amplitude starts with a linear dependence on tsh16. Both MIA and translational amplitudes are expected to 
saturate to a NESS value for large tsh . As already mentioned above, however, the chosen shearing times are not 
sufficient to reach such conditions. The fact, that we find good agreement between experimental and numerical 
data, suggests that our model is also applicable in the transient regime where the system has not yet reached a 
NESS. The observed small deviations between experiments and simulations in the translational recoil amplitude 
are consistent with previous discrepancies at high shear velocities v = 0.3µm/s (see Fig. 4a).

Fluctuations and instabilities
Recoil experiments with colloidal dumbbells have revealed the presence of MIA due to nonlinear coupling with 
the fluid. We analyzed the MIA and translational amplitudes in detail and found quantitative agreement with a 
microscopic bath-rod model. However, the error bars in Fig. 3a and the difference in the spread of individual 
recoil curves for initial angles of θ0 = 0◦ and θ0 = 90◦ in Fig. 3b and c for v = 0.3µm/s already hinted at the 
importance of fluctuations. In Fig. 6a we show the variance of orientation angle �θ2(t)� − �θ(t)�2 for recoil 
experiments with v = 0.2µm/s , tsh = 50 s and different values θ0 (colored lines). In addition, we add the pas-
sive scenario (black lines), where dumbbells are released from a trap in equilibrium ( v = 0 ) at t = 0 , for which 
the variance is naturally independent of θ0 . From the simulation curves (solid lines), it is clear that the variance 
increases monotonically with θ0 . Notably, for initial orientations of θ0 = 0◦ and θ0 = 30◦ the variance during 
recoil is smaller than the passive curve, while it is larger for θ0 = 60◦ and θ0 = 90◦ . Depending on the angle, a 
small fluctuation of θ is amplified or suppressed, so that a larger or smaller variance appears. This observation 
can already be understood from the behavior of MIA ∝ cos θ0 sin θ0 (recall Fig. 3 and Eq. (6)). This form has a 
positive slope for θ0 < 45◦ and thus suppresses fluctuations, and a negative slope for θ0 > 45◦ , where fluctua-
tions are amplified. For this small shearing velocity, experimental curves (dashed lines) in Fig. 6a show a lack of 

(7)γ ẋ = −κx(x − x0)−
∑
i

∇xVint(|xi − x
b
i |)+ ξ

(8)γθ θ̇ = −κθ (θ − θ0)−
∑
i

∂θVint(|xi − x
b
i |)+ ξθ

(9)γbẋb = −
∑
i

∇xb
Vint(|xi − x

b
i |)+ ξb

(10)γb,θ θ̇b = −
∑
i

∂θbVint(|xi − x
b
i |)+ ξb,θ ,

(11)�ξ i(t)� = 0, �ξ i(t)⊗ ξ j(t
′)� = 2kBTγi1δi,jδ(t − t ′).

(12)Vint(x) =
1

2
κ2x

2 + 1

4

κ4

l2int
x4 + 1

6

κ6

l4int
x6 + · · ·,
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statistics, but, especially for smaller times, an overall increase with initial angle, starting below the equilibrium 
case, is visible.

To further understand the origin of this instability in our bath-rod model, we consider the variance just before 
release, i.e., with the trap still on, as a function of initial angle θ0 (see inset in Fig. 6a). Here, the equilibrium 
value is given by kBT/κθ via the equipartition theorem. This value is also met for initial value of θ0 ≈ 45◦ in the 
driven case. For initial angles above, θ0 � 45◦ , however, fluctuations are amplified, while they are suppressed for 
θ0 � 45◦ . The nontrivial shear-induced non-equilibrium fluctuations are therefore already built up during shear 
and become amplified when the trap is shut off.

In Fig. 3b and c we observed drastic differences in the fluctuations for initial orientations of θ0 = 0◦ and 
θ0 = 90◦ when a shear velocity of v = 0.3µm/s has been applied. Therefore, we also show the variance of 

tsh

tsh (s)

exp

model

exp
model

Figure 5.   Amplitudes of MIA and translational (inset) recoils for fixed initial angle θ0∼40◦ and shear velocity 
v = 0.3µm/s as a function of shear time tsh . Open symbols correspond to experimental data and solid lines to 
simulations. For short times, the MIA amplitude scales ∝ t

2
sh

 , while the translational recoil scales ∝ tsh.
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Figure 6.   (a) Variance of orientation angle during recoil ( t > 0 ) for experiments (dashed lines) and simulations 
(solid lines) for different initial angles (colors) and fixed shear velocity v = 0.2µm/s and shear time tsh = 50 s . 
The black curves correspond to a passive scenario, where dumbbells are released from a stationary trap. During 
recoil, the variance reveals a strong dependence on the initial angle θ0 , with a monotonous increase of amplitude 
towards θ0 = 90◦ . Inset: variance of orientation before releasing the trap, obtained from our model, where 
the passive curve follows the equipartition theorem (black line). For initial angles θ0 � 45◦ fluctuations are 
amplified while they are suppressed for angles θ0 � 45◦ . (b) Experimental variance during recoil (colored lines) 
for a shear velocity v = 0.3µm/s . The black line gives the passive scenario.
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orientation angle for recoil experiments for this larger velocity of v = 0.3µm/s , tsh = 50 s and different initial 
angles θ0 in Fig. 6b. Note that we restrict our analysis to experimental data at this shear velocity, because we 
already noticed that this large velocity is beyond the range of our theoretical analysis. In contrast to the recoils 
at v = 0.2µm/s the variance for all values of θ0 is larger than in the passive scenario, and strongly increases with 
θ0 . In particular, at t = 4 s the variance for initial angles of θ0 = 0◦ and θ0 = 90◦ differs by a factor of three. These 
observations provide clear evidence of the presence of pronounced non-equilibrium fluctuations at high shear 
velocities v � 0.3µm/s , when a highly nonlinear regime is entered.

Conclusion
Using recoil experiments of colloidal dumbbells in a viscoelastic micellar solution, we observed a memory-
induced translational and orientational (MIA) recoil. When varying the shear velocity, we found a quadratic scal-
ing of the MIA amplitude, in agreement with the system’s symmetries. This is a clear signature of the non-linear 
origin of this phenomenon and contrasts with the linear scaling observed in the translational recoil amplitude. In 
parallel, we introduced a phenomenological microscopic bath-rod model, where a torque is created during shear 
due to the nonlinear coupling between the bath rod and the dumbbell rod. This model is in good agreement with 
our experiments. Additionally, the MIA shows a strong dependence on the initial orientation of the dumbbell and 
exhibits a maximal amplitude around θ0 = 45◦ . Using Langevin theory for force and torque, we characterized 
the dumbbell as a director with π symmetry. It then follows that MIA should vanish for parallel ( θ0 = 0◦ ) and 
perpendicular configurations ( θ0 = 90◦ ), as observed experimentally. Interestingly, when looking at the MIA 
amplitude of individual trajectories, these two extreme cases show very different behavior. The scenario of com-
plete misalignment corresponds to an instability with strongly amplified variance. More generally, we observed 
a clear increase in the variance of MIA with the initial angle of driving. In our microscopic model, this effect is 
already present during shear and is amplified upon release. Moreover, when increasing the shear velocity outside 
of the linear regime, we reported a strong enhancement of the MIA variance. The amplitude of the measured 
fluctuations rises well above the thermal diffusion and is clear evidence of the presence of far-from-equilibrium 
fluctuations. Further experiments are still required to get more detailed insights into this regime. Yet, colloidal 
dumbbells in viscoelastic fluids seem to form a promising system for the study of non-equilibrium fluctuations.

Data availabilty
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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