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Quality control prediction 
of electrolytic copper using novel 
hybrid nonlinear analysis algorithm
Yuzhen Su 1, Weichuan Ye 2,3, Kai Yang 2,3*, Meng Li 4, Zhaohui He 5* & Qingtai Xiao 2,3,6*

Traditional linear regression and neural network models demonstrate suboptimal fit and lower 
predictive accuracy while the quality of electrolytic copper is estimated. A more dependable and 
accurate model is essential for these challenges. Notably, the maximum information coefficient was 
employed initially to discern the non-linear correlation between the nineteen factors influencing 
electrolytic copper quality and the five quality control indicators. Additionally, the random forest 
algorithm elucidated the primary factors governing electrolytic copper quality. A hybrid model, 
integrating particle swarm optimization with least square support vector machine, was devised 
to predict electrolytic copper quality based on the nineteen factors. Concurrently, a hybrid model 
combining random forest and relevance vector machine was developed, focusing on primary control 
factors. The outcomes indicate that the random forest algorithm identified five principal factors 
governing electrolytic copper quality, corroborated by the non-linear correlation analysis via the 
maximum information coefficient. The predictive accuracy of the relevance vector machine model, 
when accounting for all nineteen factors, was comparable to the particle swarm optimization—least 
square support vector machine model, and surpassed both the conventional linear regression and 
neural network models. The predictive error for the random forest-relevance vector machine hybrid 
model was notably less than the sole relevance vector machine model, with the error index being 
under 5%. The intricate non-linear variation pattern of electrolytic copper quality, influenced by 
numerous factors, was unveiled. The advanced random forest-relevance vector machine hybrid model 
circumvents the deficiencies seen in conventional models. The findings furnish valuable insights for 
electrolytic copper quality management.

Although pyro refining could be used to yield copper products with minimal impurities, these products poten-
tially did not meet the stringent high-quality standards for copper. Consequently, most of the crude copper often 
undergo electrorefining to eliminate the impurities that are resistant to the pyrometallurgical refinement, thereby 
enhancing the quality of electrolytic copper1. Typically, copper from the anode dissolves into the solution under 
direct current. Preferentially, copper from this solution precipitates on the cathode, resulting in what is termed 
as electrolytic copper. During this electrolysis procedure of copper, operating parameters have traditionally 
been determined based on the experience of operators, introducing significant subjectivity and arbitrariness, 
and being susceptible to various disturbances. However, the production process could yield inconsistent quality 
of electrolytic copper, evidenced by a low proportion of first-grade products which were characterized by the 
uneven copper distribution, frequent fins, and granular protrusions2. Hence, it would be imperative to investigate 
and control the factors influencing the quality of electrolytic copper to attain the improved outcomes. Current 
research trend is merging quality prediction with control and it is transitioning from conventional, reactive 
methodologies to proactive quality prediction techniques. These proactive approaches allow for early detection 
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of potential production issues, facilitating the timely remediation and minimizing the quality degradation. 
Therefore, predictive control over electrolytic copper quality would stand as a pivotal concern in producing 
cathode copper with high-purity.

There are growing appeals for predictive control over electrolytic copper quality. For instance, Zhao et al.3 
utilized atomic force microscopy and image scaling analysis technique to predict the influence of current density, 
temperature, and leveling agent on the morphology of electrolytically produced copper. Notwithstanding, the 
main issue is that the production process of electrolytic copper often encompasses numerous intricate physi-
cal and chemical reactions. The interplay within these reactions bestows the copper electrolysis process with 
heightened nonlinearity and complexity, rendering traditional statistical methods for quality prediction and 
control challenging. As a result, limited literature addresses the quality issues of copper electrolysis. Moreover, 
it is noteworthy that publications on quality prediction have been increasingly prevalent in recent years, with 
an ascending trend in publication counts: 9736 (2018), 10,945 (2019), 12,312 (2020), 12,182 (2021), and 12,334 
(2022)4–7. Research methodologies on product quality has been broadly categorized into (1) conventional sta-
tistical process control theories which are exemplified by classic control charts and (2) contemporary intelligent 
prediction and control algorithms, which are notably epitomized by artificial neural networks (ANN). Control 
charts exhibit efficacy in large-scale production due to vast data mean ranges, significant offsets, and opera-
tional simplicity8,9. However, the sensitivity of control charts would wane with the diminutive average or offset 
of production data. Intelligent algorithms were rooted in principles or mechanisms of natural phenomena or 
entities and then predominantly employed for earlier study on the product predictions10. Conversely, the early 
research initially leaned towards the traditional linear regression and conventional neural network models11. 
Currently, the artificial neural network methodologies garner substantial interest globally, spurring the evolu-
tion of diverse research trajectories. For instance, the widely used intelligent algorithms consist of support 
vector machine (SVM)12, particle swarm optimization (PSO)13, random forest (RF)14, relevance vector machine 
(RVM)15, and other machine learning algorithms16–19. Such advancements facilitate the effective integration of 
intelligent algorithms within the engineering domain (i.e., chemical engineering or metallurgical engineering), 
resulting in innovative avenues for industrial research. In addition, this not only augments prediction accuracy 
but also broadens applicability.

Numerous studies focus on the modeling and design of industrial process20,21. For instance, Zang et al.22 
developed an Arrhenius model coupled with a radial basis function (RBF) neural network to forecast oxidative 
alterations in whole egg powder. In a distinct approach, Ma et al.23 integrated partial least squares regression 
analysis of water quality with morphological spatial pattern analysis data to holistically assess the effects of land-
use variations and landscape patterns on basin water quality. Similarly, Wang et al.24 employed spatially adaptive 
machine learning models to predict water quality in Hong Kong. Artificial neural networks present a promising 
avenue for delving deeper into industrial processes while traditional methodologies have not yielded commend-
able outcomes25–28. Collectively, these investigations underscore the efficacy of neural networks for industrial 
parameter predictions. However, neural networks also exhibit inherent limitations including the prerequisite 
for predefined network structures, susceptibility to local optima, and suboptimal generalization capabilities29. 
Predominant quality prediction techniques often emphasize model-centric approaches, inadvertently sidelin-
ing direct influencers including production equipment, operational environment, and workforce dynamics. 
For addressing this issue, Zhang et al.30 amalgamated the principal component analysis (PCA) technique with 
the support vector machine model, devising a quality prediction framework tailored for diverse, small-batch 
products. Conversely, Bai et al.31 harnessed principal component analysis to distill low-dimensional data, sub-
sequently implementing support vector machine for modeling desensitization data from China’s Tianchi Big 
Data Contest. Components that are not relevant to parameter estimation can be rejected by PCA32. However, 
the PCA-derived principal components might not yield optimal results while non-Gaussian distributions was 
confronted. As mentioned, moreover, the intricate physical and chemical interplay within the electrolytic process 
of copper often manifests profound nonlinear traits. Augmenting this paradigm, He et al.33 introduced a product 
quality model grounded in relevance vector machine, transforming raw input into feature-rich space via kernel 
functions, offering a promising framework for quality prediction and control of electrolytic copper.

As highlighted, it remains challenging to effectively integrate diverse and disjointed factors into the quality 
prediction model of electrolytic copper even when considering the significance of various influencing factors 
to enhance the predictive accuracy for electrolytic copper quality. Notably, there exists a paucity of impactful 
research insights on utilizing known quantitative factors in the electrolytic copper production process to miti-
gate data wastage and augment prediction precision. This work aims to prioritize high-quality, energy-efficient 
production process of electrolytic copper by conducting multi-factorial, small-batch industrial experiments. 
Specifically, a thorough literature analysis on copper quality prediction and control is undertaken by employing 
both traditional and contemporary methodologies, culminating in the formulation and establishment of a novel 
predictive model for copper quality. The innovation of this work resides in the pioneering identification of five 
primary control factors impacting electrolytic copper quality using the random forest algorithm. Moreover, a 
hybrid model integrating particle swarm optimization with least square support vector machine (PSO-LSSVM) 
is introduced for predicting electrolytic copper quality based on the nineteen associated factors. Concurrently, a 
hybrid model combining random forest with relevance vector machine (RF-RVM) is crafted for quality prediction 
using these primary control factors. Then, the interference of extraneous variables on electrolytic copper quality 
is minimized by discerning the effect of these main control factors as realistic as possible, laying foundational 
insights into the mechanisms influencing electrolytic copper quality. The capabilities of inherent inadequacies 
and suboptimal prediction of conventional linear regression and neural network models are addressed. The 
newly introduced hybrid models bolster the dependability of predictions pertaining to electrolytic copper qual-
ity. Hence, the innovative strategy for in-depth exploration of industrial site data bears significant implications 
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for the precise control of electrolytic copper quality when the specific attributes of electrolytic copper control 
objects and the exigencies of production are considered.

The structure of this article unfolds as follows: Section "Method and data" elucidates methods and data, 
encompassing the least square support vector machine, relevance vector machine, evaluation indices, and data 
description. Section "Result and discussion" delves into the primary controlling factors and associated prediction 
models. Conclusions are drawn in section “Conclusion”.

Method and data
LSSVM
Least squares support vector machine is a modified version of the conventional support vector machine34. It offers 
the benefits of straightforward computation, effortless operation, rapid learning, and convenient implementa-
tion. In terms of implementation, the linear regression function y(x) of least squares support vector machine 
is defined by35

 where w represents the weight vector, ϕ(x) stands for the mapping function, and b signifies the offset vector. By 
leveraging the structural risk minimization principle, the optimization challenge of LSSVM is articulated as35

 where k ranges from 1 to N , γ refers to the penalty coefficient, ek refers to the error in fitness, and b refers to the 
threshold value. To address this issue, the Lagrange function is formulated, introducing the Lagrange multiplier 
α such that α ≥ 0 . Then,

Taking partial derivatives of the above yields and then35

 where k ranges from 1 to N . Then, w and ek are excluded. A kernel function is introduced by

 where both m and n range from 1 to N . This leads to the following matrix equation which is given by

where 1T = [1, 1, · · · , 1] and α = [α1,α2, · · · ,αN ]
T . In this work, the radial basis function was chosen as the 

kernel function, which is given by

where σ refers to the width of kernel function. The LSSVM predictive model is subsequently derived by

Hence, it becomes evident that the judicious selection of parameters in the LSSVM optimization model 
profoundly influences the intricacy and precision of model. Consequently, both the penalty coefficient γ and 
the kernel coefficient σ hold significant importance.

RVM
Relevance vector machine is a relatively new approach that has not been used widely in metallurgical process. 
Both relevance vector machine and support vector machine could utilize the kernel functions to convert the 
challenge of linear inseparability in lower-dimensional space to that of linear partitioning in higher-dimensional 
space36,37. The salient distinction between relevance vector machine and support vector machine lies in that rel-
evance vector machine inherits the similar decision function and the choice of kernel function is more flexible. 
Hence, the classification function could attain its peak on the likelihood function value of the training set. For 
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classification of relevance vector machine, the Laplace method could be employed for impending approximation. 
Both the weight posterior probability p(w|t,α) and the marginal likelihood function p(t|α) could be derived 
through integration. Consequently, the classification issue of relevance vector machine could be reframed as a 
regression issue.

Evaluation indices
Here, the prediction results are assessed using mean absolute error (MAE) and root mean square error (RMSE). 
In fact, mean absolute error offers an accurate representation of prediction value discrepancies, while root mean 
square error quantifies the deviation between forecasted values and actual ones38. The computation for the j-th 
component of the electrolytic copper mass is given by38

and

where yj(k) denotes the actual value of the j-th component of the electrolytic copper mass for the k-th experi-
mental instance, and ŷj(k) signifies the predicted value for the same component in the k-th experimental instance.

Data description
The used experimental data were sourced from publicly available literature. Nineteen primary factors influencing 
product quality were identified from the product data, with each factor comprising N = 36 representative test 
data points. An investigation based on technical standards was conducted to examine the various factors influenc-
ing the quality of electrolytic copper. The primary quality indices for electrolytic copper include anode copper 
periphery (X1), anode copper surface (X2), starting piece periphery (X3), starting piece surface (X4), starting piece 
toughness (X5), Cu content in anode copper chemical composition (X6), As content in anode copper chemical 
composition (X7), cell voltage (X8), current density (X9), electro-hydraulic temperature (X10), electro-hydraulic 
flow (X11), number of short circuits (X12), Cu content in electro-hydraulic composition (X13), H2SO4 content in 
electro-hydraulic composition (X14), As in electro-hydraulic composition (X15), gelatin content in additives (X16), 
thiourea content in additives (X17), casein content in additives (X18), and hydrochloric acid content in additives 
(X19). The quality of electrolytic copper, derived from both its chemical composition and physical specification 
indices, was deconstructed to focus specifically on its components Cu and As. The resulting quality components 
were defined as electrolytic copper periphery (Y1), electrolytic copper surface (Y2), electrolytic copper toughness 
(Y3), copper content in electrolytic copper (Y4), and arsenic content in electrolytic copper (Y5).

In order to enhance the convergence speed and accuracy of the proposed models, data normalization was 
first executed. Given that all data points are fixed, the min–max procedure refers to the linearly transforms for 
the original data, ensuring that results fall within the interval [0, 1] . Consequently, min–max standardization was 
employed for data processing, represented by the subsequent equations. For i = 1, 2, · · · , 19 and j = 1, 2, 3, 4, 5 , 
the transition variable are given by

and

where xi denotes the transformed factors affecting electrolytic copper quality, and yj represents the transformed 
quality of electrolytic copper. Additionally, Xi refers to the factors impacting electrolytic copper quality prior to 
the transformation, and Yj indicates the quality of electrolytic copper before said transformation. Xmax

i  and Xmin
i  

refer to the maximum and minimum, respectively, among thirty-six test data sets for the i-th quality-affecting 
factor of electrolytic copper. Similarly, Ymax

j  and Ymin
j  refer to the maximum and minimum, respectively, among 

thirty-six test data sets for the j-th mass component of electrolytic copper. Normalized box plots of the quality 
of electrolytic copper and its influencing factors are depicted in Figs. 1 and 2. The graphics reveal outliers for 
both Y4 and X6, with data values exceeding the upper and lower boundaries. The experimental data pertaining 
to electrolytic copper quality and its associated factors present varying medians. With the exceptions of X1, 
X11, X18, and X19, the data distribution is relatively uniform. Thus, from a macroscopic data perspective, the 
relationship between the influencing factors and the quality of electrolytic copper appears intricately complex 
and profoundly nonlinear.
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Result and discussion
Non‑linear correlation analysis
Based on relevant research findings, the quality of electrolytic copper is influenced by various factors including 
personnel, equipment, environment, operation, and raw materials. These elements exhibit a nonlinear relation-
ship, mutually interacting and constraining one another, collectively determining the quality of electrolytic 
copper. The traditional linear statistical approach faces challenges in deciphering these multifaceted influencing 
factors. Notably, researchers from the Broad Institute at Harvard University introduced a robust statistical method 
rooted in the maximal information coefficient (MIC), highlighting significant relationships39. The values of MIC 
ranging from 0.90 to 1.00 signify an exceptionally high correlation, the values between 0.70 and 0.90 denote a 
high correlation, the values between 0.40 and 0.70 suggest a moderate correlation, the values between 0.20 and 
0.40 represent a low correlation; values from 0.10 to 0.20 indicate a very low correlation, and the values less than 
0.10 imply a lack of correlation. Consequently, this work employs MIC to quantify the nonlinear association 
among factors influencing the quality of electrolytic copper, offering valuable insights into the critical determi-
nants for quality management of electrolytic copper.

Calculations were conducted using MIC method via the popular mathematical software program based on 
thirty-six sets of experimental data encompassing nineteen distinct influencing factors. The resultant data are 
depicted in Fig. 3. From this figure, it can be observed that the yellow area at the bottom right occupies a larger 
area. The yellow color indicates a strong correlation between the two factors. Specifically, the computed MIC 
values between X8 and X9, X13, X14, X17, X18 are 0.94, 0.92, 0.92, 0.94, 0.94 respectively. Similarly, the MIC values 
for X9, and X13, X4, X17, X18 are 0.94, 0.94, 0.94, 0.94, and so on. Factors X17 and X18 exhibit a MIC value of 0.94, 
indicating a notably high correlation (i.e., MIC values exceeding 0.90). In contrast, the MIC value between X3 
and X17 stands at 0.71, while for X4 and X5 it is 0.79. Additionally, the values for X8 and X12, X15 are 0.80 and 
0.81 respectively. These relationships reflect a high correlation, as MIC values range from 0.70 to below 0.90. 
These results emphasize that harnessing the variability characteristics of electrolytic copper data can enhance 
the analysis of the correlation among its quality-affecting factors. It is also found that the maximum information 

Figure 1.   Box plot of the normalized value of five-status indicator system of electrolytic copper quality.

Figure 2.   Box plot of the normalized values of nineteen factors affecting the electrolytic copper quality.
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coefficient is apt for exploring correlations amid complex variables, exemplified by fluctuations in factors influ-
encing electrolytic copper quality.

In fact, the change of one influencing factor of electrolytic copper often leads to the change of other influenc-
ing factors of electrolytic copper in terms of the accrual production process of hydrometallurgy. Furthermore, 
these changes are difficult to observe during the copper electrolysis procedure. To solve this problem of electro-
lytic copper through the industrial testing method is not only costly but also difficult to achieve the expected 
object. Nevertheless, the relationship between various factors is intuitively displayed through the calculation of 
maximal information coefficient. Hence, the dynamic correlations among diverse influencing factors are holisti-
cally evaluated in formulating quality control protocols for electrolytic copper, minimizing the undue focus on 
isolated variables.

Primary influencing factors
Random forest is one of the most influential techniques in machine learning40. This method utilizes multiple 
decision trees to facilitate comprehensive classification, correlation analysis, prediction, and data interpretation41. 
In this work, the dependent variable pertains to the quality of electrolytic copper, representing the target for 
decision classification. Conversely, the independent variables encompass a range of factors potentially impacting 
the quality of electrolytic copper, such as the starting sheet quality and the chemical composition of the anode 
copper. These variables serve as predictors for the dependent variable. Constructing the random forest model 
involves the following several steps. (1) Extracting training samples from the original dataset using the Bootstrap 
method, subsequently establishing n trees. (2) During the tree generation procedure, variables with number of m 
are randomly chosen at each tree node, from which those exhibiting the highest classification efficacy are selected 
for data classification. (3) The data excluded during the Bootstrap extraction serves as the test sample to appraise 
the performance of each tree. Together, the trees with number of n constitute a random forest for data prediction.

The random forest algorithm was employed to evaluate the significance of factors impacting the variability 
in quality of electrolytic copper. The results are delineated in Table 1. For the electric copper periphery (Y1), 
according to this table, the primary influential factors include the periphery of the starting sheet (X3), the addi-
tive with thiourea (X17), the electro-hydraulic component with H2SO4 (X14), the electro-hydraulic component 
with Cu (X13), and the additive with casein (X18). Regarding the copper surface (Y2), the principal determinants 
are additives with thiourea (X17), the periphery of the starting sheet (X3), additives with casein (X18), cell voltage 
(X8), and electro-hydraulic components with Cu (X13). For the toughness of electrolytic copper (Y3), significant 
factors encompass the periphery of the starting sheet (X3), the additive with thiourea (X17), the electro-hydraulic 
component with H2SO4 (X14), cell voltage (X8), and the additive with casein (X18). In terms of electro copper 
content (Y4), the prevailing factors are the electro-hydraulic component with Cu (X13), the electro-hydraulic 
component with H2SO4 (X14), the number of short circuits (X12), the additive with thiourea (X17), and the additive 
with gelatin (X16). For arsenic in electro copper (Y5), the primary influencers are H2SO4 content (X14), Cu content 
(X13), current density (X9), casein content (X18), and cell voltage (X8). Subsequent investigations corroborated 
the nonlinear correlations deduced by maximal information coefficient, aligning with the primary determinants 
of electrolytic copper quality as identified by the random forest approach.

Hence, the primary factors of five quality control indicators for electrolytic copper quality were obtained. 
Although the quality control of copper electrolysis could be achieved by studying nineteen influencing factors, 
the acquisition of controlling factors could greatly simplify the research process. Especially in complex industrial 
production processes, controlling the five primary factors could not only improve production efficiency but also 
quickly improve product quality probably. At the same time, the acquisition of primary factors also provides 
fundamental for the prediction of copper electrolytic quality.

Figure 3.   Non-linear analysis results of factors affecting the electrolytic copper quality using maximal 
information coefficient.
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Comparison of prediction methods
The literature details quality indices of electrolytic copper, and nineteen factors influencing this quality were 
compiled into a sample library. For training and testing, N1=27 groups of electrolytic copper experimental data 
constituted the training set, while the remaining N2 =9 groups formed the testing set. For comparative study, vari-
ous algorithms, namely back propagation neural network, least squares support vector machine, relevance vector 
machine, and support vector machine enhanced by particle swarm optimization, were employed to develop the 
control predictive model of electrolytic copper quality. Specifically, the back propagation neural network utilized 
a three-layer network structure with parameters such as a maximum iteration of 1000, a learning rate of 0.01, a 
training error threshold of 0.0001, a momentum factor of 0.01, a minimum performance gradient of 10–6, and 
a maximum failure count of 6. For least square support vector machine, the primary computational parameters 
comprised a kernel width of sig2 = 500, a regularization parameter of gam = 5, with the RBF kernel function 
selected. Utilizing these methodologies, data from thirty-six actual production instances in the publicly avail-
able dataset were modeled and predicted. Predictive outcomes are presented in Table 2. According to this table, 
notably, parameters for the particle swarm optimization algorithm were pre-established, achieving anticipated 
optimization outcomes. Furthermore, results derived from the multiple linear regression model in this table 
are based on linear regression equations pertaining to various attributes of electrolytic copper as sourced from 
public literature. All other results emanate from the four artificial intelligence algorithms introduced in this work, 
dedicated to predicting control of electrolytic copper quality.

Observational data indicate that the predictive accuracy of the PSO-LSSVM model significantly surpasses 
other conventional artificial intelligence techniques, whether it is evaluated using mean absolute error or root 
mean square error. Nevertheless, the accuracy of relevance vector machine closely trails that of PSO-LSSVM, 
exhibiting discrepancies of 4.45% and 14.16%, respectively. Such outcomes suggest that the PSO-LSSVM predic-
tion method is suitable for multi-variety and small-batch production forecasting, thus expanding the applicability 
spectrum of PSO-LSSVM within this domain of hydrometallurgical process.

Effect of steps on predicting accuracy
The quantity of data, denoted as N2 , utilized for forecasting the quality control status of electrolytic copper 
remains indeterminate. A sensitivity analysis concerning this data volume is imperative, anchored by the 

Table 1.   Importance of factors affecting the electrolytic copper quality by using random forest algorithm. 
Significant values are in [boldunderline].

Factor Y1 Y2 Y3 Y4 Y5

X1 0.1768 0.0443 0.0982 0.0109 0.0289

X2 0.1082 0.2148 0.1090  − 0.0845  − 0.1615

X3 0.4294 0.4216 0.5482  − 0.0668 0.0514

X4 0.2706 0.2784 0.3083  − 0.0911 0.0236

X5 0.0070  − 0.0043 0.2108  − 0.0037 0.0323

X6  − 0.0576 0.1629  − 0.1159 0.0123  − 0.2284

X7  − 0.0176 0.0221 0.0455  − 0.1493  − 0.0904

X8 0.3341 0.3332 0.4494  − 0.0462 0.2905

X9 0.3143 0.2978 0.3126 0.0578 0.3633

X10  − 0.0918 0.0752  − 0.0658  − 0.0784 0.1377

X11  − 0.0173 0.1276 0.1313 0.0730 0.0569

X12 0.1741 0.3005 0.2269 0.1718 0.1638

X13 0.3782 0.3105 0.2372 0.3335 0.4300

X14 0.4089 0.2490 0.4499 0.2132 0.4698

X15 0.1645 0.2480 0.1574  − 0.1110 0.2077

X16 0.1814 0.0692 0.1183 0.0884  − 0.2003

X17 0.4257 0.5400 0.4975 0.0966 0.1663

X18 0.3525 0.3558 0.3412 0.0280 0.3438

X19 0.0761 0.2318 0.2354  − 0.0776 0.0281

Table 2.   Prediction results of electrolytic copper quality by different prediction methods.

Error index

Models

MLR BP LSSVM RVM PSO-LSSVM

MAE 7.8467 0.1847 0.1749 0.0663 0.0634

RMSE 16.8610 0.2854 0.2061 0.1161 0.1017
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evaluation metrics of mean absolute error and root mean square error. Table 3 shows the influence of prediction 
step size on prediction of electrolytic copper quality using relevance vector machine. Table 4 shows the influence 
of prediction step size on prediction of electrolytic copper quality using PSO-LSSVM. As delineated in Tables 3 
and 4, for training set proportions of 80%, 85%, 90%, and 95%, the corresponding sample sizes are 29, 31, 32, 
and 34, while for the testing set, they are 7, 5, 4, and 2, respectively. In this work, the sensitivity associated with 
the predicted values for electrolytic copper quality control status were investigated. Notably, as the proportion of 
training set samples to the complete dataset transitions from 80 to 95%, the mean absolute error and root mean 
square error for the relevance vector machine model of electrolytic copper quality exhibit a pattern of initial 
decline followed by an ascent, reaching their nadir at 90%.

Additionally, as the proportion of training set samples relative to the entire dataset shifts from 80 to 95%, 
the mean absolute error and root mean square error for the PSO-LSSVM model concerning electrolytic copper 
quality consistently exhibit an initial decline, followed by an increase, with the minimum values observed at 
90%. In general, relevance vector machine and the PSO-RVM hybrid model are close to each other in accuracy 
for predicting copper electrolytic quality. The hybrid PSO-RVM model is slightly more stable than relevance 
vector machine in the prediction process. The proposed hybrid PSO-RVM model may be a good choice for the 
production process which needs to consider all the influencing factors. However, the number of factors that are 
input into a predictive model is not always better. However, the accuracy of the model does not increase with 
the number of input factors. The objective of industrial processes is to minimize the number of factors used for 
predicting the desired outcome.

Prediction of electrolytic copper quality
Based on the presented research findings, five primary control factors were identified among the determinants 
influencing electrolytic copper quality. Utilizing N1=32 groups of electrolytic copper experimental data as train-
ing sets and the remaining N2 =4 groups as test sets, the RF-RVM model was developed to provide intelligent 
predictions for metallurgical engineering. Table 5 shows the indictors prediction of electrolytic copper quality 
using relevance vector machine and RF-RVM models. It can be seen from this table that the prediction accuracy 
of the two models is satisfactory. For instance, the maximal value of mean absolute error is 0.1352 when the 
relevance vector machine and the data of electrolytic copper periphery (Y1) were used. Conversely, the maximal 
value of root mean square error is 0.1889 when the relevance vector machine and the data of copper content in 
electrolytic copper (Y4) were used. However, it becomes evident that the relevance vector machine yields a higher 
error while evaluating the prediction outcomes using the two metrics (i.e., mean absolute error and root mean 

Table 3.   Influence of prediction step size on prediction performance of relevance vector machine for 
electrolytic copper quality.

Error index

The proportion of training sets

80% 85% 90% 95%

MAE 0.0801 0.0541 0.0362 0.0575

RMSE 0.1303 0.0954 0.0658 0.0892

Table 4.   Influence of prediction step size on prediction performance of PSO-LSSVM for electrolytic copper 
quality.

Error index

The proportion of training sets

80% 85% 90% 95%

MAE 0.0772 0.0586 0.0500 0.0611

RMSE 0.1149 0.0833 0.0670 0.0783

Table 5.   Indictors prediction of electrolytic copper quality using relevance vector machine and RF-RVM 
models. Significant values are in [boldunderline].

Error index MAE RMSE

Models RVM RF-RVM RVM RF-RVM

Y1 0.1352 0.0427 0.1373 0.0531

Y2 0.0883 0.0862 0.0982 0.0956

Y3 0.0833 0.0721 0.0948 0.0867

Y4 0.1279 0.1048 0.1889 0.1822

Y5 0.1165 0.0919 0.1277 0.1052
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square error). The hybrid RF-RVM model demonstrates superior predictive performance compared to relevance 
vector machine, achieving a minimal value of 0.0427 in terms of the error index (i.e., root mean square error) 
and electrolytic copper periphery (Y1), less than 5%. Furthermore, the maximal value of prediction performance 
between relevance vector machine and RF-RVM model are 0.0925 and 0.0842 both for electrolytic copper 
periphery (Y1). The necessity and merit of the proposed hybrid model is clearly demonstrated by the above.

Consequently, this novel hybrid model leverages the strengths of the random forest algorithm in extracting 
features (i.e., five pivotal controlling factors are extracted from nineteen determining factors) of electrolytic 
copper quality. Specifically, it is used to filter out redundant information among the numerous influencing fac-
tors, and the issues of the complexities associated with small samples, high dimensionality, and nonlinearity in 
hydrometallurgy engineering are adeptly addressed. In addition, the proposed RF-RVM hybrid model not only 
extracts the primary factors for copper electrolytic process, but also caters to the intelligent or digital development 
needs of metallurgical enterprises or hydrometallurgy process. In other words, the technologies of digital metal-
lurgical engineering are useful to advance the knowledge on data science, machine learning and computational 
sciences to tackle metallurgical engineering problems.

Conclusions
From an in-depth analysis of the production mechanism of copper electrolysis and the consideration of factors 
such as electrolyte composition and power consumption, a predictive model was established for the quality 
control of electrolytic copper. The primary findings are as follows. (1) The random forest algorithm effectively 
delineates the intricate nonlinear relationship between factors that determine electrolytic copper quality. Five 
pivotal controlling factors of electrolytic copper have been elucidated, further corroborated by nonlinear cor-
relation analysis employing maximal information coefficient. (2) Given an input of all nineteen determining 
factors, the predictive accuracy of relevance vector machine closely parallels that of the PSO-LSSVM model, with 
deviations of 4.45% and 14.16% respectively. Notably, it surpasses the conventional multiple linear regression and 
traditional neural network models in this regard. (3) The introduction of an electrolytic copper quality prediction 
model, based on the RF-RVM model, yields a prediction error for the test data set that is notably smaller than 
the relevance vector machine, with the minimum error index registering below 5%. To sum up, in this work, 
the employed machine learning technique adeptly discerns the latent correlations within the electrolytic cop-
per experimental data, diminishes computational complexity, and demonstrates potential applicability to other 
quality prediction challenges in various metallurgical processes.

Data availability
The datasets utilized and analyzed in the present study are available upon reasonable request from the corre-
sponding author.
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