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Assessing effect of best 
management practices 
in unmonitored watersheds 
using the coupled SWAT‑BiLSTM 
approach
Xianqi Zhang 1,2,3, Yu Qi 1*, Haiyang Li 1, Shifeng Sun 1 & Qiuwen Yin 1

In order to enhance the simulation of BMPs (Best Management Practices) reduction effects in 
unmonitored watersheds, in this study, we combined the physically-based hydrological model Soil & 
Water Assessment Tool (SWAT) and the data-driven model Bi-directional Long Short-Term Memory 
(Bi-LSTM), using the very-high-resolution (VHR) Land Use and Land Cover (LULC) dataset SinoLC-1 
as data input, to evaluate the feasibility of constructing a water environment model for the Ba-River 
Basin (BRB) in central China and improving streamflow prediction performance. In the SWAT-BiLSTM 
model, we calibrated the top five SWAT parameters sorted by P-Value, allowing SWAT to act as a 
transfer function to convert meteorological data into base flow and storm flow, serving as the data 
input for the Bi-LSTM model. This optimization improved the Bi-LSTM’s learning process for the 
relationship between the target and explanatory variables. The daily streamflow prediction results 
showed that the hybrid model had 9 regions rated as "Very good," 2 as "Good," 2 as "Satisfactory," and 
1 as "Unsatisfactory" among the 14 regions. The model achieved an NSE of 0.86, R2 of 0.85, and PBIAS 
of −2.71% for the overall daily streamflow prediction performance during the verification period of the 
BRB. This indicates that the hybrid model has high predictive accuracy and no significant systematic 
bias, providing a sound hydrodynamic environment for water quality simulation. The simulation 
results of different BMPs scenarios showed that in the scenarios with only one BMP measure, stubble 
mulch had the best reduction effect, with average reductions of 17.83% for TN and 36.17% for TP. In 
the scenarios with a combination of multiple BMP measures, the combination of stubble mulch, soil 
testing and formula fertilization, and vegetative filter strip performed the best, achieving average 
reductions of 42.71% for TN and 50.40% for TP. The hybrid model provides a novel approach to 
simulate BMPs’ reduction effects in regions without measured hydrological data and has the potential 
for wide application in BMP-related decision-making.

With the development of water environment management technology and practices, it is widely recognized that 
besides direct discharge of wastewater, the main causes of water quality deterioration and eutrophication in riv-
ers and lakes are due to human activities, including agricultural activities and urban emissions, which disrupt 
the structure and functioning of watershed ecosystems and degrade the intrinsic elements, leading to non-point 
source pollution, such as carbon, nitrogen, and phosphorus1. In some data-scarce regions, modeling the water 
environment to assess the effectiveness of BMPs is a challenging task2. Due to limited hydrological monitoring 
stations and the increasing and diversified demand for hydrological data with socio-economic development, the 
issue of data scarcity is expected to persist. In this context, the development of improved watershed hydrological 
models to enhance the simulation of streamflow and water quality in data-scarce areas has become an urgent 
necessity. NPS pollution is characterized by a wide range of sources, strong randomness, and high concentra-
tions of pollutants, making its control strategies significantly different from point source pollution. Currently, 
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BMPs have been proven to be one of the most effective measures for managing NPS pollution3. BMPs are divided 
into agricultural BMPs and structural BMPs4, which manage the water environment through engineering and 
management measures, respectively. In order to achieve environmental goals for non-point source pollution 
control, such as reducing nitrogen and phosphorus loads by 30%, a certain amount of economic cost is required 
for construction and management. However, under the same economic cost, different spatial configuration 
schemes have different environmental benefits. To develop the most efficient plan (minimizing economic costs 
and maximizing pollution reduction), it is essential to quantitatively evaluate its benefits before implementation5. 
Therefore, enhancing the understanding of BMPs’ performance is crucial.

Watershed models are mathematical representations of hydrological, ecological, erosion, and nutrient cycling 
processes within a watershed. Based on their approach and the processes they simulate, they are typically classi-
fied as empirical models and physical models (or process models)6. Process models, also known as hydrological 
process-based models, are built on hydrological processes such as rainfall, evaporation, infiltration, and runoff, 
and they describe the transport and transfer of pollutants using water as a carrier. Additionally, they simulate 
processes like vegetation growth, soil erosion, and nutrient cycling. Compared to empirical models, process mod-
els can better describe the migration paths and transformation mechanisms of pollutants7. Therefore, in recent 
years, physical models including Area Nonpoint Source Watershed Environment Simulation (ANSWERS), LOAD 
ESTimator (LOADEST), SWAT and Hydrological River Basin Environment Assessment Model (HydroBEAM) 
have been widely used in various water environment studies8–11. These models have different structures and 
mechanisms and use different equations to describe BMPs12. In general, most models tend to focus on simulat-
ing only one or a few processes within the watershed, such as hydrology, soil erosion, or nutrient cycling, with 
only a few models, including SWAT, considering various processes within the watershed13. Moreover, SWAT’s 
built-in equations provide a more detailed description of agricultural activities and BMPs14. Previous research 
has shown that SWAT can effectively study the performance of BMPs due to changes in hydro-meteorological 
characteristics, land use and land cover (LULC), and soil properties10. However, SWAT requires various types of 
input data (such as precipitation, temperature, evaporation, topography, soil properties, and LULC), demanding 
higher temporal and spatial resolutions, and its performance is highly dependent on the quality of input data 
and parameters15. Additionally, the calibration of parameters in SWAT is subject to complex uncertainties due 
to the intricate issue of equifinality16, increasing the modeling difficulty and consuming a significant amount of 
researchers’ time.

In recent years, data-driven models have been widely applied in various water environment studies, and their 
reliability has been validated17. Essentially, data-driven models aim to derive the linear or nonlinear relation-
ships between explanatory and target variables based on a large amount of input data, without considering the 
physical characteristics of the variables. Bi-LSTM model is one type of data-driven model, consisting of two 
opposite-directional Long Short-Term Memory (LSTM) models, and its performance has been shown to out-
perform single-directional LSTM models in many aspects18,19. Using Bi-LSTM to simulate watershed runoff can 
bypass the complex and uncertain calibration process, significantly reducing modeling difficulty20. However, its 
main challenge lies in the high requirement for representativeness of training data,once events fall outside the 
range of the training data, the predictive performance of the model will deteriorate significantly21. Additionally, 
data-driven models like Bi-LSTM cannot account for the impact of spatiotemporal characteristics of rainfall on 
the runoff generation process in the watershed. For example, Jiang et al.22 observed that when the rainfall center 
is close to the outlet of the watershed, the water level at the outlet section rises rapidly. This is because such 
data-driven models use rainfall time series from different meteorological stations as input data, overlooking the 
potential influence of spatial variability on runoff variations in the study area.

However, whether it is conceptual hydrological models or machine learning models, their performance in 
data-scarce regions remains unsatisfactory. In a streamflow simulation study of a sub-basin in the Tonle Sap 
Basin of Cambodia, where no actual measured data were available, researchers calibrated and validated the SWAT 
model using daily runoff observations at the watershed outlet. After numerous attempts, the model achieved an 
NSE of 0.38 and a PBIAS of -78.38% for daily streamflow simulation results during the validation period. This 
indicates that hydrological models based on physical processes, such as SWAT, perform inadequately in data-
scarce regions23. Moreover, due to the absence of observed hydrological data for training, machine learning mod-
els cannot be directly applied to data-scarce watersheds. In this study, to enhance streamflow and water quality 
simulation in data-scarce watersheds, and to overcome the limitations inherent in both conceptual hydrological 
models and machine learning models, we developed a coupled SWAT-BiLSTM model. In this hybrid model, the 
SWAT model serves as a transfer function, combining meteorological information, including temperature, pre-
cipitation, wind speed, and humidity, with topographic, soil, and LULC data to transform them into two hydro-
logical variables: baseflow and quickflow. Bi-LSTM, on the other hand, captures linear or nonlinear underlying 
relationships between the two hydrological variables (explanatory variables) and observed streamflow data (target 
variable), ultimately enabling streamflow prediction in data-scarce watersheds. This provides a new approach 
for modeling water environments in areas without measured hydrological data, thus reducing the difficulty in 
evaluating the reduction effects of BMPs schemes in these regions.

In this study, to assess the reduction effects of different BMPs scenarios in areas without measured hydrologi-
cal data, we selected the BRB in Shaanxi Province, China, which is known for its severe water pollution, as the 
case study area. The objectives of this study were as follows: (1) to establish a hybrid model combining SWAT 
and Bi-LSTM and use it to predict the streamflow in the assumed data-scarce areas; (2) to evaluate the predictive 
performance of the hybrid model in different regions of BRB; (3) to simulate and evaluate the reduction effects 
of different BMPs scenarios.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17168  | https://doi.org/10.1038/s41598-023-44531-7

www.nature.com/scientificreports/

Materials and methods
Study area
The Ba-River is located in the southeastern part of Xi’an City, Shaanxi Province, China. It originates from the 
northern slope of the Qinling Mountains, north of Lantian County, and flows through Baqiao District and 
Weiyang District before joining the Yellow River’s main tributary, the Wei-River, in Gaoling County. The river 
has a total length of 109 km and is the largest tributary on the south bank of the Wei River. The Ba-River Basin 
(33°50′ N–34°27′ N, 109°00′ E–109°47′ E) covers an area of 2581 km2, with its topography mainly composed of 
mountains, ranging in elevation from 357 to 2424 m (Fig. 1). The southern and eastern parts of the basin are 
mainly covered by forests, while the central part is dominated by extensive farmland. Villages are distributed 
along both sides of the river, and the northern part is primarily used for urban construction. The predominant 
soil types in the basin are yellow–brown soil and brown soil. The BRB experiences a warm temperate semi-humid 
continental monsoon climate with significant seasonal characteristics. The majority of heavy rainfall occurs 
from July to September, often in the form of continuous rainy days and heavy storms, with a spatial distribu-
tion that is generally more rain in the south and less in the north. The total annual precipitation ranges from 
502 to 873 mm, with an average of 697 mm over multiple years. The average annual temperature in the basin is 
between 13.0 and 14.8 ℃, with a multi-year average of 13.7 ℃. The average annual evaporation is 776 mm24. The 
overall groundwater quality in the BRB is good, but in the Ba-River Ecological Zone, human activities have led 
to fluoride and total coliform exceeding the standards in some areas, resulting in poor water quality. The pol-
lution sources in different locations of the Ba-River are influenced by the hydrological characteristics, uneven 
population distribution, and regional economic disparities. The upper and middle reaches of the river are mainly 
affected by livestock farming discharge, domestic sewage, and agricultural pollution, while the lower reaches 
receive concentrated urban domestic sewage and industrial wastewater. In recent years, with the construction 
of sewage treatment facilities in the BRB, the pollution load from point sources has been continuously reduced, 
but NPS pollution has become increasingly prominent25. Therefore, there is an urgent need to conduct research 
on the effectiveness of NPS pollution emission control schemes in this area.

Soil and water assessment tool (SWAT)
SWAT is a physically-based semi-distributed watershed hydrological model developed by Dr. Arnold of the 
Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA). Initially, SWAT 
was applied to large-scale and complex watersheds with different soil types, land use, and management conditions 
to predict and evaluate the long-term impacts of human activities, such as land use management, on the water 
cycle, sediment, and agricultural pollutant transport in the watershed26. SWAT model is based on the Simulator 
for Water Resources in Rural Basins (SWRRB) model and incorporates several characteristics of ARS models. 

Figure 1.    Location and sub-basin delineation of Ba-River Basin. The figure is created using ArcMap 10.2, URL: 
https://​www.​arcgis.​com.

https://www.arcgis.com
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The improvement of the SWRRB model originated from the daily rainfall hydrological model of Chemicals, 
Runoff, and Erosion from Agricultural Management Systems (CREAMS). In the late 1980s, for water quality 
assessment, the SWRRB model incorporated pesticide components from the Groundwater Loading Effects of 
Agricultural Management Systems (GLEAMS) model, the SCS curve method, and newly developed sediment 
yield calculation equations to address watershed management issues. The SWAT model can simulate the move-
ment of water in evapotranspiration, groundwater, and soil based on empirical equations and the principle of 
water balance. It not only simulates the water cycle process but also studies the processes of soil erosion, nutri-
ent transport, pesticide, and pathogen cycling using the water cycle as a carrier. In recent years, the model has 
also been widely used in various aspects such as non-point source pollution detection and control, mechanistic 
process exploration simulation, and spatial–temporal distribution of pollution load27,28. In the SWAT modeling 
process, a watershed is first divided into several sub-basins, and then, combining with data such as land use 
types and soil types, the sub-basins are further divided into different Hydrological Response Units (HRUs). The 
Soil Conservation Service (SCS) method is used to independently calculate water infiltration and surface runoff 
in each HRU, and the surface water is calculated at the outlet of the sub-basin, and finally, the routing process 
is calculated using a simulation computation method. Table 1 shows the data and sources used to establish the 
SWAT model in the BRB. Figure 2 illustrates the Station ID of the 14 hydrological stations in the SWAT database 
and the corresponding geographical locations.

It is worth mentioning that this study used the first 1-m resolution national-scale land-cover map of China 
created with the deep learning framework to improve modeling accuracy. This dataset is derived from the State 

Table 1.   Data inputs for the SWAT model.

Data Data source

DEM https://​www.​gsclo​ud.​cn/

LULC dataset https://​doi.​org/​10.​5281/​zenodo.​78210​68/ (SinoLC-1)

Soil maps Institute of Soil Science, Chinese Academy of Sciences

River networks National Geomatics Center of China (NGCC)

Daily rainfall records (Jan 2015–Dec 2022) (15 stations) National Oceanic and Atmospheric Administration (NOAA) https://​www.​
noaa.​gov/Daily temperature records (Jan 2015–Dec 2022) (15 stations)

Daily streamflow records (Jan 2015–Dec 2022) (14 stations) Ministry of Water Resources of the People’s Republic of China

Figure 2.    Geographical location of hydrological stations. The figure is created using ArcMap 10.2, URL: 
https://​www.​arcgis.​com.

https://www.gscloud.cn/
https://doi.org/10.5281/zenodo.7821068/
https://www.noaa.gov/
https://www.noaa.gov/
https://www.arcgis.com
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Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (LIESMARS), Wuhan 
University, with a resolution of 1 m27,28. Figure 3 shows the comparison of SinoLC-1 with other LULC datasets 
at a larger spatial scale. Based on the analysis of the VHR satellite image in Fig. 3a, the land cover performance 
of ESRI_GLC10 in Fig. 3e and GlobeLand30 in Fig. 3g is the most blurred, with farmland, buildings, and forests 
in urban areas being severely confused. GLC_FCS30 performs the worst in terms of forest cover, transportation 
roads, rivers, and runoff. FROM_GLC10 shows accurate performance on water bodies (such as artificial lakes 
and rivers), but its performance in forest cover types does not meet expectations. ESA_GLC10 relatively per-
forms better compared to other comparative products, but its performance in water bodies is still inadequate. In 
comparison, SinoLC-1 has the best overall performance, accurately representing fine details of land cover such 
as small rivers, artificial lakes, small ponds, vegetation, and buildings. It can precisely identify the boundaries 
of different land use types, which significantly reduces the phenomenon of confusion between different LULC 
types during the SWAT modeling process and contributes to the accurate delineation of HRUs. To quantitatively 
assess the performance differences between SinoLC-1 and five other widely used large-scale land cover products, 
a total of 106,852 random samples extracted from each LULC product were compared and analyzed against 

Figure 3.   Demonstration of the visual comparison for Changzhou City, Jiangsu Province. The VHR remote 
sensing image in the figure is from Google Earth 2021.
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official land survey reports provided by the Chinese government. The validation results indicated that SinoLC-1 
achieved an overall accuracy of 91.7% and a kappa coefficient of 0.7595, indicating a high level of consistency 
between SinoLC-1 and actual LULC data. Information for the other five LULC products is presented in Table 228.

To simulate the effects of BMPs, the BRB was divided into 23 sub-basins based on the terrain and real river 
network vector data, using a threshold of 50 km2. Based on the SinoLC-1 dataset and soil type data, 21 sub-basins 
were further subdivided into 713 HRUs by setting thresholds for LULC, soil type, and slope at 13%, 20%, and 
20%, respectively. The daily runoff records from the hydrological station at the BRB outlet were used to calibrate 
and validate the SWAT model. The calibration period was from January 1, 2015, to December 31, 2019, and the 
validation period was from January 1, 2020, to December 31, 2022. Considering the issue of equifinality involved 
in the model calibration process, simultaneous calibration of a large number of parameters can lead to significant 
uncertainty16. Based on previous research in the WRB region29, we selected different types of parameters ranked 
in the top five P-Values in sensitivity analysis for calibration. The calibrated parameters and their values are 
presented in Table 3. This process was performed using the Sequential Uncertainty Fitting 2 (SUFI-2) algorithm 
built into SWAT-CUP.

Bi‑LSTM
LSTM is an improved type of Recurrent Neural Network (RNN) that addresses the issue of long-term depend-
encies encountered in traditional RNNs30. In the structure of LSTM, the hidden layer neurons are equipped 
with input gates, forget gates, and output gates. These gates, determined by Sigmoid functions and element-wise 
multiplication, decide which information should be remembered, giving LSTM the ability of long-term memory 
and effectively overcoming the vanishing and exploding gradient problems encountered in traditional RNNs31. 
The internal mechanism of a single LSTM neuron is illustrated in Fig. 4, and the mechanisms of the three gates 
are represented by the following equations:

Forget gate:

Input gate:

(1)ft = σ
(
Wf · [ht−1, xt]+ bf

)

(2)it = σ(Wi · [ht−1, xt]+ bi)

(3)C̃t = tanh(WC · [ht−1, xt]+ bC)

Table 2.   Information for the comparative land-cover products.

Name Resolution (m) Version and Timeline Number of LULC type Overall accuracy (%)

ESA_GLC10 10 V2020 11 73

FROM_GLC10 10 V2017 10 74

ESRI_GLC10 10 V2020 10 85

GLC_FCS30 30 V2020 16 83

GlobeLand30 30 V2020 10 86

Table 3.   Calibrated parameters in SWAT.

Type Sensitivity ranking Parameter Definition P-value Calibrated value

Runoff

1 ALPHA_BF Baseflow α coefficient 0.016 0.045

2 ESCO Soil evaporation compensation factor 0.017 0.78

3 GWQMN Shallow groundwater runoff coefficient 0.028 1195

4 GW_DELY Groundwater lag factor 0.035 24.02

5 SOL_Z Soil depth 0.044 2560

TN

1 CN2 SCS runoff curve coefficient 0.066 87

2 NPERCO nitrogen permeability coefficient 0.083 0.245

3 USLE_P Soil and water conservation measures factor 0.099 0.43

4 CDN Denitrification index rate factor 0.183 1.12

5 SDNCO Soil water content thresholds for denitrification 0.271 0.805

TP

1 USLE_P Soil and water conservation measures factor 0.060 0.43

2 RCHRG_DP Deep aquifer permeability coefficient 0.064 0.046

3 CN2 SCS runoff curve coefficient 0.070 87

4 PHOSKD Soil phosphorus partition coefficient 0.097 156.62

5 PPERCO Phosphorus permeability coefficient 0.108 10.00
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Output gate:

Here, ft , it , and ot represent the forget gate, input gate, and output gate, respectively; Ct is the memory cell; 
ht is the output of the neuron’s short-term memory at time t  ; C̃t represents the memory from the new input; h 
is the hidden vector; σ is the activation function; W is the weight matrix; b is the bias term; [M, N] denotes the 
concatenation of two vectors; ⨀ represents element-wise multiplication.

Although LSTM has the ability of long-term memory, it can only perform forward learning and extract 
information from unidirectional time series, which limits its learning capacity. Bi-LSTM, by stacking two LSTM 
networks in opposite directions, utilizes time series data twice and can more fully explore the potential correla-
tion information between the input variables and the target variables. To determine the appropriate network 
structure and hyperparameters for optimizing Bi-LSTM’s performance, we used the Firefly optimizer (FHO) to 
find the best combination of different hyperparameters. The population size, maximum number of iterations, 
extinction coefficient, and attraction coefficient were set to 60, 1000, 0.7, and 4, respectively. FHO is an evolu-
tionary algorithm inspired by the foraging behavior of the Black kite, the Maroon Oriole, and the Brown Falcon, 
with strong global search capabilities32. Compared to traditional gradient-based optimization algorithms, FHO 
does not rely on the gradient information of the objective function, making it suitable for optimizing problems 
involving non-continuous, non-smooth, and even black-box functions33. After conducting multiple experi-
ments by using the hyperparameters of Bi-LSTM as the search dimensions of FHO, the optimal Bi-LSTM model 
was found to have 512 neurons in the first hidden layer and four dense layers with 256, 78, 32, and 1 neurons, 
respectively. To prevent overfitting, a Dropout rate of 0.3 was set for the model. Additionally, Rectified Linear 
Unit (ReLU) was used as the activation function for the hidden layers to reduce computation and avoid the 
vanishing gradient problem34.

Coupling SWAT with Bi‑LSTM
In this study, to establish a water environment model in data-scarce regions, we used a hybrid model combining 
SWAT and Bi-LSTM. SWAT is responsible for simulating baseflow and stormflow generated by precipitation 
events. The simulated results are then used to train the Bi-LSTM model to predict daily streamflow during the 
simulation period. In this process, only some parameters of SWAT are calibrated, which significantly reduces 
the uncertainty and unnecessary time and effort invested in the modeling process while ensuring model per-
formance. Essentially, SWAT acts as a transfer function, transforming input variables such as terrain, soil type, 
weather, and LULC into two output variables: baseflow and stormflow. To validate the performance of the hybrid 
model in different regions, we adopted a cross-validation approach. There are a total of 14 hydrological stations 
in the BRB. We iteratively excluded one station and used the daily streamflow data from the remaining stations 
to train an independent Bi-LSTM model. Finally, the excluded station was used to verify the performance of the 
trained model, and the performance of each model in the target region was obtained. In this process, a total of 
14 Bi-LSTM models were trained. The flowchart of this approach is shown in Fig. 5.

Model performance evaluation
Three metrics were used to evaluate the performance of the established SWAT and Bi-LSTM hybrid model 
in predicting streamflow in data-scarce regions. They are the Nash–Sutcliffe efficiency (NSE), coefficient of 
determination (R2), and Percent Bias (PBIAS). NSE and R2 reflect the degree of collinearity between observed 

(4)Ct = ft ⊙ Ct−1 + it ⊙ C̃t

(5)ot = σ(WO · [ht−1, xt]+ bO)

(6)ht = Ot ⊙ tanh(Ct)

Figure 4.   Illustration of an LSTM block.
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and simulated values, while PBIAS reflects the systematic bias between simulated and observed values. Their 
calculation formulas are as follows:

where, Mi and Si represent the observed values and simulated values, respectively; Mi and Si represent the mean 
of observed values and the mean of simulated values, respectively. Furthermore, to demonstrate the daily stream-
flow prediction performance of the hybrid model trained based on neighboring areas when different regions 
in the BRB became assumed no-data regions, we utilized the ranking method presented in Table 4 to assess the 
model performance in different areas. This ranking criteria is derived from previous research that employed 
machine learning models for simulating and predicting water environments35. However, in the SWAT-BiLSTM 
coupled model, SWAT is used with default parameters solely as a transfer function. Therefore, we did not opt for 
performance grading standards biased towards conceptual hydrological models. During the evaluation process, 
model performance is ranked based on the worse of the two metrics.

BMP scenario settings
BMPs have been widely used for the prevention and control of NPS pollution and have shown significant effects. 
However, different BMPs have distinct spatial variations in their reduction effects on NPS pollution, requiring 

(7)NSE = 1−

∑N
i=1(Mi − Si)

2

�N
i=1

(
Mi −Mi

)2

(8)R2
= 1−

�N
i=1(Mi − Si)

2

�N
i=1

(
Mi −Mi

)2
�N

i=1

(
Si − Si

)2

(9)PBIAS =

∑n
i=1 100(Mi − Si)∑n

i=1 Mi

Figure 5.   Model training and validation flowchart.
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tailored management measures that suit the actual characteristics of the watershed. Based on the natural charac-
teristics of the BRB (LULC, soil types, slope, and topography), socio-economic development (population density 
and water quality), and current NPS pollution status, we set two major categories of measures: Agricultural 
BMPs and Structural BMPs. Agricultural BMPs include formula fertilization by soil testing and stubble mulch, 
while Structural BMPs encompass vegetative filter strips and grassed waterways. The pollutant reduction effects 
of these four BMPs have been proven in previous studies36. Table 5 presents the information on each BMP and 
the parameters that need adjustment in SWAT.

We obtained relevant information on fertilizer application in the watershed through on-site field surveys of 
farmers. The cultivated area in the BRB is 401.01 km2, with main crops being wheat and corn. The commonly 
used fertilizers are nitrogen-based (mainly urea and ammonium bicarbonate) and phosphate-based (mainly 
calcium superphosphate). The average application rates of chemical fertilizers for wheat and corn are 1125 kg/
ha and 750 kg/ha, respectively. The total annual application of chemical fertilizers in the cultivated land of the 
watershed is 50,126 tons. The fertilization method is mainly broadcasting, resulting in lower fertilizer utiliza-
tion efficiency, and significant nitrogen and phosphorus nutrient loss due to rainfall runoff. To address this, we 
implemented the measure of formula fertilization by soil testing to reduce the amount of chemical fertilizers 
while maintaining crop yields and reducing pollution loads37. Formula fertilization by soil testing was achieved 
by reducing FRT_KG by 20% in SWAT parameters. Stubble mulch is an effective agricultural measure in reducing 
nitrogen and phosphorus losses. The pollutant reduction mechanisms of stubble mulch primarily come from 
two processes: (1) stubble mulch favors the accumulation of organic matter in the soil, improving soil water-
holding capacity, reducing soil erosion, and lowering the risk of nitrogen and phosphorus nutrient loss,(2) stubble 
mulch reduces soil permeability and promotes the accumulation of reactive substances, effectively facilitating 
denitrification processes in the soil, leading to more nitrogen being released in the form of gas rather than being 
discharged into the rivers38. Stubble mulch was implemented by adjusting SWAT parameters as follows: USLE_P 
was set to 0.29, USLE_C was set to 0.7, and OV_N was set to 0.3. Vegetative filter strip (VFS) refers to vegetated 
areas with gentle slopes that slow down surface runoff and remove pollutants and sediments from runoff through 
vegetation interception and soil infiltration39. In this study, VFSRATIO was set to 40, VFSCON was set to 0.5, 
and VFSCH was set to 0. Grassed waterways mainly use vegetation to trap and store runoff, reduce flow velocity, 
and control the migration and transformation of pollutants in runoff, thereby reducing pollutant levels40. The 
width of the grassed waterways was set to 5 m. VFS and grassed waterways were implemented along the entire 
length of the river reach. In this study, we conducted individual scenario simulations and combination scenario 
simulations for the four BMPs (Table 6). In all combination scenario simulations, each BMP was set as in the 
individual scenario simulations. In this study, the pollutant reduction effect of BMPs was expressed as the annual 
removal rate, defined as follows:

(10)r =
LOADPre − LOADpost

LOADPre
× 100%

Table 4.   Performance ranking criteria.

Level NSE PBIAS (%)

Very good  ≥ 0.70  ≤ 25

Good 0.50 ≤ value < 0.70  ≤ 50

Satisfactory 0.30 ≤ value < 0.50  ≤ 70

Unsatisfactory  < 0.30  > 70

Table 5.   The description and the simulation method of each BMP.

BMPs code BMP type Category Simulation method and parameters

B1 Formula fertilization by soil testing Agricultural
BMPs

FRT_KG

B2 Stubble mulch Harvest only, CN2, USLE_P, USLE_C and OV_N

B3 Vegetative filter strip
Structural
BMPs

VFS routine or FILTERW

B4 Grassed waterway
GWATD, GWATW, GWATSPCON, GWATN, The channel erodibility 
factor (CH_COV1) and channel
cover factor (CH_COV2)

Table 6.   Scenario settings.

S1 S2 S3 S4 S5 S6 S7 S8 S9

B1 B2 B3 B4 B1 & B2 B1 & B3 B1 & B4 B1, B2 & B4 B1, B2 & B3
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Here, LOADPre represents the annual pollution load before implementing the BMP, and LOADpost represents 
the annual pollution load after implementing the BMP.

Results and discussion
Simulation performance comparison
In this study, we sequentially exclude the data of one hydrological station from the training dataset and use it 
to validate the model’s streamflow prediction performance in a hypothetical area with no measured data. This 
process generated 14 groups of training dataset, each containing data from 13 hydrological stations, along with 
corresponding validation data. Table 7 compares the performance of the hybrid model in predicting daily stream-
flow in different regions of the BRB during the calibration period (January 1, 2015, to December 31, 2017) and 
the validation period (January 1, 2018, to December 31, 2022). In the validation data from these 14 stations, the 
absolute values of PBIAS for more than half of the stations are below 10%, with only three stations exceeding 15%. 
This indicates that the hybrid model’s predictions of streamflow in areas without data did not exhibit significant 
systematic biases. However, there are still four stations with absolute PBIAS values exceeding 10%, and two of 
them even exceed 20%, suggesting that the hybrid model’s predictive performance of daily streamflow is relatively 
poor in certain specific areas due to spatial factors such as terrain, LULC, and soil types. The performance ratings 
of the hybrid model in regions with different soil types, terrains, and LULC are shown in Fig. 6. The soil names 
and brief descriptions corresponding to the soil codes are displayed in Table 8.

Based on the analysis of terrain, soil type, and LULC data, in the test areas ranked as "Very good," imper-
viousness ranged from 19 to 54%, and forest cover ranged from 2 to 27%. In the test areas rated as "Good," 
imperviousness ranged from 18 to 51%, and forest cover ranged from 2 to 35%. Since most of the hydrologi-
cal data used to train the Bi-LSTM model came from urbanized areas with relatively flat terrain, the Bi-LSTM 
model showed better daily streamflow prediction performance in such regions. As forest cover increased, the 
predictive performance of the hybrid model gradually declined. Moreover, the hybrid model performed better 
in test areas with higher imperviousness, indicating that the model had better predictive accuracy for highly 
urbanized watersheds. When the test area’s forest cover exceeded 20%, the model’s performance rating started 
to decline. Similarly, when the imperviousness exceeded 30%, the model showed more accurate predictions of 
daily streamflow. Among the 14 test areas, the highest accuracy prediction had an NSE of 0.92 and a PBIAS of 
1.34%, corresponding to regions with forest cover ranging from 2 to 5% and imperviousness ranging from 47 to 
54%. This indicates that the hybrid model meets the demand for daily streamflow prediction in this area, show-
ing high predictive accuracy with no significant systematic bias, and can provide a good hydraulic environment 
for subsequent simulations of BMPs’ pollution reduction effects.

Figure 7 shows the simulation performance of the hybrid model for total streamflow in the BRB during both 
the calibration and validation periods. The figure also displays the fitted linear regression line and R2 between 
simulated and observed data. Throughout the simulation process, the hybrid model exhibited an underestima-
tion trend for daily streamflow exceeding 200m3/s. For daily streamflow below 200m3/s, the performance of the 
hybrid model during the validation period was relatively worse compared to the calibration period, with the 
flow data points scattered more widely around the 1:1 line. As a data-driven model, Bi-LSTM’s performance is 
greatly influenced by the input data used to train the model. If the training data is not representative, the per-
formance of Bi-LSTM may not meet expectations. In this study, only daily streamflow data from the calibration 
period were used to train the Bi-LSTM model, which may be a reason for the hybrid model’s poorer performance 
during the validation period. Nevertheless, considering the overall distribution of daily streamflow data points, 
they are evenly scattered on both sides of the 1:1 line without showing any significant systematic bias trend, 

Table 7.   Comparison of daily streamflow prediction performance among the 14 hydrological stations.

Station ID Coordinates

Calibration period 
(2015–2019)

Validation period 
(2020–2022)

NSE R2 PBIAS (%) NSE R2 PBIAS (%)

535910 34°10′26″ N, 109°3′22″ E 0.88 0.89 −2.54 0.86 0.85 −2.71

535800 34°19′7″ N, 109°2′4″ E 0.81 0.84 4.61 0.69 0.76 4.68

535870 34°11′41″ N, 109°29′51″ E 0.64 0.69 12.94 0.53 0.60 13.27

535780 34°25′39″ N, 109°0′32″ E 0.84 0.86 −9.56 0.81 0.84 −10.41

535880 34°7′58″ N, 109°23′54″ E 0.67 0.72 7.13 0.62 0.63 12.98

535930 33°59′14″ N, 109°23′58″ E 0.53 0.52 −39.54 0.49 0.47 −41.72

536640 34°11′48″ N, 109°3′22″ E 0.89 0.91 1.92 0.87 0.88 2.13

536730 34°19′28″ N, 109°2′26″ E 0.86 0.89 3.67 0.81 0.83 4.03

536820 33°56′3″ N, 109°22′6″ E 0.23 0.21 −21.06 0.20 0.19 −22.39

536860 34°8′0″ N, 109°6′36″ E 0.92 0.92 1.34 0.89 0.90 1.91

536940 34°6′17″ N, 109°11′41″ E 0.75 0.78 9.16 0.74 0.71 9.36

536870 33°56′4″ N, 109°30′7″ E 0.44 0.48 18.72 0.42 0.45 17.62

536920 34°3′31″ N, 109°12′31″ E 0.81 0.82 −6.65 0.80 0.79 −6.73

536980 34°7′23″ N, 109°19′22″ E 0.87 0.91 7.03 0.83 0.85 6.98
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which still meets the requirements for establishing a water environment model. Accurate streamflow simulation 
results contribute to better estimates of pollutant loads and ensure the precise modeling of pollutant transport 
processes, which are essential input data for water quality models. In this study, the SWAT-BiLSTM model’s 
ensemble average of performance metrics for the water quality simulation results in the BRB is presented in 
Table 9. During the calibration and validation periods, the model achieved NSE and R2 values exceeding 0.8 for 
TN and TP simulation results. This indicates a high level of consistency between the simulated results and the 
actual values. Additionally, the absolute values of PBIAS were all below 7%, suggesting that the model did not 
exhibit significant systematic bias in simulating water quality.

Efficiencies of individual BMP scenarios in reducing NPS pollution loads
Figure 8 illustrates the reduction effects of BMPs on TN and TP under four scenario with single BMP measure. 
In scenario 1, the average reduction rates of TN and TP pollutant loads across the entire watershed by adopting 
Formula Fertilization by Soil Testing were 5.36% and 9.18%, respectively. Overall, this measure showed a better 
reduction effect on TP than on TN. The main reason for this result is that the major land use type in the BRB is 
rainfed agriculture, which is more prone to phosphorus runoff. The results indicate that Formula Fertilization 
by Soil Testing can reasonably reduce the use of chemical fertilizers with minimal impact on crop yields while 
reducing the pollution load. However, the overall reduction effect on TN and TP is limited, with average reduc-
tion rates within 10% throughout the watershed. In scenario 2, stubble mulch resulted in an average reduction 

Figure 6.   Hybrid model performance rankings in 14 regions.

Table 8.   Soil type information.

Soil code Name Description

11052 Coarse-grained soil The usual display rapid runoff characteristics

11053 Yellow–brown soil Poor permeability, difficult cultivation, and high surface runoff

11079 Dark brown soil Poor permeability, high surface runoff

11081 Black loam The humus layer is deep, with good tillage suitability, and all of it has been cultivated soil

11083 Brown soil Good water and nutrient retention, suitable for the growth of various crops, and it is an important 
arable soil

11084 Gray calcareous soil The soil is sandy loam, with severe sandification and relatively high permeability

11085 Yellow clay When facing rainfall, it typically exhibits a relatively uniform infiltration runoff characteristic

11087 Red soil Good permeability and drainage capability often lead to a reduction in surface runoff
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rate of 17.83% for TN and 36.17% for TP across the entire watershed, indicating a significant reduction effect 
on nitrogen and phosphorus losses. Moreover, this measure showed a better reduction effect on TP than on TN, 
which may be attributed to the dominant soluble phosphorus pollution in the study area, which is carried into 
water bodies through surface runoff. Previous research suggested that stubble mulch can reduce about 60% of 
surface runoff, preventing pollutants from entering water bodies with surface runoff. Therefore, this measure 
exhibited a better reduction effect on TP in the study area. In scenario 3 and scenario 4, VFS and Grassed Water-
ways demonstrated average reduction efficiencies of 19.07% and 10.95% for TN, and 22.02% and 10.52% for TP, 
respectively, across the entire watershed. The results indicate that Vegetative Buffer Strips were more effective 
than Grassed Waterways, possibly due to their significant sediment interception effect, reducing the entry of 
particulate pollutants attached to sediment into water bodies. Among all single BMP scenarios, stubble mulch 
showed the best reduction effect on TN and TP in the BRB and is considered one of the BMP strategies that 
farmers can easily implement. It can be prioritized when planning to adopt a single BMP measure for controlling 
NPS pollution emission in the BRB.

Efficiencies of combined BMP scenarios in reducing NPS pollution loads
Considering that optimization design often involves implementing multiple BMPs to achieve the reduction 
goals for multiple pollutants, BMP combination scenarios should be designed to assess the overall effectiveness 

Figure 7.   Scatterplots between measured and simulated daily streamflow at the outlet of BRB. The top two 
figures show the calibration period and the bottom two figures show the validation period.

Table 9.   Summary of calibration and validation statistics for TP and TN.

Type

Calibration period 
(2015–2019)

Validation period 
(2020–2022)

NSE R2 PBIAS (%) NSE R2 PBIAS (%)

TN 0.88 0.83 −4.71 0.84 0.80 −6.58

TP 0.81 0.80 −2.47 0.82 0.82 −5.92
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of various BMPs. The reduction rates of TN and TP under combined BMP scenarios are shown in Fig. 9. Among 
the five combination scenarios, the combination of Formula Fertilization by Soil Testing, stubble mulch, and VFS 
demonstrated the best reduction effect, achieving reduction rates of 42.71% for TN and 50.40% for TP. Other 
combination scenarios also showed favorable reduction effects. Overall, the combined BMPs scenarios exhibited 
higher average reduction rates for TN and TP compared to single BMP scenarios, with an increase of 13.75% and 
15.27%, respectively. The combination of agricultural BMPs and structural BMPs proved to be more effective in 
controlling NPS pollution in the BRB.

Conclusion
In this study, a highly functional framework combining SWAT and Bi-LSTM models was developed to explore the 
effectiveness of different BMP scenarios in reducing NPS pollution in areas without measured runoff data. In this 
approach, SWAT served as a transfer function to convert meteorological data into baseflow and stormflow, which 
were then used as inputs for the Bi-LSTM model. The model performance was evaluated using three metrics: 
NSE, R2, and PBIAS. The results showed that the hybrid model achieved an NSE and R2 of 0.88 and 0.89, respec-
tively, during the calibration period, and both remained above 0.85 during the validation period. The absolute 
maximum PBIAS was 2.71%, indicating that the hybrid model has high predictive accuracy without significant 
systematic bias, meeting the demand for simulating NPS pollution emission control schemes. The partial calibra-
tion of SWAT model parameters and coupling with the Bi-LSTM model helped address the uncertainty caused 
by equifinality in the SWAT calibration process. This framework provides a promising approach for simulating 
NPS pollution emission control schemes in other regions without measured streamflow data.

Based on the hybrid model, the hydrodynamic environment established, and the control effect of different 
BMP scenarios on NPS pollution in the BRB evaluated. The results showed that stubble mulch and vegetative 
filter strips were more effective in reducing pollutants than formula fertilization by soil testing and grassed 
waterways, reducing TN loads by 17.83% and 19.07%, and TP loads by 36.17% and 22.02%, respectively. Stubble 
mulch demonstrated the best overall reduction effect for both TN and TP, being farmer-friendly and prioritized 
for single BMP-based NPS pollution control plans. Furthermore, compared to single BMP scenarios, combined 

Figure 8.   Effectiveness of overall pollution load reduction in the BRB under four single-measure scenarios.

Figure 9.   Effectiveness of overall pollution load reduction in the BRB under five combined-measure scenarios.
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BMP scenarios increased the average reduction rates of TN and TP by 13.75% and 15.27%, respectively. The 
combination of VFS, formula fertilization by soil testing, and stubble mulch showed the best reduction effect, 
with reduction rates of 42.71% for TN and 50.40% for TP. These results provide powerful support and evidence 
for decision-makers in formulating NPS pollution emission control schemes for the BRB.

The hybrid model combining SWAT and Bi-LSTM simplified the hydrological processes and made some 
assumptions, introducing uncertainty to predictions. In the future, more advanced deep learning models or 
hybrid models could be explored, combining various modeling methods to better simulate complex hydrologi-
cal processes and achieve more accurate predictions in areas without measured streamflow data. Additionally, 
more types of BMPs and pollutants can be considered in further research to promote practical applications. 
The coupling of models such as vine copulas could also be used to predict the probability of achieving emission 
control goals with various combined BMP scenarios.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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