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Genetic algorithm for obtaining 
potential energy curve of diatomic 
molecules based on dispersed 
fluorescence spectra
Tomasz Urbańczyk 1*, Jarosław Koperski 1, Gabriel Kaszewski 2, Mikołaj Synak 2, 
Jakub Swenda 2 & Marek Krośnicki 2

The method for reconstruction of an adiabatic potential energy curve from experimental dispersed 
fluorescence spectra has been developed. The novelty of the method relies on a unique approach of 
simultaneous use of bound → bound and bound → free parts of the spectrum. The method is based 
on the Genetic Algorithm (GA) procedure and determines potential energy curve integrally, below and 
above the dissociation energy limit. The method was tested on the artificially generated reference 
spectrum as well as experimental spectrum of G0+

u
(υ′

= 39) → X0
+
g

 transition in Hg
2
 . The tests show 

very good accuracy of simulation based on GA results with artificially generated reference spectrum as 
well as with the experimental one.

One of the main goals of measurements of spectra of diatomic van der Waals molecules is to determine the 
molecular potentials of electronic states involved in the studied transitions. The determination of molecular 
potential (potential energy curve, PEC) on the basis of the experimental spectrum is an example of the problem 
that is difficult to reverse. Having potentials of electronic states that are involved in the transition, it is very easy 
to determine the spectrum of the transition by solving the corresponding Schrödinger equation. This can be per-
formed using programs such as  LEVEL1 or  DUO2 (for bound-bound spectra) or  BCONT3 (for bound-free spectra).

On the other hand, obtaining PEC based on experimental spectrum usually is more complicated. In simplest 
cases, where the analyzed potential can be represented by a Morse function, the Birge-Sponer (B-S) method can 
be used to determine the potential parameters. In more complicated cases, the PEC below the dissociation limit 
can be obtained using Rydberg-Klein-Rees (RKR)  method4 or inverse perturbation approach (IPA)  method5. 
Recently, we also show that the approach based on machine learning, which uses the neural network, can be 
employed to independently determine PEC  below6 and  above7 the dissociation limit. However, to the best of 
our knowledge a method of obtaining the whole PEC based on both bound − bound and bound − free spectra 
has not been presented so far. In this paper, we present the method that employs Genetic Algorithm (GA) 
which can be used to obtain parameters of analytical representation of PEC, which is valid below and above the 
dissociation limit. The GA is an optimisation technique which is inspired by the process of evolution. GAs are 
used in various fields of knowledge such as economics (e.g. for creating stock price forecasting  model8), biology 
(e.g. for alignment of nucleic and amino acid  sequences9) or climatology (e.g. for modeling global temperature 
 changes10). In our previous  work11 we have shown, that the GA can be also used to determine the shape of PEC 
of diatomic molecules below the dissociation limit based on bound ← bound LIF excitation spectra with resolved 
ro-vibrational energy structure. In this work we will show, that the GA can be used to determine the repulsive part 
of PEC (e.g. part above the dissociation limit) based on bound → free dispersed fluorescence spectra. Moreover, 
we show that the GA can also be used to obtain the whole PEC based on dispersed fluorescence spectra encom-
passing both bound → free and bound → bound components.

General idea of the GA
The detailed description of the GA can be found  elsewhere12, so here only necessary details will be presented. 
The general scheme of the GA is shown in Fig. 1. The GA is based on the concept of natural selection, which 
promotes the best individuals in the population. Therefore, in order to be able to apply the GA to solve a given 
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optimization problem, it must be possible to sort a group of potential solutions (so called candidate solutions, 
CS) in order to identify the best ones.

In the first step of the GA, an initial group of CS (so called initial population) is created. Parameters of 
solutions from this group can be chosen randomly. The number of solutions in the population is determined 
arbitrarily and depends on the complexity of the problem and usually ranges from several dozen to tens of thou-
sands. Next, the population is sorted, so the best solutions are at the head of list of CS. In the next stages, further 
populations of solutions are generated iteratively. Generation of new population is terminated e.g. after reaching 
given limit of generations. The process of creation of new population uses mechanisms related to the evolution 
of living organisms: previously mentioned natural selection and also exchange of genetic material (crossover), 
and mutations. To create single CS for a new generation from the current population, the two parent solutions 
are selected. The selection is made randomly, however, to mimic natural selection, the probability of selecting 
solutions that better solve the considered optimisation problem are higher than the probability of selecting less 
optimal solutions (it means, that solution in each generation should be sorted and selection algorithm should 
prefer solutions from the top of sorted list). After selecting the two parents solutions, the new solution is cre-
ated e.g. by averaging the parameters of parents solutions, which mimic the biological crossover process. Next, 
to imitate the mutation process, small random noise is added to parameters of the children solution. To create 
the new generation, the process of creation of the children solution is repeated, until the given population size 
limit is reached. Moreover, to avoid losing the best solutions, few best solutions from the current generation 
are copied directly (without any changes) to the new generation. It is so-called elitism concept, which does not 
exist in nature.

Implementation of the GA to obtain PEC based on dispersed fluorescence spectra
In the case of diatomic van der Waals molecules studied in our laboratory, the dispersed fluorescence spectrum 
arises as a result of spontaneous deexcitation of molecules excited by a laser beam from a ground electronic state 
to a selected vibrational level of the excited electronic state. The deexcitation can occur to different electronic 

Figure 1.  General scheme of the genetic algorithm (GA).
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states that lie below the excited state, however, e.g. due to transition dipole moment (TDM) and distribution of 
Franck-Condon factors, a strong fluorescence associated with deexcitation to the ground state occurs. Later in 
the article, we focus on the spontaneous deexcitation from a single vibrational level to the ground molecular 
state. The shape of the observed spectrum depends on PEC of both states involved in the transition, however, 
we assumed that PEC of the excited state is known (it can be determined e.g. from the LIF excitation spectra). 
We also assumed, that the PEC of the ground state is described by an analytical function. Therefore, the purpose 
of the work is to use the GA to find parameters of analytical representation of PEC of the ground state, which 
lead to the simulation of dispersed fluorescence spectrum with high agreement with the recorded spectrum. The 
potentials of states engaged in the analysed transitions are presented in Fig. 2.

The dispersed fluorescence spectrum consists of two contributions: part related with the deexcitation of 
molecules to the repulsive branch of the PEC of ground electronic state (so-called bound → free transitions) 
and part related with the envelope of spectral lines associated with transitions to ground-state vibrational lev-
els ( bound → bound transitions). The boundary between both types of transitions can be easily determined 
as it is equal to the absolute energy of the state from which fluorescence occurs. It is worth noting that the 
bound → bound part of dispersed fluorescence spectrum includes transitions to highly excited vibrational levels 
of the ground state, which are difficult to study using bound ← bound excitation spectra measured in the LIF 
spectroscopy. This problem occurs especially in case of molecules produced in the supersonic molecular beam 
method, in which only the lowest vibrational levels of the ground state are occupied. However, it should also 
be remembered that the resolution of dispersed fluorescence spectra is usually much worse than in the case of 
excitation spectra measured by the LIF method. This is due to the fact, that in case of dispersed fluorescence 
spectra their resolution is determined by the spectral resolution of the spectrometer, while in case of excitation 
spectra the spectral resolution is determined mainly by the spectral width of the laser. Therefore, the peaks 
observed in the bound → bound part of the dispersed fluorescence spectra often are associated with transitions 
to several neighbouring vibrational levels of the ground state.

It is also worth to mention that dispersed fluorescence spectra have very interesting feature as it reproduce 
the shape of vibrational wave function squared. Therefore, it can be used for determination of the vibrational 
quantum number of the upper-state level, from which the fluorescence occurs. Here, we quote Tellinghuisen 
et al.  in14: “The resulting diffuse spectra have the appearance of reflection spectra, in which the radial probability 
distribution in the initial vibrational level is mirrored in the spectrum. If that is the case, a count of the peaks in the 
spectra gives a direct determination of the vibrational numbering in the excited state”.

In our work we assumed, that the PEC of the ground state is represented by four parameters of the expanded 
Morse oscillator (EMO)15 function:

Figure 2.  The potentials of states engaged in the analysed transitions. Red line with red points—representation 
of the G1

0
+
u  state from Krośnicki et al.13. The ground state potential X1

0
+
g  is depicted by green line (Morse 

function from Krośnicki et al.13) and blue line showing EMO representation from this work. Thin red line 
depicts the wavefunction of υ ′ = 39 level in the G1

0
+
u  state.
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where De is the potential well depth, Re is the equilibrium distance, and β0 and β1 are parameters that influence 
width of the potential well. So, a possible solution to our optimisation problem is a set of 4 parameters of EMO 
potential. It should be also stressed that our choice of the potential is arbitrary, but the algorithm can be easily 
adopted to obtain parameters of different type of analytical potentials e.g. Lennard-Jones, double-exponential-
long-range (DELR)16 or newly developed so-called modified shifted Morse  potential17. We also assumed that 
we were able to determine the ranges in which the optimal values of potential parameters lie. The source of this 
information may be, for example, ab-initio calculations or previous work (e.g. parameters of Morse potential 
obtained using B–S plot method). Our implementation of the GA (the source code is available https:// github. com/ 
marek- krosn icki/ Diato mic- PEC- Genet ic- algoh ritm ) was created using PYTHON 3 programming  language18. 
In the program, in addition to standard PYTHON libraries (e.g. threading, subprocess, re, os, time), we used the 
 NumPy19 and  Matplotlib20 libraries. To create the first generation of solutions in the GA, we randomly chose the 
parameters of each CS from specified ranges (assuming a uniform distribution of probabilities). In the next step, 
the candidate solutions in the first generation have to be sorted according to quality of given solution. Therefore, 
one should define a procedure of calculating so-called fitness score, which numerically describes the agreement 
between simulation of spectrum based on the evaluated CS with the experimental spectrum. The procedure of 
calculation of the fitness score is presented in Fig. 3.

(1)U(r) = De[1− e−β(r)(r−Re)]
2
; β(r) = β0 + β1

r − Re

r + Re
,

Figure 3.  Calculation of fitness score of candidate solution (CS)—a graphical illustration. Details in text.

https://github.com/marek-krosnicki/Diatomic-PEC-Genetic-algohritm
https://github.com/marek-krosnicki/Diatomic-PEC-Genetic-algohritm
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In the proposed method, the partial fitness score are calculated for bound → free and bound → bound transi-
tions separately, and finally combined into cumulative fitness score. For both type of transitions, the experimental 
spectrum contains a series of peaks (maxima), which positions (energies) are collected in two tables EBF expt 
and EBB expt (compare with Fig. 3). Next, based on parameters of the evaluated CS, we use  BCONT3 program to 
simulate the bound → free spectrum, while to simulate the bound → bound part of the spectrum we use  LEVEL1 
program. During the GA calculations, in case of discrete energies of bound → bound transitions, which are 
returned by LEVEL program, the Gaussian convolution was used to simulate the broadening introduced by the 
spectrometer, and obtain the envelope of the bound → bound spectrum. Also, we use the standard deviation of 
the Gaussian distribution σ=20 cm−1 , which is comparable to the spectrometer slit-width for experimental spec-
trum analysed in the article. In order to plot the final simulation, instead of using simple Gaussian convolution 
we used LEVEL results as an input to PGOPHER  program21, which can plot more detailed spectrum taking into 
account not only instrumental broadenings but also rotational temperature. The energies of maxima occurring 
in both simulations are collected in tables EBF sim and EBB sim . Due to the fact, that in the experimental spectrum 
the error of determination of absolute energy is significantly larger than the error of determination of relative 
energy of two maxima for each element in all tables ( EBF expt , EBB expt , EBF sim and EBB sim ), we subtracted the 
energy of first maximum in given list to obtain new lists of energies: EBF expt subtr , EBB expt subtr , EBF sim subtr and 
EBB sim subtr . It should be mentioned, that in case of EBB expt , the energy of first maximum can be significantly 
influenced by the energy of last maximum in the bound → free spectrum. Therefore, to increase accuracy of 
computation, one can subtract from EBB expt and EBB sim the energy of not first but second element of both tables. 
If the corresponding matrices EBF expt subtr and EBF sim subtr or EBB expt subtr and EBB sim subtr have different number 
of elements it means, that the simulation based on the evaluated CS is significantly different from the experi-
mental spectrum. Consequently, we set the fitness score to infinity. In the other case, the elements of matrices 
EBF expt subtr − EBF sim subtr and EBB expt subtr − EBB sim subtr were subtracted to obtain two new matrices �BF and 
�BB , respectively, which describe the differences between position of maxima in the experimental spectrum and 
the simulations for both bound → free and bound → bound transitions. To compute the partial fitness scores 
CBF and CBB , which describe the agreement of simulations with the experimental spectrum for bound → free 
and bound → bound transitions, respectively, the absolute values of elements of the �BF and �BB matrices are 
added. Finally, to compute the fitness score C, which takes into account both bound → free and bound → bound 
part of the entire spectrum, the weighted sum of CBF and CBB is calculated:

where α is a weight coefficient. The necessity of using the weighted sum is due to the fact, that CBF and CBB 
describe the cumulative difference between simulated and observed energies of maxima for bound → free and 
bound → bound transitions, respectively. However, in case of the analyzed transitions, the number of maxima in 
bound → free part is significantly higher than in bound → bound part, so without using weight, CBF coefficient 
could dominate C. As α we used the ratio of the number of maxima in bound → free and bound → bound parts 
of the spectrum.

To implement the crossover process, parameters of the child solution were calculated as weighted average 
parameters of the parents’ solutions:

where X denotes the parameter which is calculated ( De , Re , β0 or β1 ), whereas γ is a random weight chosen 
independently for each child solution and each parameter from the range (0,1). The mutation process was imple-
mented by multiplying each parameter of the children solution by a random factor very close to 1:

where µ was chosen randomly (normal distribution) from the range (−0.01, 0.01). The elitism concept was imple-
mented by direct copying of 5 best solutions from the previous generation to the new generation. In the proposed 
implementation of the GA, we also made additional assumption that the limit of the CS in initial generation is 
twice as large as in subsequent generations. Thanks to this approach, the GA can check more combinations of 
possible CS in the first step, when parameters are picked out randomly.

It is worth mentioning that instead of analyzing only the energies of the maxima, the spectrum can be also 
analyzed as a whole, taking into account also the information on the intensities of individual maxima. However, 
this approach is difficult, because the intensities of individual maxima in the spectrum are influenced not only 
by the potentials of the states involved in the transition, but also by TDM function. In addition, the distribution 
of intensities of maxima in the spectrum may be also distorted by different spectrometer sensitivity for different 
wavelengths. Therefore, in our opinion, it is better to take into account only the energies of maxima, because 
these depend only on the potentials of the studied electronic states.

Results
Tests for artificially generated reference spectra
In order to test the correctness of the proposed algorithm, it was decided to use artificially generated reference 
spectrum. The test method involves generation of a reference spectrum based on known values of parameters of 
the PEC and then, using the GA algorithm, to determine these parameters. In other words, the reference spec-
trum is a simulation based on known values of potential parameters. In the tests it was checked whether GA can 
reproduce the values of parameters which was used to generate the reference spectrum (see Table 1). It was also 
tested whether the simulation based on the GA was compatible with the artificially generated reference spectrum 

(2)C = CBF + αCBB,

(3)Xchild = γ · Xparent A + (1− γ ) · Xparent B,

(4)Xchild mut = Xchild · (1+ µ),
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Table 1.  Parameters, searching ranges, reference values and results of the GA obtained for the reference 
spectrum. As the results of GA, the results of one of 15 trials of GA with fitness score close to the averaged 
fitness score of all trials (134.7 cm −1) were presented. Details in text.

Parameter Searching range Reference (expected) value GA value

De[cm−1] 370–390 379.5 380.3

Re [Å] 3.5–3.7 3.605 3.621

β0[1/Å] 1.1–1.4 1.234 1.204

β1 [1/Å] 0–0.1 0.080 0.050

Figure 4.  The fitness scores obtained in 15 trials of the GA (red points) and the BF (black points) algorithms. 
Part I presents results after 10 generations of the GA with 100 CS in each generation (except the initial 
generation with 200 CS) and the BF with 1200 CS, whereas part II presents the result after 10 generations of the 
GA with 50 CS in each generation (except the initial generation with 100 CS) and the BF with 600 CS. Averaged 
fitness score for 15 trials of the GA and the BF are depicted by red and black lines, respectively.

Figure 5.  BCONT (red trace) and LEVEL/PGOPHER (green trace) simulations of the reference spectrum 
(potential reference values—third column of Table 1). BCONT (black trace) and LEVEL/PGOPHER (blue trace) 
simulations based on potential parameters obtained in one of 15 trials by the GA (GA values—fourth column 
of Table 1). Inset shows the fragment marked with blue rectangle. The boundary between bound → free and 
bound → bound parts of the reference spectrum is indicated by the vertical dashed line.
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(see Fig. 5). The parameters used for construction of the reference spectrum have been selected so that the refer-
ence spectrum was similar to the spectrum of the G0+u (υ ′ = 39) → X0+g  transition in Hg222. To achieve this, 
the parameters of the upper G0+u  state was taken  from13, whereas the X0+g  ground state PEC was represented by 
four-parameter EMO function which parameters was chosen as to be close to the parameters of a Morse function 
presented in the  literature13. In Table 1 parameters of EMO potential used to construct reference spectrum are 
collected as well as searching ranges for each parameter and the exemplary result of the GA with 10 generations 
and 100 CS in each generation (excluding initial generation which consists of 200 CS). To check the stability, 
we run the GA 15 times. The obtained fitness scores of the final solutions returned by the GA in each trial are 
presented by red points in part I of Fig. 4.

The averaged fitness score for 15 trials is shown with red line. For comparison, we also used the brute force 
(BF) algorithm to solve the same optimisation problem. The BF generated a set of solutions with randomly cho-
sen parameters and found the solution which led to the simulation with the best agreement with the reference 
spectrum. This means that the BF algorithm is equivalent to the GA algorithm, which terminates after generating 
the initial population. The number of solutions picked by the BF algorithm was 1200, the same as the number 
of solutions evaluated by the GA in the initial generation and subsequent 10 generations. The fitness scores for 
the results of 15 trials of the BF algorithm and their average are presented in part I of Fig. 4 with black points 
and black line, respectively. To check the influence of the number of CS in each generation, we redid computa-
tion using the GA algorithm with only 50 CS in each generation (excluding initial generation with 100 CS) and 
the BF algorithm with 600 CS. The results are presented in part II of Fig. 4, where red and black points present 
fitness scores resulting from the GA and BF algorithms, respectively, while red and black lines in part II indicate 
averaged fitness score for 15 GA and BF trials, respectively. The averaged fitness score for GA in test with 100 CS 
in each generation was 137 cm−1 with standard deviation (SD) 43 cm−1 and for test with 50 CS it was 273 cm−1 
with SD 175 cm−1 . For comparison, the averaged fitness score for BF algorithm with 1200 CS was 266 cm−1 
with SD 119 cm−1 and for 600 CS it was 363 cm−1 with SD 159 cm−1 . One can easily see, that regardless of the 
number of solutions in the population, using the GA algorithm provides (on average) a set of PEC parameters 
which lead to a simulation with better agreement with the reference spectrum than in case of parameters returned 
by the BF algorithm with similar computation time. Moreover, using larger number of CS in each generation 
increases the agreement between simulations obtained using the GA result and the reference spectrum. Fig. 5 
presents reference spectrum i.e. BCONT and LEVEL/PGOPHER simulations based on EMO potential of the 
ground state with reference values from third column of Table 1 compared with simulations based on parameters 
of EMO potential of the ground state returned by one of 15 GA trials (compare with fourth column of Table 1) 
with fitness score close to the average value depicted by red line in part I of Fig. 4). One can see, that the agree-
ment between simulation based on the GA result and the reference spectrum is very high. Also, the fitness score, 
which measures the cumulative discrepancy between simulated energies of maxima and the energies observed 
in reference spectrum, is small. The score is equal to 134.7 cm−1 so it means, that - on average - the discrepancy 
between energy of maximum in simulation and in reference spectrum is less than 3.5 cm−1.

Figure 6 presents the fitness score after each generation averaged over 15 trials of the GA with 100 (part I, red 
points) and 50 (part II, black points) CS in each generation. The error bars depict the sample standard deviation 
(SSD). Fig. 6 shows that both for 100 and 50 CS in generation, there is a successive decrease of the averaged fitness 
score for subsequent generation. Moreover, for the GA with 100 CS in each generation, the obtained SSDs in each 
generation are significantly smaller than those in case of the GA with 100 CS in a generation. Tests conducted 
using computer with Intel(R) Xeon(TM) E3-1240 v3 processor with 32 GB RAM showed that the execution time 
of the GA algorithm with 10 generations and 100 CS in each generation is about 20 minutes, whereas using 50 
CS in each generation reduce the execution time to 10 minutes.

Figure 6.  Best fitness score averaged over 15 trials obtained for subsequent generations of the GA for 50 CS 
(part I) and 100 CS (part II) in each generation. Details in text.
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Test with experimental spectrum of the G0+
u
(υ ′

= 39) → X0
+
g

 transition in Hg
2

The proposed GA was also tested on real experimental spectrum of the G0+u (υ ′ = 39) → X0+g  transition in 
 Hg2

22. To determine the parameters of EMO potential with 4 parameters representing the X0+g  state, we run the 
GA with 10 generations and 150 CS in each generation (excluding initial generation with 300 CS). The search-
ing ranges and parameters obtained by the GA are presented in Table 2. These ranges were determined on the 
basis of results of ab-initio calculations and previous experimental  works13,23,24. The experimental spectrum and 
its simulation based on the result of the GA are presented in Fig. 7. The agreement between recorded spectrum 
and its simulation based on the GA result is high. The significant discrepancy occurs only for the most extreme 
maximum on the right-hand side of the spectrum. However, its correct simulation would require the potential 
well of the ground X0+g  state to be much deeper, which contradicts the results of other studies to date an also 
numerous ab-initio results (e.g.23,24). The reason for the discrepancy is probably that, according to the informa-
tion provided by the co-author of the experimental measurements, the spectrometer detector could have been 
oversaturated in the problematic part of the spectrum, which resulted with the fact that the strongest maximum 
could be split (i.e., in the place of the actual maximum, a minimum appeared due to oversaturation). It is also 
worth to explain the reason for the discrepancy between the equilibrium distance Re determined by GA and the 
Re from the  work13. The repulsive parts of PECs are similar (compare Fig. 2). In order to precisely determine 
the shape of the well, one needs the measurement of bound ← bound excitation spectra originated from a set of 
excited vibrational levels of the ground electronic state and these levels are not accessible in supersonic beam 
experiment.

Figure 7.  Experimental spectrum of the G0+u (υ ′ = 39) → X0+g  transition in Hg2 (red line) and its simulation 
based on result of the GA (black and blue lines for bound → free and bound → bound transitions, respectively). 
The experimental spectrum was recorded with 20 cm−1 spectrometer slit-width. The same Gaussian 
broadening was applied to bound → bound transitions during execution of the GA and as a parameter in 
PGOPHER simulation (blue line). Inset shows the fragment marked by blue rectangle. The boundary between 
bound → free and bound → bound parts of the spectrum is depicted by vertical dashed line. Details in text.

Table 2.  Parameters of EMO potential, searching ranges and the GA values obtained using experimental 
spectrum of the G0+u (υ ′ = 39) → X0

+
g  transition in Hg222. Values of parameters of a Morse representation of 

Krośnicki et al.13 are collected for comparison. Details in text.

Parameter Searching range GA value Value of Ref.13

De[cm−1] 370–390 376.9 379.5

Re[Å] 3.4–3.7 3.483 3.605

β0 [1/Å] 1.1–1.7 1.515 N.A.

β1 [1/Å] 0–0.1 0.025 N.A.
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Conclusions
We proposed a method based on the Genetic Algorithm (GA) approach, which can by used to obtain the 
parameters of an analytical potential energy curve (PEC) which is valid both below and above the dissociation 
limit. The parameters of PEC are obtained based on the experimental dispersed flourescence spectrum, which 
contains information about both bound → bound and bound → free transitions. The GA was tested on obtain-
ing parameters of an expanded Morse oscillator (EMO) potential, but it can be easily modified to work with 
different types of analytical potentials. In our implementation of the GA, to simulate the spectrum we used well 
established BCONT and LEVEL programs, however, they are relatively slow. Due to the fact that these programs 
are used repeatedly during the operation of the GA, they have very large impact on the GA execution time. The 
GA would work much faster if it employs a procedure that uses the capabilities of modern GPUs to solve the 
appropriate Schrödinger equations.

The tests show very good accuracy of simulation based on GA results with artificially generated reference 
spectrum as well as with the experimental one. However, it is also worth analyzing the limitations in the accu-
racy of the proposed method. In the case of simulation of the experimental spectra, deviations of the simulation 
from the experimental spectrum (and thus a high value of fitness score) may be associated with the fact that 
the selected analytical function may not be suitable for the correct representation of the actual potential of the 
lower state. What is more, the simulated energies are influenced not only by the potential of the lower state but 
also by the potential of the upper state. In the method, we assumed that the second potential is known, but its 
imperfections can affect the quality of the simulation. In the case of simulation of the reference spectra, it is 
possible to numerically increase the accuracy (i.r., obtaining lower fitness scores) by increasing the number of 
solutions in individual populations. However, it should be remembered that this will not contribute to obtain-
ing a simulation that—in a visual assessment—would be more accurate. This is due to the fact that in the case 
of bound → free spectra, the observed structures are not narrow lines (as in the case of bound ← bound in LIF 
excitation spectra), but relatively wide peaks, because they reflect the shape of the wavefunction squared of the 
emitting vibrational level in the upper state. For example, in the case of the analyzed experimental spectrum, the 
full width at half maximum (FWHM) of individual peaks varied from about 250 cm−1 in the left-hand part of 
the spectrum to about 30 cm−1 near the dissociation limit. Another, very important limitation of the proposed 
method concerns the scope of the searching ranges. If any of the true (globally optimal) potential parameters lies 
outside its searching range, then the GA will return a solution that is optimal locally (within the analyzed search-
ing ranges) and not globally. A clue of that such a situation may occur (which, however, does not have to occur 
in every case) is that one of the parameters returned by the GA lies very close to the end of its searching range.

Data availibility
The source code of algorithm generated during the current study is available in the public repository: https:// 
github. com/ marek- krosn icki/ Diato mic- PEC- Genet ic- algoh ritm.
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