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Species‑specific microRNA 
discovery and target prediction 
in the soybean cyst nematode
Victoria Ajila 1, Laura Colley 1, Dave T. Ste‑Croix 2, Nour Nissan 3,4, Elroy R. Cober 3, 
Benjamin Mimee 2, Bahram Samanfar 3,4 & James R. Green 1*

The soybean cyst nematode (SCN) is a devastating pathogen for economic and food security 
considerations. Although the SCN genome has recently been sequenced, the presence of any miRNA 
has not been systematically explored and reported. This paper describes the development of a species‑
specific SCN miRNA discovery pipeline and its application to the SCN genome. Experiments on well‑
documented model nematodes (Caenorhabditis elegans and Pristionchus pacificus) are used to tune 
the pipeline’s hyperparameters and confirm its recall and precision. Application to the SCN genome 
identifies 3342 high‑confidence putative SCN miRNA. Prediction specificity within SCN is confirmed by 
applying the pipeline to RNA hairpins from known exonic regions of the SCN genome (i.e., sequences 
known to not be miRNA). Prediction recall is confirmed by building a positive control set of SCN 
miRNA, based on a limited deep sequencing experiment. Interestingly, a number of novel miRNA are 
predicted to be encoded within the intronic regions of effector genes, known to be involved in SCN 
parasitism, suggesting that these miRNA may also be involved in the infection process or virulence. 
Beyond miRNA discovery, gene targets within SCN are predicted for all high‑confidence novel 
miRNA using a miRNA:mRNA target prediction system. Lastly, cross‑kingdom miRNA targeting is 
investigated, where putative soybean mRNA targets are identified for novel SCN miRNA. All predicted 
miRNA and gene targets are made available in appendix and through a Borealis DataVerse open 
repository (https:// borea lisda ta. ca/ datas et. xhtml? persi stent Id= doi: 10. 5683/ SP3/ 30DEXA).

MicroRNAs, or miRNAs, are a class of short, non-coding RNAs (ribonucleic acids) that work to silence messenger 
RNA (mRNA). In animals, miRNA synthesis follows a five-step process that includes a pre-miRNA—approxi-
mately 70 nt (nucleotides) long with a hairpin structure—as an intermediary  step1,2. The formation of the mature 
miRNA is often accompanied by the formation of the ribonucleoprotein miRNA-Induced Silencing Complex (or 
RISC) that can achieve post-transcriptional gene  regulation3. MiRNAs can originate from both intragenic and 
intergenic regions, where the former are mostly derived from intronic  regions4. Intergenic miRNAs are tran-
scribed and regulated independently from the host  genes4. Once the mature miRNA-RISC complex is created, 
it binds with a corresponding target mRNA to regulate its translation or stability. In animals multiplicity exists 
both ways in this relationship: one mRNA often contains multiple binding areas for miRNA, and correspond-
ingly, one miRNA can affect dozens, if not hundreds, of  targets3. The miRNA–mRNA binding ultimately means 
that the miRNA silences its cognate mRNA.

There are many differences between the animal and plant kingdoms concerning biogenesis, miRNA–mRNA 
binding, and method of miRNA  control5. A successful plant miRNA–mRNA interaction typically requires a 
much higher sequence complementarity than animal species in the seed  region5. Furthermore, homology-based 
searches of similar miRNA–mRNA relationships in similar species are much more successful in plants than 
 animals5. Additionally, the location of miRNA binding site on the mRNA in plants differ from  animals5. Animal 
miRNA typically bind in the 3′ untranslated region (UTR) and can exhibit multiplicity, where one mRNA can 
have many miRNA binding sites and one miRNA can target multiple  miRNAs3,5. Conversely plant miRNA binds 
to the target gene’s open reading frame and there is typically only one binding site per  mRNA3–5.
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Moreover, sequence conservation patterns exist up and down-stream of primary miRNA  transcripts6. These 
patterns appear to be required for a primary miRNA to be processed into precursor  miRNA6. However, the 
conserved sequences appear to differ for nematodes compared to other  animals6.

miRNA in plants and pathogens
MiRNAs have been implicated in numerous applications in both animals and plants. Within plants, miRNAs have 
been linked to biological development and environmental stress adaptations. The overexpression of a miR171 
decoy within Arabidopsis, for instance, has been linked to phenotype changes, such as increased rosette leaf 
area, leaf growth angle, and leaf  colour7. In nematodes, miRNA have been associated with developmental and 
metabolic processes and are predicted to regulate the expression of up to 10% of the genes in Caenorhabditis 
elegans8. In parasitic nematodes, specific miRNAs were shown to be overexpressed during infection of the host 
and associated with  pathogenicity9. The identification of mRNA targets for miRNAs differentially expressed 
during the transition to infective stages have confirmed that nematodes can use miRNA as a developmental 
switch that triggers  virulence10.

Several studies have suggested that a miRNA may not only function in gene regulation within its original 
cell or species, but also be transmitted in both an intracellular, inter-species, or an inter-kingdom  manner11–15. 
This transmission facilitates molecular signalling, communication, and regulation between species and has been 
observed in several different configurations. Many different pathways for the presence of extracellular miRNA 
have been hypothesized, including the passive leakage of RNA from broken cells due to cell injury, inflam-
mation, or death; active secretion of the miRNA by way of micro-vesicle-like exosomes; and active secretion 
using an RNA-binding protein dependant  pathway12,16. For example, Buck et al demonstrated the exosomal 
transportation of nematode small RNA into mammalian cells to impact innate cell  immunity17. Cross-species 
miRNA:mRNA interactions have been observed between pathogens and hosts, where pathogen sRNA (small 
RNA) or miRNA target host genes or host RNA target pathogen  genes15,18–26. A 2016 study demonstrated that 
cotton plants responded to infection with Verticillium dahliae, a fungal plant pathogen that causes wilt diseases 
in many crops, with increased production of miR166 and miR159 and exportation of these miRNAs to the fun-
gal hyphae to function in specific  silencing27. These miRNAs targeted the V. dahliae genes Clp-1 and HiC-15, 
respectively, both of which are vital to the fungus’ ability to infect its  host27. Conversely, a 2018 study identified 
several Arabidopsis thaliana mRNAs targeted by miRNAs from the parasitic plant Cuscuta  campestris28. The 
targeted mRNAs included BIK1, which encodes a kinase required for signalling, and HSFB4, which encodes a 
transcriptional repressor important for the development of ground-tissue stem cells in  roots28. Additionally, a 
recent study demonstrated the suppression of the pathogen Botrytis cinerea in vitro by novel tomato  miRNA29.

The presence of a pathogen, virus, or parasite can initiate differential expression of miRNA within a host 
organism. This has been observed among plants infected with  nematodes30,31, including among soybean plants 
infected with soybean cyst nematodes (Heterodera glycines, or SCN). A 2019 study identified 40 soybean 
miRNAs—14 previously known, and 26 novel ones—that may be implicated in the soybean response to SCN 
 infection32. Similarly, Li et al. identified a total of 101 soybean miRNAs that were significantly differentially 
expressed in response to SCN  infection33. These miRNAs were from 40 families and all but 6 were down-
regulated33. Tian et al. identified 60 miRNAs belonging to 25 families related to SCN  infection34. Rambani et al. 
demonstrated the differential methylation of miRNA genes within the soybean genome in response to SCN 
infection resulting in the overexpression of 4  miRNA35. The over- and under-expression of exocyst genes in 
soybean have been linked to the suppression and facilitation of SCN  parasitism36. The functions of the genes 
targeted by these miRNAs are often not fully understood; in many cases, however, they are hypothesized to be 
related to plant  defence32,34.

Computational discovery of miRNA
The identification of miRNA is an important area of research, considering the significant role miRNA play in 
biological processes. The methods used to identify and discover miRNA are highly  interdisciplinary37. MiRNA 
can be identified experimentally through costly and time consuming wet-lab verification techniques or compu-
tationally using a variety of  techniques37–39. For example, to perform wet lab verification of potential miRNA in 
SCN requires the growth of soybean plants for a full season. The nematodes need to be carefully hand-picked 
from the soybean roots to avoid soybean contamination before the isolation and sequencing experimental process 
begins. Computational techniques can be separated into two categories, homology-based and machine learning-
based40. Homology-based techniques use sequence similarity from previously identified miRNA to predict new 
 miRNA40. These predictors can confidently identify homologue miRNA across different species; however, they 
cannot predict novel miRNA that are unique to the target  species40. Methods that leverage supervised machine 
learning (ML) can be further separated into two techniques, sequence-based (de novo) techniques or expression-
based techniques, where the latter uses next-generation sequencing (NGS) to quantify  expression37–40. De novo 
prediction techniques classify miRNA based on features describing its sequence and secondary  structure40. De 
novo techniques must examine all miRNA-like hairpin structures in the entire genome, which leads to a sig-
nificant class imbalance due to a large number of candidate miRNA in the  genome38,41. Conversely, NGS-based 
techniques need only consider expressed regions rather than the whole  genome41. NGS data describe both the 
sequence and quantity of the expressed RNA in a  sample41, which may arise from mRNA degradation products, 
microRNA, or other non-coding RNA (ncRNA)38. With the increasing availability of NGS, NGS-based miRNA 
discovery techniques have become increasingly popular; however, it is worth noting that these techniques can 
be biased to miRNA with high expression  levels40. Unlike de novo prediction techniques, NGS-based techniques 
do require transcriptomic data, which is not available for a large number of organisms of  interest39,41. Also, 
sequencing only captures miRNA’s expressed under the specific conditions used (e.g. developmental stage, host 
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suitability, temperature, food availability, etc.) making it challenging to capture the full diversity of miRNA 
expressed within an organism.

The training sets of significant miRNA discovery studies are typically formed by retrieving positive miRNA 
data from the miRBase database and negative data from ncRNA and protein-coding exonic sequences that form 
a similar structure to pre-miRNA40. There are only a relatively small number of known miRNA; the miRBase 
database, for example, only contains miRNA for less than 300 species and 30% of those species have 15 or fewer 
known  miRNA38.

Our group has recently developed the Species-specific MIRna Predictors (SMIRP) technique to dynamically 
create sequence-based species-specific training data for the generation of miRNA  classifiers40. SMIRP was shown 
to be particularly effective when developing miRNA predictors for under-studied species since it creates a large, 
highly conserved, and non-redundant miRNA training dataset, while giving preference to exemplars from species 
most closely related to the target species. MiRNA-like hairpins from closely related species are used to develop 
negative training  data40. SMIRP provided an increase in miRNA predictor performance for four distinct species 
in comparison to other dataset generation  methods40. Performance increases were shown to be conserved across 
different classification  models40.

Computational miRNA target prediction
In addition to miRNA discovery, it is also important to identify the corresponding mRNA targets. Usually, 
mRNA targets are painstakingly identified using experimental techniques, like biochemical  assays42. Experimen-
tally validated miRNA–mRNA pairs can be found in repositories such as  miRWalk43,  miRecords44,  TarBase45, 
 miRTarBase46, and  starBase47. However, in many cases the miRNA–mRNA pairs present in these databases have 
been validated using reporter assays.

Given the benefits of computational miRNA target prediction tools, a number of ab initio predictors have 
been developed based on these data repositories. MiRNA target prediction rules were defined based on features 
such as the sequence complementarity of different locations of the seed and target site, the thermodynamic 
stability of the duplex, the accessibility of the target site, AU content, folding energy, conservation, a perfect 
pairing of the miRNA 5′ end, and low GC-content in the target  site48,49.  MiRanda50 is an ab initio method that 
uses an estimated complementarity score, conservation, and free energy values to predict target  sites48,49,51. 
 TargetScan52 is an ab initio method that looks for perfect seed matches to comprise a candidate target list then 
uses site-type, local AU enrichment, and other features to calculate a target  score49,52.  MicroTar52 and  FindTar53 
are ab initio methods that allow for G:U wobbles by considering different complementarities in the seed in their 
prediction  methodologies49.  psRNATarget54 is a plant-specific ab initio method that makes use of a modified 
Smith–Watermen algorithm and the RNAup  algorithm55 to discover high-confidence miRNA  targets56. Other 
plant-specific ab initio algorithms like  Targetfinder57,  TAPIR58 and Target-align59 use the Smith–Watermen 
algorithm or the FASTA program along with scoring methods to discover high-confidence miRNA:mRNA 
 interactions56.  miRTour60 and  Target_Prediction61 discover high-confidence miRNA:mRNA interactions based 
on energy minimizations such as the calculation of minimum free energy of a miRNA:mRNA  pair56. Targetfinder 
combined with psRNATarget has been shown to show favourable  results56.

Several ML-based miRNA target prediction methods have also been developed where feature patterns are 
derived from experimentally verified data to post-filter predictions from ab initio  algorithms49. The RFMIrTar-
get method applies a random forest classifier based on 17 features extracted from a miRanda prediction  set49,62. 
MultiMiTar applies a support vector machine on 90 features of the miRNA:mRNA pair selected by a multi-object 
metaheuristic  technique49,63. TarPMiR is a random-forest-based approach that integrates six conventional features 
with seven new features to predict miRNA target  sites48. TarPMir was shown to outperform two TargetScan ver-
sions and one miRanda version across human and mouse datasets, particularly for non-seed-matching binding 
 sites48. NBmiRTar is a hybrid technique that first applies the miRanda algorithm then applies a Naïve Bayes 57 
feature classifier to filter the  output49,64. Several repositories for predicted interactions exist, including  EIMMo65, 
DIANA-microT66, Microrna.org67,  TargetScan68,  MirDB69, miRWalk-predictive70, and  TargetSpy71.

Although most ML methods have been trained and validated on animal miRNA:mRNA interactions, many 
can be retrained using plant interaction data to improve miRNA target prediction in plant species. p-TAREF is 
a plant-specific ML algorithm that applies Support Vector Regression to position-specific dinucleotide density 
variation information from the target  sites72.

miRNA discovery and target prediction in SCN
Canada and the United States are both major producers of soybean (Glycine max), with more than 21.3 bil-
lion bushels produced between 2015 and 2019 which were valued at over 191 billion  USD73. Soybean diseases 
and pathogens can reduce the quality of grains as well as reduce  yield73. Between the years 2015 and 2019, in 
Ontario and the United States, the SCN was the most destructive pathogen and caused twice the loss of any other 
 diseases73. This nematode is an obligate endoparasite of soybean roots, where it forms a giant multinucleated 
feeding structure called the  syncytium74. While still not fully understood, this complex interaction between 
nematode and plant, leading to the formation of the syncytium, is thought to arise from SCN secreted molecules 
called  effectors75. Yet, there is still limited information on the cellular processes responsible for the regulation 
and expression of these effectors but also on how these effectors interact with the  host75. As such, gathering 
more insight into the interaction between soybean and SCN is essential as it could lead to a more effective and 
efficient control modality. Management of SCN infections in soybean crops has typically involved the use of 
crop rotations and nematode-resistant crop  varieties76. Unfortunately, more than 95% of the resistant cultivars 
are derived from a single source: PI 88788, which has led to the selection of virulent  populations74. Therefore, 
the current tools to control SCN have limited effectiveness and long-term  sustainability75. Newer strategies have 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17657  | https://doi.org/10.1038/s41598-023-44469-w

www.nature.com/scientificreports/

been developed that explore and exploit natural plant stress responses. Plants alter their gene expression before, 
during and after transcription to reduce damage caused by a  stressor33. Small RNAs like miRNA are important 
participants in the gene regulation  process33,77. Beyond intra-species gene regulation, a recent thesis has suggested 
that SCN can secrete a small set of miRNA that targets the host mRNA during  parasitism78. The thesis reports 
on the discovery of 21 potential miRNA through the application of expression-based miRNA discovery algo-
rithms to a currently unpublished set of small RNA sequencing  data78. The thesis also predicts 15 SCN-soybean 
miRNA:mRNA interactions with high-confidence78.

In this paper, we present a species-specific ML pipeline to identify novel miRNA in SCN, an important 
pathogen with few documented miRNAs. The pipeline discovered 3342 high-confidence miRNA within SCN. 
We go on to predict the inter-species (SCN and soybean) and SCN intra-species mRNA targets for the identi-
fied putative miRNA. The novel intra- and inter-species miRNA discovery and target prediction methodology 
developed here is also applicable to other plant pathogens.

Methods
This study has two principle phases: miRNA discovery in SCN, and mRNA target prediction for the putative 
miRNA in both SCN (intra-species) and soybean (inter-species).

miRNA discovery
To develop a species-specific miRNA discovery pipeline for SCN, datasets and predictors were developed for three 
nematodes: Caenorhabditis elegans (CE), Pristionchus pacificus (PP), and SCN. The first two species represent 
model species for which substantial ground truth data were available for validating our pipeline.

Candidate pre‑miRNA Set
MiRNA discovery involves the application of a ML model to a set of candidate putative pre-miRNA. The candi-
date pre-miRNA dataset was determined by retrieving the organism’s genome assembly and extracting 500 nt long 
sequences with a stride of 250 nt from the assembly. The reverse complement sequences were ascertained as well. 
 RNALfold55 was applied to the sequences to extract sub-sequences with secondary structures. The sub-sequences 
were filtered such that the sub-sequences with a minimum free energy of less than − 25 kcal/mol, a perfect stem 
(no structural bulges) with a length greater or equal to 25 and a sequence length of less than 150 remained; this 
formed a set of candidate pre-miRNA. To remove duplicate hairpin sequences, the CD-HIT  program79 was used 
to cluster the sequences with a conservative sequence identity threshold of 90%. The sequence that was the most 
representative of each cluster as determined by CD-HIT was chosen for the final SCN candidate pre-miRNA 
dataset. All sequences derived from exonic regions were excluded from the candidate set. Then a  BLAST80 was 
used to identify any duplications or near duplicated hairpins remaining in the data set at a minimum e-value of 
 10-10; no such sequences were identified. The HeteroMirPred  program81 was then applied to the candidate pre-
miRNA to generate the sequence-based features.

Training set development
To train miRNA discovery algorithms, a set of positive and negative training examples were required. SMIRP—
a method of creating species-specific sequence-based training data—was used to define positive and negative 
training sets. The algorithm aggregates known miRNA data from multiple species, giving preference to highly 
conserved miRNA and exemplars from species phylogenetically close to the target organism, resulting in a dataset 
suitable for training ML approaches to miRNA  discovery40 . Known pre-miRNA from many organisms are first 
clustered by CD-HIT79 using an 80% sequence identity threshold. The representative sequence from each cluster 
that is phylogenetically closest to the target species was chosen to form the positive training  set40 . Similar to the 
candidate set generation, a sliding window of length 500 nt at a stride of 250 nt was used to extract sub sequences 
from each organism represented in the positive training set.  RNALfold55 was used to extract hairpins from the sub 
sequences and the hairpins were filtered using the same criteria as the candidate set.  BLAST80 was used to find the 
matching hairpins (hairpin with the smallest e-value) for each positive miRNA. The process was performed so 
that there were no procedural differences between the ascertainment of positive, negative and candidate hairpins.

The negative sequence-based training set was created from a nematode genome and comprised RNA known 
to not form miRNA, like coding RNA and non-coding RNA with functions other than miRNA (e.g., snoRNA, 
siRNA, tRNA, etc.)40 . Sequences that could form secondary structures were extracted from the coding RNA and 
other ncRNA using the RNALfold  program55 . The sequences that did not have a minimum free energy of less 
than − 15 kcal/mol or a stem length greater or equal to 18 were discarded, creating a set of hairpin-like sequences. 
Similar to the positive training data, negative hairpin sequences were clustered using the CD-HIT at a sequence 
identity of 90% to remove duplicate  sequences79 and the representative sequences from each cluster formed the 
negative set. The HeteroMirPred  program81 was used to extract a total of 215 sequence-based features from the 
positive and negative training  sets40.

SCN positive control validation set
To develop a list of positive SCN miRNA for validation of the classification pipeline, putative miRNA discovered 
in SCN using a limited read depth NGS experiment were retrieved (NCBI BioProject PRJNA951618).  BLAST80 
was used to map the positive miRNA with the corresponding sequence in the SCN candidate set. These cor-
responding sequences comprised the SCN positive control validation set. Negative SCN validation data were 
defined as those pre-miRNA-like hairpins extracted from the SCN genome that mapped to exonic regions of 
the genome.
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Classification pipeline
The miRNA discovery classifiers in this study took the form of a random forest classifier of 500 trees built using 
the ensemble package in the SKLearn  library82. This design choice followed the results  in40. In the first experi-
ment (PP-holdout), we simulated an environment where the genome of a model species (P. pacificus) within 
the nematode phylum was unannotated. SMIRP was used to create a P. pacificus-specific training set using a 
modified miRNA database that excluded P. pacificus pre-miRNA. Positive examples were extracted from the 
modified database and negative examples were extracted from only C. elegans protein-coding RNA, tRNA, and 
rRNA. The classifier was trained on these examples and applied to a test set containing all known P. pacificus 
miRNA in miRBase and negative examples extracted from P. pacificus coding RNA, tRNA, and rRNA. A second 
experiment (CE-holdout) was performed with a similar methodology as stated for Experiment 1 except with C. 
elegans and P. pacificus in reverse positions.

A third experiment was performed utilizing the entire miRBase database. The positive dataset was created 
using SMIRP and negative examples were extracted from C. elegans and P. pacificus protein-coding regions and 
other ncRNA. The resultant nematode classifier (PP + CE) was applied to candidate pre-miRNA dataset extracted 
from the SCN genome, including those that comprise the positive and negative validation sets described above.

Class imbalance estimation
The training sets described above exhibit a relatively small class imbalance, while in practice the ratio of true 
pre-miRNA to hairpin regions with similar length and MFE in SCN would be far more extreme. To account for 
the extreme class imbalance expected when the predictors are applied to entire genomes, the class imbalance 
was estimated in C. elegans and P. pacificus. Similar to the candidate set generation process, a sliding window 
of length 500 nt and stride 250 nt was applied to the genome of both C. elegans and P. pacificus. RNALfold was 
applied to extract hairpins from the subsequences. The same filter was applied to remove any sequences with 
a MFE of greater than − 15 kcal/mol or a stem length less than 18. All sequences derived from exonic regions 
were excluded.  BLAST80 was applied to hairpins and the known miRNA in each organism to locate the hairpins 
containing a true/known pre-miRNA. The number of hairpins containing a known pre-miRNA was compared 
to the number of pseudo-miRNA hairpin regions, thereby estimating class imbalance.

miRNA target prediction
Mirdup, a computational predictor for the mature miRNA from a pre-miRNA sequence was used to extract the 
mature miRNA from the high-confidence pre-miRNA candidate  set83. A modified TarPMir miRNA target pre-
dictor was applied to predict interactions between the high-confidence mature SCN miRNA and SCN mRNA. 
The TarPMir miRNA:mRNA target prediction method was originally trained on human CLASH experimental 
data. The dataset contained 18,514 positive examples and 18,514 negative examples of interactions involving 
399  miRNAs48 . The training set of the original TarPMir target predictor was augmented with 173 intraspecies 
C. elegans miRNA–mRNA  targets68,84. Five-fold cross validation using the augmented training set demonstrated 
that the addition of C. elegans data significantly improved precision and accuracy while maintaining a similar 
recall to the original TarPMir classifier. The newly trained model (CE-TarPMir) was applied to the SCN miRNA 
and SCN mRNA. Similarly, a classifier utilizing the same prediction architecture as TarPMir was trained on data 
derived from  TarDB85, a database of intraspecies plant miRNA:mRNA interactions. The Plant TarPMir classifier 
(P-TarPMir)86 was applied to predict interactions between the high-confidence SCN mature miRNA and soybean 
mRNA. CE-TarPMir was applied to the high-confidence candidate mature SCN miRNA and all available SCN 
mRNA. P-TarPMir was applied to the high-confidence mature SCN miRNA and 216 soybean mRNA which could 
be involved in the defence of pathogens. The list of soybean genes were determined based on literature curation 
as broken down in Supplementary File S4 as well as from Soybase’s GWAS QTL page under SCN 1–SCN  687. 
Gene names as in version Wm82.a2.v1. The results were filtered such that only the highest confidence binding site 
interaction for a miRNA:mRNA pair remained. Additionally, in the case of the SCN intra-species target predic-
tions, only the interactions that occurred in the 3′ untranslated region (UTR) of the SCN mRNA were retained.

A qualitative reciprocal perspective approach was utilized to define high-confidence lists of intra-species and 
inter-species targets. Reciprocal perspective has been used by RPmirDIP to significantly improve miRNA target 
prediction performance by leveraging the two complementary views of a miRNA–gene pair to develop confi-
dence  thresholds88. However, RPmirDIP trains a predictor on experimentally validated targets of an organism to 
determine thresholds that are not available for  SCN88. Instead, a qualitative approach was utilized to reduce the 
set of interactions predicted by TarPMir and P-TarPMir. For thresholds n and m, we retain only miRNA:mRNA 
pairs where the miRNA is among the top-n predicted partners for the mRNA and the mRNA is among the top-m 
predicted partners for the miRNA. By varying n and m in the range [1, 4, 8, 10, 25, 50, 100], progressively more 
permissive candidate high-confidence miRNA:mRNA interaction sets are formed.

Results and discussion
miRNA discovery
The SMIRP algorithm was used to develop training sets for three miRNA discovery experiments. The first experi-
ment simulated the case where the miRNA and coding regions of the nematode P. pacificus are unknown. The 
second experiment simulated the case where the miRNA and coding regions of C. elegans are unknown. The 
third experiment simulated the case where the coding regions of SCN are unknown. Table 1 displays the size of 
the training and test/validation sets for each experiment.

The set of candidate pre-miRNA retrieved from the SCN genome comprised over 225 thousand sequences 
after clustering from over 1 million extracted hairpin sequences. Sequences from clusters containing exonic 
regions were removed, reducing the candidate set to 113,985 hairpin sequences.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17657  | https://doi.org/10.1038/s41598-023-44469-w

www.nature.com/scientificreports/

Validation of SMIRP for nematodes
SMIRP, a species-specific miRNA training set generation framework, has been shown to improve miRNA clas-
sification  performance40 . The SMIRP algorithm allows for the use of positive and negative miRNA from a 
multitude of species while preferring miRNA with greater phylogenetic similarity to the target  species40 . Since 
SMIRP had not previously been validated for use in nematodes, two validation experiments were conducted with 
well-annotated species: C. elegans (CE) and P. pacificus (PP). As described above, the PP-holdout experiment 
involved the construction of a PP-specific classifier using SMIRP, when all PP known miRNA were excluded 
from the training dataset. Negative training data were taken from CE. The CE-holdout experiment was identical, 
with the PP and CE roles reversed. Figures 1 and 2 show the results from the PP- and CE-holdout experiments.

Excellent separation of the positive and negative test sequences in Fig. 2 led to the very strong precision-recall 
curves in Fig. 1. Table 2 summarizes the performance of the PP-holdout classifier and CE-holdout classifier on 
their test set at two thresholds.

Table 1.  Size of training set prepared for the three miRNA discovery experiments.

Experiment Test species Size of positive training set Size of negative training set Size of positive test set
Size of negative 
test set

1 (PP hold-out) P. pacificus 934 1575 338 1000

2 (CE hold-out) C. elegans 932 2156 242 1000

3 (PP + CE) SCN 947 1682 66 66

Figure 1.  The precision–recall curves of (a) PP-holdout classifier and (b) CE-holdout classifier applied to their 
test datasets.

Figure 2.  The kernel density curves of prediction scores (negative = red, positive = blue) for the (a) PP-holdout 
classifier and (b) CE-holdout classifier applied to their respective test datasets.
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Peace et al. demonstrated the utility of the SMIRP framework from a number of species across plants, ani-
mals, and viruses however these experiments are the first application of SMIRP to nematodes  specifically40 . To 
conclusively validate the benefit of SMIRP on nematodes, these results were compared to an otherwise identi-
cal miRNA discovery model trained on human pre-miRNA only. For both nematode species, SMIRP showed 
a small but consistent improvement across all performance metrics. The results can be seen in Supplementary 
Figures S1, S2 and Supplementary Table S3. The increase of performance from the human classifier to SMIRP 
shows the benefit of creating species specific classifiers, trained on data from closely related phylogenetic species.

Both the PP- and CE-holdout experiments resulted in precision and accuracy values near or above 0.9 at 
the threshold of 0.9. Examining Figs. 1 and 2, a threshold of 0.8 can be applied to discriminate the positive test 
examples from the negative test examples. Notably PP- and CE-holdout experiments, for a recall of at least 0.5, 
precision reached 0.98 and 1.0, respectively. Such strong miRNA discovery performance is partially explained 
by the phylogenetic similarity between the species included in the training and test data (e.g., C. elegans in the 
training data and P. pacificus in the test data, or vice-versa). It is noted that SCN is significantly more evolutionar-
ily distant from the training species than in either the CE- or PP-holdout experiments, as reported  here89 . Peace 
et al. have previously shown that such increased evolutionary distance between train and test species leads to 
reduced miRNA predictive  performance40 . Lastly, the training and testing datasets both exhibit low levels of 
class imbalance, which also simplifies the prediction task.

SCN validation set performance
The positive control validation set was comprised of 66 candidate hairpins that match putative miRNA found 
in a shallow SCN NGS experimentation (see Table S5 in Supplementary  Materials). The third and final SCN 
miRNA predictor was trained without excluding any species in the positive training set and included hairpins 
extracted from protein-coding RNA, tRNA, and rRNA from C. elegans and P. pacificus in the negative training 
set. This resulted in a generalized nematode classifier. The specificity of the PP +CE classifier was measured 
using pseudo-miRNA from exonic regions of SCN. The performance of the PP + CE classifier on the positive 
and negative SCN validation sets is shown in Figs. 3 and 4.

Figure 3 illustrates a greater overlap in positive and negative prediction scores for SCN, compared to the 
CE- or PP-holdout experiments. This leads to substantially reduced performance in the ROC curve illustrated 
in Fig. 4. Performance at decision thresholds of 0.8 and 0.9 is summarized in Table 3.

Experiment 3 demonstrated that a generalized nematode classifier trained on a SCN SMIRP dataset can 
recognize negative examples in SCN with high specificity. The PP + CE classifier was also able to recover over 
half of the positive control validation set at a confidence threshold of 0.8. Approximately 88% of the positive 

Table 2.  The average area under precision recall curve (AUPRC), precision, recall and accuracy of PP and 
CE-holdout classifiers at on test sets at three thresholds.

Exp. AUPRC Threshold Recall Precision Accuracy

PP-holdout 0.930

0.7 0.974 0.597 0.829

0.8 0.942 0.716 0.890

0.9 0.743 0.895 0.912

CE-holdout 0.966

0.7 0.839 0.981 0.965

0.8 0.719 0.989 0.944

0.9 0.492 1.000 0.901

Figure 3.  The kernel density curve of PP + CE classifier applied to the positive and negative SCN validation 
sets.
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validation set is above the 90th percentile among the prediction confidences of the candidate set. Additionally, 
approximately 98% of the prediction confidences of the negative validation set are below the 90th percentile of 
the prediction confidences of the candidate set, implying that 88% of the positive validation set scored higher 
than 98% of the negative validation set, indicating strong separation between positive and negative sequences.

A significant drop in performance can be seen between PP- and CE- holdout experiments and Experiment 3. 
This can be attributed to the phylogenetic distance between C. elegans and P. pacificus and C. elegans and SCN. 
The class imbalance in the SCN test set ( 1:150) is also higher than those of the CE- ( 1:4) and PP-holdout ( 1:3) 
tests. Note that a fourth classifier was trained on data including SCN exonic regions in the negative training 
dataset. The classifier did not result in improved performance on the validation set. Therefore, the classifier from 
Experiment 3 is used to make predictions on the candidate pre-miRNA set.

Accounting for class imbalance: prevalence‑corrected performance
The class imbalance of hairpins containing pre-miRNA to other hairpins in C. elegans and P. pacificus was esti-
mated to be 1:1000. That is, there are approximately 1000 pseudo-miRNA hairpin regions for each true miRNA. 
Given such a large class imbalance, the precision and AUPRC were recalculated using prevalence-corrected 
precision for all three experiments. Figure 5 and Table 4 displays the corrected results. A class imbalance of 
1:1000 was used for all three cases to more fairly compare them.

Figure 6 and Table 4 demonstrate substantial reduction in performance when a realistic class imbalance is 
used. Recall is relatively stable; however, as the number of pseudo-miRNA sequences increases, the number of 
false positive predictions increases rapidly, negatively affecting the precision. It is uncommon for these results 
to be reported; many methods  like90–94 report performance estimates derived from “balanced” test sets, or test 
sets with a relatively small class imbalance (< 1:20). To illustrate the optimistic bias resulting from the naïve 
assumption inherent in a “balanced” test set, prevalence corrected precision is used to estimate the performance 
of the PP + CE classifier when applied to a “balanced” SCN test set, as shown in Fig. 6 and Table 5.

SCN candidate set predictions
Table 6 display the distribution of the predicted miRNA confidences for each SCN candidate pre-miRNA.

The application of the PP + CE classifier the SCN pre-miRNA candidate set resulted in 587 sequences (0.5% 
of the candidate set) predicted to be miRNA with score ≥ 0.9, and 3342 sequences (3% of the candidate set) 
predicted to be miRNA with score ≥ 0.8. Here, prediction score is a proxy for prediction confidence. Ultimately, 
a score threshold of 0.8 was applied since this represented an uncorrected precision of approximately 62%. 
The final ranked list of these high-confidence SCN pre-miRNA contained 3342 hairpins comprising those that 
scored greater or equal to 0.8. All predicted high-confidence miRNA have been made available in Table S6 in 
supplementary materials and through a Dataverse open repository: https:// borea lisda ta. ca/ datas et. xhtml? persi 
stent Id= doi: 10. 5683/ SP3/ 30DEXA. Additionally a  BLAST80 experiment was performed to establish the known 
mature miRNA in miRBase sharing the greatest homology with each of the predicted mature miRNA listed in 
Table S6. The names of these homologous mature miRNA are also available in Table S6.

Figure 4.  The ROC curve of PP + CE classifier applied to the positive and negative SCN validation sets.

Table 3.  The performance of the PP + CE classifier on the SCN test set at three thresholds.

Threshold Recall Precision Accuracy

0.7 0.788 0.444 0.929

0.8 0.621 0.562 0.949

0.9 0.288 0.633 0.948

https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/30DEXA
https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/30DEXA
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Figure 5.  The prevalence-corrected precision recall curves for PP-holdout, CE-holdout, and PP + CE classifier.

Table 4.  The prevalence-corrected AUPRC, recall and precision at 1:1000 for experiments PP-holdout, 
CE-holdout, and PP +CE classifier.

Exp. AUPRC Threshold Recall Precision

PP 0.476

0.7 0.974 0.004

0.8 0.942 0.007

0.9 0.743 0.024

CE 0.647

0.7 0.839 0.173

0.8 0.719 0.264

0.9 0.492 1.000

SCN 0.033

0.7 0.839 0.012

0.8 0.719 0.020

0.9 0.492 0.027

Figure 6.  Precision recall curve of PP + CE classifier corrected to a “balanced” test set.
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A recent study produced a list of 21 SCN sequences predicted to be miRNA by miRDeep2 from a publicly 
unavailable small RNA sequencing  dataset78 . Of the 21 sequences found  in78 , all 21 sequences were found in our 
pre-miRNA candidate set and 9 of those sequences appear in our final list of high-confidence SCN pre-miRNA. 
These results are not unexpected as the PP + CE classifier has a recall of less than 2/3 at a conservative threshold 
of 0.8 Moreover, given that the methodology described in Barnes et al.78 does not have a perfect precision a FPR 
of greater than zero can be expected for the SCN miRNA predictions described.

Of the 3342 high-confidence SCN miRNA discovered, 1259 sequences were found in intronic regions, 123 of 
which are among the SCN genes thought to play a role in virulence. Among these, five are of particular interest 
because they were located in genes (Hetgly05026, Hetgly08659, Hetgly14753, Hetgly16169, Hetgly19158) con-
firmed as either effector genes or genes shown to be differentially expressed in resistant and susceptible soybean 
 cultivars95,96. If the transcription of these intronic miRNA precursors is co-regulated with the gene hosting them, 
their expression would synchronize with key moments dictating the outcome of pathogenicity or virulence. We 
can therefore hypothesize that these miRNAs could either influence gene expression in the host or switch the 
nematode’s own expression profile to a virulent mode.

In order to further establish the plausibility of the putative miRNA identified by our proposed miRNA discov-
ery pipeline in SCN, each of the eight criteria capturing the unique structural features of miRNA were examined, 
as defined by the miRGeneDB project (see https:// www. mirge nedb. org/ infor mation). Criteria 2 and 4 require 
expression data and could not be assessed directly. Criterion 8 relates to patterns of sequence conservation in the 
primary miRNA transcript; this cannot be assessed given that our pipeline begins at the extraction of candidate 
precursor miRNA. However, the remaining criteria were analyzed. Criterion 1 states that two 20–26 nt long reads 
are expressed from each of the two arms derived from a hairpin precursor. Criterion 3 states that the hairpin 
precursor shows imperfect complementarity, and base pairs in at least 16 of the   22 nucleotides. Our pipeline 
does not include expression analysis however, we can confirm that all putative miRNA identified by the pipeline 
have a stem length between 20 and 25 nt without bulges. This indicates that the length of expressed mature and 
passenger strands should fall within the specified range with sufficient binding complementarity. Criterion 5 
states that the length of the loop should be between 8 and 40 nucleotides. The resulting high-confidence list from 
our pipeline had loop lengths ranging between 3 and 40 nucleotides and therefore meet the criterion. Criterion 
6 states that the mature microRNA sequence usually starts with A or U, and is often mismatched with the com-
plementary arm. Of the 3342 high-confidence predicted miRNA 3046 have a mature sequence starting with A 
or U. Criterion 7 states that nucleotide positions 2–8 and 13–16 of the mature sequence are strongly conserved 
through evolution. To estimate sequence conservation, we used the most similar known miRNA from the BLAST 
experiment (see Table S6) to determine if these regions were conserved in the candidate pairings. Relative to 
their most similar homologs, of the 3342 high-confidence miRNA, 879 candidates have sequence conservation 
for nucleotides 2–8, 2598 exhibit sequence conservation for nucleotides 13–16, and 355 are conserved over both 
ranges.

miRNA target prediction
Intra-species and cross-kingdom inter-species miRNA target prediction was performed for each of the high-
confidence SCN miRNA discovered during SCN miRNA discovery. TarPMir, an algorithm originally trained 
on human and mouse miRNA:mRNA interactions and augmented with C. elegans targeting data was used to 

Table 5.  PP + CE classifier performance corrected to a balanced test set.

AUPRC Threshold Recall Precision

0.930

0.7 0.788 0.927

0.8 0.621 0.953

0.9 0.288 0.965

Table 6.  Distribution of PP + CE classifier prediction scores on the SCN pre-miRNA candidate set.

Prediction score range Count

0–0.10 6513

0.10–0.20 7854

0.20–0.30 12,379

0.30–0.40 17,520

0.40–0.50 22,173

0.50–0.60 22,033

0.60–0.70 14,984

0.70–0.80 7247

0.80–0.90 2755

0.90–1.00 587

https://www.mirgenedb.org/information
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predict the relationships between SCN miRNA and SCN mRNA. P-TarPMir, an algorithm trained on the plant 
interaction database TarDB, was used to predict interactions between SCN miRNA and soybean mRNA.

SCN intra‑species miRNA target prediction
The application of miRdup to the high-confidence 3342 SCN pre-miRNA resulted in 6622 high-confidence 
mature SCN miRNA. TarPMir was applied to the 6622 high-confidence mature SCN miRNA and over 22,000 
available SCN genes. Figure 7 displays the distribution of the resulting predictions after filtering to only include 
the highest confidence prediction for each miRNA: mRNA pair and those interactions that occur in the 3′ UTR 
region.

Although the CE-TarPMir predictor demonstrated improved target prediction performance on C. elegans, the 
same cannot be said for the intraspecies SCN target prediction. Using the CE-TarPMir target predictor resulted 
in a high number of “high-confidence” targets. It is expected that SCN intraspecies target prediction may benefit 
from an active learning approach where high-confidence targets are validated and added to the training data to 
iteratively improve classifier performance.

Qualitative reciprocal perspective was applied to the filtered SCN intraspecies interactions to produce high-
confidence datasets resulting in the target prediction counts and percentage of total interactions seen in Table 7. 
Example one-to-all curves visualizing all the interaction prediction confidences for an SCN candidate miRNA 
and an SCN mRNA can be seen in Fig. 8. We leave it to the reader to determine the value of n to apply for the 
number of miRNA targets and mRNA interactions considered. One thing to consider is there exists a precision-
recall trade-off, a higher n or m may increase the number of true targets recalled however it will reduce the 
precision of the dataset.

Among the predicted SCN mRNA targets using and n and m of 100, we found 970 sequences containing a 
secretion signal peptide with no transmembrane domain, a feature commonly associated with putative effectors. 
These mRNAs were targeted by an average of 6.5 miRNA and a maximum of  3097 . Several well-known SCN 
effectors were targeted by multiple miRNAs, for example Hetgly05453 (4D06, targeted by 21 miRNA), previously 
identified as pathogen-associated molecular pattern-triggered immunity (PTI)  suppressors97 . PTI is the first 

Figure 7.  Distribution of miRNA target prediction confidences of the 3342 high-confidence SCN miRNA and 
all available SCN mRNA.

Table 7.  Qualitative reciprocal perspective applied to filtered SCN intra-species miRNA:mRNA targeting at 
various thresholds [n,m].

Pair falls within top-n predicted miRNA for mRNA

n,m 1 4 8 10 25 50 100

Pair falls within top-m mRNA for the miRNA

 1 354 (0.002%) 677 (0.005%) 793 (0.005%) 819 (0.006%) 891 (0.006%) 908 (0.006%) 913 (0.006%)

 4 999 (0.007%) 2243 (0.015%) 2845 (0.020%) 3019 (0.021%) 3477 (0.024%) 3595 (0.025%) 3638 (0.025%)

 8 1456 (0.01%) 3729 (0.026%) 5031 (0.035%) 5414 (0.037%) 6666 (0.046%) 7086 (0.049%) 7242 (0.050%)

 10 1615 (0.011%) 4307 (0.03%) 5972 (0.041%) 6468 (0.044%) 8162 (0.056%) 8782 (0.06%) 9042 (0.062%)

 25 2249 (0.015%) 6953 (0.048%) 10,862 (0.075%) 12,270 (0.084%) 17,975 (0.123%) 20,828 (0.143%) 22,238 (0.153%)

 50 2636 (0.018%) 9029 (0.062%) 15,413 (0.106%) 17,906 (0.123%) 29,908 (0.205%) 37826 (0.260%) 42,881 (0.294%)

 100 2885 (0.020%) 10,750 (0.074%) 119,669 (0.135%) 23534 (0.162%) 44,865 (0.308%) 63,499 (0.436%) 78998 (0.542%)
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layer of plant defense that the nematode needs to deactivate for successful invasion of its host. These miRNAs 
could therefore be a key element in the fine regulation of the expression of these genes.

SCN‑Soy inter‑species miRNA target prediction
P-TarPMir, the TarPMir classifier retrained with plant miRNA:mRNA targets, was applied to the  1 million pairs 
arising from the 6622 high-confidence mature SCN miRNA and the 216 soybean mRNA which could be involved 
in the defence against SCN. Figure 9 displays the distribution of the resulting predictions after filtering to only 
include the highest confidence prediction for each miRNA:mRNA pair.

Qualitative reciprocal perspective was also applied to the filtered SCN inter-species interactions with soy-
bean resulting in the cumulative distribution seen in Table 8. One-to-all curves visualizing all the interaction 
confidences for an SCN candidate miRNA, and a soybean mRNA can be seen in Fig. 10. Similar to the SCN 
intra-species interactions, we leave it to the reader to decide the n,m thresholds to apply. The soybean genome 
has undergone two duplications, suggesting that four copies of a single mRNA may  exist98 . Similar precision-
recall considerations that apply to the intra-species interaction above also apply to the inter-species interactions 
here. Among the significant inter-species interactions, it is particularly interesting to note that the five miRNAs 
identified from intronic regions of known SCN effector genes were predicted to interact with 16 soybean genes 
that are potentially involved in SCN  resistance99.

psRNATarget—a commonly used ab initio plant target predictor—was applied to the high-confidence SCN 
miRNA and the 216 soybean mRNA suspected to play a role in soybean pathogen defense. Table 9 shows the 
number of the high-confidence inter-species miRNA:mRNA interactions discovered by qualitative reciprocal 
perspective applied to the P-TarPMir predictions that were also found in the psRNATarget results with a relaxed 
expectation value.

Figure 8.  One-to-all curves for (a) an SCN candidate miRNA and (b) an SCN mRNA.

Figure 9.  Distribution of miRNA target prediction confidences of the 3342 high-confidence SCN miRNA and 
216 soybean mRNA.
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The predicted mRNA targets in soybean included a diverse array of gene functions. Certain functions such as 
transcription factors and response to oxidative stress were noticeably more prevalent. By employing a stringent 
criterion (top 8 by 8 reciprocal perspective) a total of 1365 pairs were identified, collectively targeting 246 dis-
tinct soybean genes. Among this set, 60 genes (24%) are associated with GO terms related to transcription factor 
activity. Notably, the GO term 0003700 (“DNA—binding transcription factor activity”) displayed significant 
enrichment with an adjusted p value of 6.85E-06. This group includes various WRKY and MYB genes that have 
demonstrated involvement in the interaction between SCN and soybean, as highlighted in the work of Hosseini 
and  Matthews100. Furthermore, some of these genes exhibited reduced expression in different soybean lines when 
subjected to SCN infection, as observed in the study by Miraeiz et al.101, suggesting that they could be regulated 
by inter-species miRNA–mRNA interactions.

Table 8.  Qualitative reciprocal perspective applied to filtered SCN inter-species miRNA:mRNA targeting at 
various thresholds [n,m].

Pair falls within top-n predicted miRNA for mRNA

n,m 1 4 8 10 25 50 100

Pair falls within top-m mRNA for the miRNA

 1 79 (0.004%) 296 (0.013%) 582 (0.026%) 727 (0.032%) 1488 (0.066%) 2108 (0.094%) 2648 (0.118%)

 4 145 (0.006%) 563 (0.025%) 1165 (0.052%) 1447 (0.064%) 3298 (0.146%) 5500 (0.244%) 8127 (0.361%)

 8 166 (0.007%) 666(0.03%) 1365 (0.061%) 1708 (0.076%) 4108 (0.182%) 7419 (0.33%) 12,272 (0.545%)

 10 171 (0.008%) 691 (0.031%) 1408 (0.063%) 1763 (0.078%) 4295 (0.191%) 7939 (0.353%) 13,603 (0.604%)

 25 201 (0.009%) 800 (0.036%) 1581 (0.07%) 1970 (0.087%) 4855 (0.216%) 9457 (0.42%) 17,926 (0.796%)

 50 208 (0.009%) 834 (0.037%) 1665 (0.074%) 2072 (0.092%) 5138 (0.228%) 10,118 (0.449%) 19,760 (0.878%)

 100 209 (0.009%) 836 (0.037%) 1672 (0.074%) 2090 (0.093%) 5225 (0.232%) 10433 (0.463%) 20,746 (0.921%)

Figure 10.  One-to-all curve for (a) SCN candidate miRNA and (b) Soybean mRNA.

Table 9.  Interactions predicted by QRP applied to P-TarPMir and psRNATarget (Exp ≥ 3).

Pair falls within top-n predicted miRNA for mRNA

n,m 1 4 8 10 25 50 100

Pair falls within top-m mRNA for the miRNA

 1 1 1 1 1 1 1 1

 4 9 15 20 20 24 25 25

 8 15 25 31 31 35 38 38

 10 18 31 40 40 44 47 47

 25 38 74 88 89 95 98 98

 50 49 104 125 128 137 140 141

 100 61 130 161 168 185 188 190
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We acknowledge that the concept of cross-kingdom miRNA targeting is highly debated. Some researchers 
have suggested that the evidence of cross-kingdom targeting is most likely due to contamination of sequenc-
ing platforms rather than miRNA transfer in vivo  (see99). Additionally, there exist mechanistic differences in 
the mode of action of plant and animal miRNAs. In this research, we explore the possibility of cross-kingdom 
miRNA– mRNA interactions utilizing a plant-trained classifier.

Conclusion
This study has developed methods for miRNA discovery and target prediction for the Soybean Cyst Nematode, a 
destructive Soybean pathogen. In the face of no known miRNA within SCN, we developed SCN-specific miRNA 
discovery predictors, based on a species-specific dataset created using the SMIRP framework. This approach 
to creating species-specific miRNA predictors was validated for use on nematodes for the first time here, with 
precision and recall achieving 0.99 and 0.72, respectively, on the C. elegans model organism (CE-holdout experi-
ment). A total of 3342 high-confidence candidate SCN miRNA are reported here.

MicroRNA target prediction was completed for two cases: intra-species within SCN and inter-species where 
SCN miRNA are hypothesized to interact with soybean mRNA. The TarPMir miRNA target prediction approach 
is tailored through fine-tuning for both the plant and nematode cases. To increase the specificity of predicted 
miRNA:mRNA interactions, a qualitative reciprocal perspective approach is introduced. Focusing on the genes 
potentially involved in SCN pathogenicity, we found that they are predicted to interact with multiple miRNAs (up 
to 30) which could regulate their expression. Moreover, some of these genes appear to host miRNA precursors 
in their intronic regions that, in turn, target resistance genes in soybean or other effector genes in the nematode, 
suggesting a complex regulatory cascade.

In summary, we have developed custom methods for miRNA discovery in an important Soybean pathogen 
and for miRNA target prediction within SCN and between SCN and soybean. These methods, along with the 
high-confidence predictions, are expected to be of great interest to those studying SCN, soybean and other plant 
pathogens that may be mediated by miRNA post-transcriptional gene regulation.

Data availibility
All predicted miRNA and mRNA targets are available in a Borealis Dataverse Repository at https:// borea lisda 
ta. ca/ datas et. xhtml? persi stent Id= doi: 10. 5683/ SP3/ 30DEXA. Code for miRNA discovery and target prediction 
is available at https:// github. com/ Green CUBIC/ SMIRP_ SCN.
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