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Computational screen 
for sex‑specific drug effects 
in a cardiac fibroblast signaling 
network model
Kelsey M. Watts 1*, Wesley Nichols 1 & William J. Richardson 2

Heart disease is the leading cause of death in both men and women. Cardiac fibrosis is the 
uncontrolled accumulation of extracellular matrix proteins, which can exacerbate the progression of 
heart failure, and there are currently no drugs approved specifically to target matrix accumulation 
in the heart. Computational signaling network models (SNMs) can be used to facilitate discovery of 
novel drug targets. However, the vast majority of SNMs are not sex‑specific and/or are developed and 
validated using data skewed towards male in vitro and in vivo samples. Biological sex is an important 
consideration in cardiovascular health and drug development. In this study, we integrate a cardiac 
fibroblast SNM with estrogen signaling pathways to create sex‑specific SNMs. The sex‑specific SNMs 
demonstrated high validation accuracy compared to in vitro experimental studies in the literature 
while also elucidating how estrogen signaling can modulate the effect of fibrotic cytokines via multi‑
pathway interactions. Further, perturbation analysis and drug screening uncovered several drug 
compounds predicted to generate divergent fibrotic responses in male vs. female conditions, which 
warrant further study in the pursuit of sex‑specific treatment recommendations for cardiac fibrosis. 
Future model development and validation will require more generation of sex‑specific data to further 
enhance modeling capabilities for clinically relevant sex‑specific predictions of cardiac fibrosis and 
treatment.

Heart failure (HF) currently afflicts roughly 6.2 million Americans and has a five-year survival rate of only 50%1. 
Cardiac fibrosis, the uncontrolled accumulation of ECM proteins, can exacerbate the progression of  HF2–4. This 
deposition of ECM proteins is crucial to a patient’s initial survival of myocardial infarction (MI) to form the scar 
tissue that maintains the structural stability of the infarct  region5. However, when it continues uncontrolled, it 
becomes pathologic by reducing ejection fraction and causing a greater chance of arrhythmia due to disruptions 
in electrical stimulus caused by collagen  buildup6,7.

The current treatment regimen for patients suffering from HF includes drugs such as angiotensin-converting 
enzyme inhibitors and beta-blockers to reduce their blood pressure and slow their heart rate, which reduces stress 
on the heart in an attempt to slow the progression of  HF8. However, no current FDA-approved treatments directly 
target cardiac  fibrosis9. Ongoing research focuses on the development of a drug to directly inhibit cardiac fibrosis 
or even reverse  it10. Despite gains in understanding the complex signaling networks of cardiac fibroblasts—the 
drivers of cardiac fibrosis—finding new anti-fibrotic therapies has remained expensive and tedious, with low 
efficacy rates in clinical  trials11.

The use of computational models to conduct in silico simulations has been used in a variety of ways to accel-
erate drug  discovery12–15. Currently, these models are limited in scope and, at best, can narrow down a pool of 
potential drug candidates for further study. As the field of precision medicine grows, it is likely that the accuracy 
and predictive power of these models will also improve. However, in order to fully leverage the predictive power 
of these models, it is imperative that the data used to create them is robust across diverse population groups. 
Unfortunately, experimental studies and clinical trials are historically skewed to male data. For several decades, 
women of childbearing age were banned from participating in clinical  trials16. Even after this ban was reversed 
in the early 90s, it was not until 2016 that the National Institutes of Health required the use of both male and 
female animals in preclinical  studies17. This has resulted in many FDA-approved drugs having double the adverse 
drug response rate in  women18–20.
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Biological sex is an essential factor when considering cardiovascular  health21–24. Most notably, pre-menopausal 
females are less likely to suffer from MI compared to age-matched men—primarily thought to be due to the 
cardioprotective role of the ovarian hormone estrogen (E2)22. Additionally, the literature suggests that many 
adverse drug responses in both males and females occur in a sex-specific  manner25. Incorporating sex hormones 
into computational models could be a starting point to correct for the dearth of sex-specific studies available in 
the literature and make precision medicine more accurate for all patients. In this study, we aim to make a previ-
ously published signaling network model of cardiac fibroblasts sex-specific by incorporating E2 signaling. We 
then conducted a sex-specific drug screen to analyze divergences in drug response between males and females.

Materials and methods
Integration of estrogen into cardiac fibroblasts signaling network
A previously published signaling network model (SNM) of cardiac fibroblast was expanded to include the ovar-
ian hormone estrogen (E2). The previous model was created via a manual literature search of ~ 300 papers 
and included 125 nodes (i.e., proteins, integrins, cellular receptors, and transcription factors) and 174 edges 
(reactions)26,27. Specifically, this model was comprised of 10 biochemical and biomechanical inputs, including 
transforming growth factor beta (TGFβ), angiotensin II (AngII), endothelin 1 (ET 1), mechanical tension, and 
others; downstream reactions of these inputs culminated in 22 cellular outputs, including alpha-smooth muscle 
actin (α-SMA), procollagen I and III (proCI and proCIII), several pro-matrix metalloproteinases and tissue 
inhibitors of metalloproteinases (proMMPs and TIMPs), and proliferation. New nodes and/or reactions were 
added to the SNM if two independent studies reported activation of inhibition of another node downstream of 
estrogen signaling. The vast majority of the reactions used to build the model were from cardiac fibroblast specific 
studies; if not from cardiac fibroblasts, the studies typically reported results from experiments from other cardiac 
(i.e., cardiac monocytes) or fibroblast (i.e., lung) cell types. Nearly all of the papers used for model updates used 
neonate rat cardiac fibroblasts, pooling male and female cells together as their cell type.

After a manual literature search of sex differences in cardiac fibroblasts, we used 18 previous published studies 
to integrate E2 signaling into a published, large-scale signaling network model of cardiac fibroblasts via 7 new 
protein nodes and 29 new reaction edges (Fig. 1)26–45. In addition, 6 already present reactions were altered to 
include direct estrogen receptor inhibition activity. The added nodes include E2 and its three primary receptors: 
estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and g-protein coupled receptor (GPR30)29,46. Cyclin 
beta 1 (Cyclinβ1) and cyclin-dependent kinase 1 (CDK1) were added downstream of GPR30 as they were not 
already included in the fibroblast  SNM35. The total network now consists of 132 nodes and 202 edges.

As previously described, the reactions of the SNM are governed by logic-based ODEs modeled as a system 
of Hill equations to capture node activity  levels26,27,47. Logical NOT, AND, and OR gates were used for signaling 
interactions by applying logical operations: fINHIB(x) = 1–f(x), fand(x1, x2) = f(x1)f(x2), and for(x1,x2) = f(x1) + f(x2)—
f(x1)f(x2). Differential equations were constructed using the open-source software Netflux (https:// github. com/ 
sauce rmanl ab/ Netfl ux) for MATLAB (Mathworks, Natwick, MA)47. Cytoscape was used to create all SNM visu-
alizations included in this  paper48. All additional validation, perturbation, and drug screen simulations were con-
ducted using MATLAB; finalized codes used in the analysis are available (https:// github. com/ SysMe chBio Lab).

The complete model, including all species (nodes), reactions, and parameter settings, can be found in the 
Supplementary Table S1. In summary, default parameter settings included: reaction weights (w) as normalized 
activity levels between 0–1,  yint = 0,  ymax = 1, and time constant (τ) = 1, 0.1, or 10 for signaling reactions, transcrip-
tion reactions, and translation reactions, respectively. Hill coefficient (n) and EC50 values for the new SNM were 

Figure 1.  Cardiac fibroblast signaling network model (SNM) integrated with estrogen (E2) signaling. Logical 
NOT (˧, indicating an inhibition reaction), AND (AND in a circle, indicating that at least two species are 
required for a reaction), and OR (occurs when two or more arrows point to the same species, indicates only 
one species is required for a reaction) gates were used to define signaling interactions. New nodes and their first 
downstream connections are highlighted in blue (E2), orange (GPR30), purple (ERα), and green (ERβ).

https://github.com/saucermanlab/Netflux
https://github.com/saucermanlab/Netflux
https://github.com/SysMechBioLab
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set at 1.05 and 0.65, respectively, based on a perturbation analysis. Sex-specific models were created by varying 
the Ymax of the three estrogen receptors (ER-β, ER-α, and GPR30) added to the model to mimic the physiological 
difference of varied expression and activity levels of estrogen receptors in male and female  cells29. The Ymax of 
the three estrogen receptors was set to 0.5 (50% of maximum saturation) and 1 (100% of maximum saturation) 
in the male and female SNM, respectively.

Model validation
Previous model validation of the cardiac fibroblast SNM conducted with 47 independent papers of direct meas-
urement of model intermediate and output nodes found the SNM to be 81.8% accurate in predicting experimental 
activity levels of input-outputs (e.g., AngII treatment on proCI) and input-intermediates (e.g., AngII treatment 
out ERK activity level) found in the  literature26. In total, these 47 papers accounted for 118 perturbations of input 
outputs/intermediates validated by comparing literature experimental results to model predictions according 
to their change in activity level as ’Upregulation’ (Δ Activity ≥ 5%), ’Downregulation (Δ Activity ≤ − 5%), or ’No 
Change’ (− 5% < Δ Activity < 5%).

To conduct a sex-specific validation of the updated model, new papers were added to the validation set to 
account for estrogen and female-specific data. Each of the papers used for validation measured direct output 
secretion or intermediate signaling response (i.e., ELISA, IF, PCR, or Western Blot) to a single input stimulus in 
fibroblasts. In addition, previous perturbations were categorized based on the cell type used in analysis (male 
cells, pooled cells, or unreported; no previous papers used in the validation set reported data for female cells). 
The newly expanded validation set contained 185 perturbation experiments, which were 39% (n = 73/185) male, 
36% (n = 66/185) pooled, 17% (n = 31/185) unreported, and 8% (n = 15/185) female (Supplementary Table S2).

Validation perturbations were grouped by experiments reporting results in female, male, and pooled neonate 
cells. Prediction accuracy was calculated using the same Δ Activity bounds described above using either the 
male or female SNM. To simulate the pooled neonate condition, model predictions from the male and female 
SNM were averaged prior to validation calculations. Model simulation predictions were generated in MATLAB 
by simulating basal conditions for 40 h, followed by simulating single input stimuli for 80  h26. An ideal  EC50 of 
0.65, n of 1.05, tension of 0.65, and input stimuli values of 1 were determined for each SNM through a parameter 
sweep (Supplementary Table S3).

Additional validation was conducted to determine the accuracy of estrogen involvement in signaling pathways 
by comparing a combination of simultaneous treatments to experimental results. A tension weight of 0.65 was 
used, and an input stimuli weight of 1 for AngII, ET1, and E2 was used to compare experimental results from 
Pedram et al. that reported E2 effect on AngII and ET 1 stimulation on α-SMA, fibronectin, proCI, and proCII 
in pooled neonate cardiac  fibroblasts49. A negative control simulation of input weights of 0.25 was generated by 
simulating basal conditions for 80h, followed by simulating the treatment conditions (AngII, ET−1, AngII + E2, 
ET−1 + E2, and E2) for an additional 240h.

Network perturbation analysis
A network perturbation analysis was conducted in MATLAB, as previously described, to identify influential 
signaling nodes under different estrogen  conditions26. The input reaction weight of estrogen was attenuated, and 
all other input weights were kept at 0.4 for 80 h to simulate basal conditions. A  Ymax = 0.1 knockdown of individual 
nodes for 240 h was used to identify sensitive and influential nodes in the model. Knockdown sensitivity of each 
node was calculated as the sum of absolute ΔActivityKD levels for the node across all knockdown simulations, and 
knockdown influence of each node was calculated as the sum of absolute ΔActivityKD levels for all other nodes 
in the network upon knockdown nodes. Three perturbation conditions were conducted: (1) male (male SNM, 
E2 input w = 0.25), (2) female post-menopausal (female SNM, E2 input w = 0.5), and (3) female pre-menopausal 
(female SNM, E2 input w = 1). Heat maps of the total knockdown effect on the SNM nodes were created, and the 
top ten influential and sensitive nodes were determined for each condition.

Drug screen
In previous work, Zeigler et al. developed an approach to simulate the effects of known drugs on their cardiac 
fibroblast network  model12. In that prior study, 121 drugs were identified from DrugBank to connect with nodes 
in the model, totaling 36 unique drug-target interactions spanning agonists and antagonists, competitive and 
non-competitive12,50. In our current study, we employed the same framework to perform a sex-specific drug 
screen using the three experimental conditions used for the perturbation analysis (male, female post-menopausal, 
and female pre-menopausal). A static application of drug was administered (w = 0.85) with profibrotic stimuli (all 
inputs except E2 w = 0.4) for each of the three experimental conditions. To compare potential changes to cardiac 
fibroblast activity due to drug treatment, a Matrix Content Score was determined for each condition as MCS =  Ac
tvitymatrix +  Activityprotease +  Activityinhib where  Activitymatrix = (proCI + proCIII + fibronectin + periostin + osetopon-
tin + LOXL1)/6;  Activityprotease = (proMMPs 1, 2, 3, 8, 9, 12, 14)/7; and  Activityinhib = (TIMP1 + TIMP2 + PAI1)/3.

Results
Model accuracy remains high after the integration of E2
To assess if model accuracy was influenced by sex, a sex-specific analysis was conducted using the sex-specific 
SNMs for model simulations compared with sex-specific experimental data reported in the literature (Fig. 2). 
Previous perturbations used for model validation were categorized based on the cell type used in analysis (male 
cells, pooled cells, or unreported; no previous papers used in the previously published validation set reported data 
for female cells)26. Additionally, 7 new papers were added to the validation set to account for estrogen and female-
specific  signaling51–57. Once disaggregated, the validation set contained 185 perturbation experiments, which 
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were 39% (n = 73/185) male, 36% (n = 66/185) pooled, and 17% (n = 31/185) unreported, and 8% (n = 15/185) 
female. For the scope of this paper, the 31 perturbations validated with experiments in the literature that did not 
report cell sex were not included in the rest of the analysis.

Model predictions were grouped into three categories: increase, decrease, and no change. High accuracy 
of the model was relatively maintained after the integration of E2 in the SNM (compared to previous non sex-
specific SNM accuracy of 81% and a baseline comparison of 33% for random chance of accurately predicting 
increase, decrease, or no change)26. When compared with 54 independent studies, 77% (119/154 simulations) 
of model predictions matched experimental results in the literature. Model predictions of estrogen treatment 
specifically were 59% (24/41 simulations) accurate across experimental conditions. Model predictions were the 
most accurate for the male SNM (81%, 59/73 simulations) and least accurate for the female SNM (60%, 9/15 
simulations). The pooled SNM was 77% accurate (51/66 simulations). It is important to note that the female 
SNM model validation was only conducted with 15 simulations from 3 papers. This is because very few papers 
report female-specific data for cardiac fibroblasts and is likely the cause of the lower accuracy of the female SNM 
compared to the male and polled SNMs.

Notably, the model was accurate in predicting the divergent effect of estrogen treatment on male and female 
proCI and proCIII production, with E2 treatment increasing collagen production in males and decreasing it in 
 females51. Additionally, the inclusion of E2 into the model did not impact the accuracy of model predictions for 
other major cellular inputs, including AngII and TGFB. The lower accuracy of the model in predicting inter-
leukin 1 (IL1), interleukin 6 (IL6), and neutrophil elastase (NE) effect on cellular outputs is consistent with the 
previously published SNM’s  limitations26.

Model predicts E2 interactions with other input conditions
The experiments used in the validation set were all an analysis of a singular biochemical stimulus on cardiac 
fibroblasts. To determine if the model could accurately predict interactions between E2 and other fibrosis-driving 
input conditions, we compared simulation predictions against experimental data from Pedram et al. that inves-
tigated the effect of estrogen in conjunction with the fibrotic agonists’ angiotensin II (AngII) and endothelian-1 
(ET−1) on pooled male + female neonate cardiac fibroblasts (Fig. 3)49. The model predictions were consistent 
with in vitro results of the study, accurately predicting an increase in fibronectin, collagen 1, collagen III, and 

Figure 2.  (A) Perturbation experiments used in previous signaling network model (SNM) validation were 
disaggregated by sex, and new reactions were added to the validation set to account for estrogen and female 
specific signaling. The reactions in the validation set were comprised of 185 perturbation experiments, which 
were 39% (n = 73/185) male, 36% (n = 66/185) pooled, 17% (n = 31/185) unreported, and only 8% (n = 15/185) 
female. For the purpose of this paper, the 31 perturbations validated with experiments in the literature that did 
not report cell sex were not included in the rest of the analysis. The total model accuracy of the new sex-specific 
SNM was determined to be 77%. (B–D) Individual biochemical stimuli sex-specific SNM predictions for input–
output and input-intermediates compared to experimental studies found in literature in male (B), female (C), 
and pooled (D) cells. All model predictions were categorized as increase, no change, or decrease based on a ± 5% 
change in activity levels compared to baseline conditions of model inputs and cellular secreted outputs (In–Out) 
or inputs to signaling intermediates/transcription factors (In-Med).
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α-SMA production when stimulated with AngII or ET 1. Likewise, when these fibrotic agonists are paired with 
E2, the model predicts a return to control level values of the measured outputs. E2 stimulus alone also produced 
relatively little changes from control level predictions similar to experimental results. The only instance in which 
the model did not qualitatively match experimental outputs was that it failed to predict a substantial increase 
in α-SMA production for cells stimulated with ET-1, and therefore, the effects due to combined treatment with 
ET-1 and E2 were minimal.

Perturbation analysis identifies sex‑specific network drivers and sensitivities
A perturbation analysis was conducted to computationally uncover the downstream effect of attenuating estrogen 
levels in the sex-specific SNMs (Fig. 4). In attempts to mimic the physiological differences in estrogen receptor 
and circulating estrogen levels between females pre- and post-menopause and males, three input estrogen levels 
were used: 0.25 (25% saturation) for the male condition, 0.5 (50% saturation) for the female post-menopause 
condition, and 1 (100% saturation) for the female pre-menopause  condition23,58.

The top ten influential and sensitive nodes were determined for each condition (Fig. 4B–C). Tension and 
TGFB were consistently in the top ten influential nodes for all conditions. ERB, ERX, smad3, PKA, CREB, and 
mTORC1 were uniquely influential for the female pre-menopause condition, indicating potential pathways that 
may have a cardioprotective role downstream of estrogen. E2 and AKT were influential for both pre-and post-
female menopause conditions. AT1R, ROS, TGFB1R, AP1, JNK, and AngII were influential in both the female 
post-menopause and male conditions. NOX and ET1 were only in the top ten influential nodes for the male 
condition, indicating potential divergences in signaling pathways between male and female cardiac fibroblasts.

IL6 and fibronectin were sensitive across each estrogen perturbation. CBP, proMMP12, periostin, mTORC2, 
CREB, epac, p70S6K, and thrombospondin4 were in the top ten sensitive nodes only for the female pre-meno-
pause condition. ProMMP14, proliferation, TNC, proMMP2, NFKB, AP1, and proMMP9 were sensitive in the 
female post-menopause and male condition. Only p38 and PP1 were sensitive in just the female-post or male 
estrogen perturbations, respectively.

Drug simulation
A sex-specific drug screen (Fig. 5) was conducted by perturbing nodes in the model corresponding to 36 unique 
drug targets or target combinations from DrugBank using a framework previously published by Zeigler et al.12. 
The effect of the drugs on fibrotic factors was analyzed when stimulated with various input stimuli with the same 
experimental conditions used in the perturbation analysis. The resulting changes in output expression levels 
indicate that drug effects tend to follow similar patterns for the post-menopausal female and male conditions. In 

Figure 3.  SNM predictions (A) compared to experimental in vitro results from the literature (B) for estrogen 
(E2) stimulus combined with fibrotic agonists angiotensin II (AngII) and endothelin 1 (ET-1) on fibronectin, 
collagen I, collagen II, and α-SMA production.
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contrast, the pre-menopausal female condition exhibits a more unique pattern. In particular, the pre-menopausal 
female model predicts more profibrotic drug effects and fewer anti-fibrotic drug effects. This divergence is most 
dramatic in the case of NFKB + TNFa combinatory antagonism, which predicts increases in matrix production 
and matrix content in the pre-menopausal female model but decreases in matrix production and matrix content 
in the post-menopausal female and male models. Individual treatments of TNFa antagonism or IL6 antagonism 
are also predicted to increase matrix content in pre-menopausal condition without affecting the other condi-
tions. In total, six different drug strategies were predicted to be anti-fibrotic for post-menopausal female and 
male conditions with neutral or profibrotic effects in the pre-menopausal case.

Figure 4.  Total perturbation analysis for high (female pre-menopause), medium (female post-menopause), 
and low (male) estrogen conditions (A). Top ten influential (B) and sensitive nodes (C) for each experimental 
condition.
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Discussion
Developing a therapeutic strategy to target cardiac fibrosis has remained elusive due in part to the complex 
signaling mechanisms of cardiac fibroblasts, which can be influenced by biochemical factors, mechanical forces, 
and biological sex. In this study, we aimed to develop sex-specific network models of cardiac fibroblast signal-
ing by integrating estrogen signaling into a previously published SNM of cardiac fibroblast biochemical and 
biomechanical pathways to understand sex-specific divergences in fibrotic signaling networks. Additionally, 
we conducted a sex-specific drug screen to demonstrate the model’s potential for facilitating the discovery of 
sex-specific treatment recommendations.

Integration of estrogen into the SNM did not negatively alter its previously high predictive power in simu-
lating experiments from the literature. The male SNM was the most accurate, which is unsurprising since the 
previously published versions of the model were built and validated using reported experiments that were over-
whelmingly conducted with male  cells26,27. The accuracy of both the female SNM and the estrogen pathways 
was 15–20% lower than the total SNM accuracy. This is likely because there are limited studies available in the 
literature that can be used to build and validate the model. Female data are consistently underreported in the 
literature, and even when female samples are included in analysis, almost no studies report the effect of fibrotic 
agonists on female cardiac fibroblasts outside the context of  estrogen59. Therefore, it limited our analysis of the 
female SNM accuracy in predicting the effect of the other model inputs, such as AngII and TGFB, on outputs 
and intermediates. The NIH requires the use of both male and female cells and animals in funded research. 
However, the vast majority of studies that adhere to these guidelines do not disaggregate their results by  sex17,60. 

Figure 5.  Drug screen analysis simulated the effects of 121 drugs with 36 unique drug-target interactions from 
DrugBank. Heatmap displays the average changes in protein output expression levels quantified as the difference 
between a baseline fibrotic condition and fibrotic condition + drug treatment. Outputs are indicated as ’Matrix’ 
for matrix-related proteins (collagen I, collagen III, fibronectin, periostin, osteopontin, lysyl oxidase), ’Protease’ 
for matrix-degrading proteins (MMP1, 2, 3, 8, 9, 12, 14), ’Inhib’ for protease inhibitors (TIMP1, TIMP2, PAI1), 
and ’MCS’ for an aggregate Matrix Content Score calculated as the average matrix—average protease + average 
inhibitor levels. Simulations were conducted for our three sex-specific modeling conditions: pre-menopausal 
female (’F Pre’), post-menopausal female (’F Post’), and male (’M’).
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In the future, we recommend sex-specific reporting to help fill in the gaps in our understanding of sex-specific 
fibrotic signaling.

The results of the perturbation analysis uncovered potential regulatory nodes that are different between males 
and females pre- and post-menopause, which therefore warrant further study. Not only did these results highlight 
differences across distinct pathways, but several notable differences were even found across different isoforms 
in the same family. For example, the matrix metalloproteinase MMP12 exhibited heightened sensitivity in the 
pre-menopausal female condition, while MMP2, 9, and 14 sensitivities were heightened in the post-menopausal 
female and male conditions. MMPs are highly involved in fibrotic turnover with diverse functions involved in 
matrix proteolysis, cell adhesion, feedback signaling, and tissue mechanics, and there is emerging evidence of 
differences between male and female cells dependent on MMP  type61–64. Model predictions identified numerous 
other proteins that were sensitive to the different estrogen perturbations. Still, there is currently a lack of sufficient 
experimental data to determine if these findings are valid in vitro or in vivo.

The sex-specific drug screen clearly exhibited instances of varied drug response due to higher estrogen levels 
in the female pre-menopause SNM. For example, NFKB + TNFa combinatory antagonism predicted increases in 
matrix production and matrix content in the pre-menopausal female model but the opposite response in the post-
menopausal female and male models. The NFKB + TNFa combinatory antagonism was modeling Thalidomide, 
a drug that in the 1950s caused severe congenital disabilities in thousands of children after expecting mothers 
took it to alleviate morning  sickness65. More recently, studies have exhibited the potential use of Thalidomide 
to prevent excessive cardiac remodeling in heart failure, but to our knowledge, no studies have investigated the 
role E2 may play in negating its potential  benefits66,67.

The differences between the male and female post-menopause SNMs were much more subtle compared to 
the female pre-menopause SNM. Although there were slight differences in the intensity of the effect of the drugs 
in up or downregulating fibrotic factors in a sex-specific manner, the results did not provide enough evidence 
to elucidate mechanisms that account for the adverse drug responses that are more likely to occur in females 
compared to men. A study that investigated the effect of age on adverse drug response in both men and women 
found that adverse events were the highest for women aged 30–59 but that adverse events being higher in women 
than men persisted throughout  life68. Although our drug screen does capture this likelihood of higher adverse 
effects in pre-menopausal women, it is possible that the integration of estrogen signaling alone was not enough 
to account for the sex-specific differences in fibrotic response to different therapeutics between the male and 
female post-menopausal models.

Many of the limitations of the sex-specific models designed in this study are due to the lack of sex-specific 
data, particularly female data, available to build and validate the model. An additional limitation of the current 
models is their lack of quantitative data to infer input parameter values. Without these inputs, the models can only 
make semiquantitative predictions that can be qualitatively compared to experimental literature but have little 
clinical significance. Because of this constraint, the model was only validated with estrogen levels of high (female 
pre-menopausal), medium (female post-menopausal), and low (male). However, like other hormones, estrogen 
levels can fluctuate from person to person and throughout life. Additionally, females undergoing menopause are 
often considered perimenopausal for several years (median of 4) as hormone levels gradually  change69. These 
attenuations were not accounted for and would likely play a role in the downstream signaling response. Future 
studies could address this by testing with more levels of estrogen and integrating feedback loops for estrogen 
and its receptors.

Additionally, much of the data used to build the SNM were from neonatal cardiac fibroblasts, not adult car-
diac fibroblasts. While neonatal cardiac fibroblasts have their experimental advantages, such as being cheaper 
and quicker to acquire, recent research also indicates there could be significant differences in cellular regula-
tion, especially related to regenerative capacity, which is related to cardia  remodeling70. This could impact the 
accuracy of the pooled SNM as it is mainly validated with neonatal experiments. The male and female SNMs 
models were validated with adult cardiac fibroblasts and should be minimally affected by differences between 
adult and neonatal cardiac fibroblasts.

A final limitation of the sex-specific SNMs was the use of only estrogen signaling to model sex differences due 
to the limited literature available that investigates hormonal responses in cardiac fibroblasts. Not only are there 
additional sex hormones (i.e., FSH, LH, progesterone, and testosterone) that could be incorporated in the future, 
but there are also known biological sex dimorphisms that are independent of gonadal hormones. Research shows 
that genetic differences between males and females can also contribute to cardiovascular disease presentation and 
 severity71,72. Future studies should address this by integrating genomic or transcriptomic data into the model to 
account for additional differences due to biological sex in addition to gonadal  hormones73.

Perspective and significance
We integrated estrogen signaling into a cardiac fibroblast SNM in order to make sex-specific predictions of 
cardiac fibrosis. These models were validated to be 77% accurate in predicting experimental outcomes from the 
literature, making them a valuable tool to further study the sex dimorphisms in cardiac fibroblasts. Estrogen’s 
cardioprotective effects were evident in the drug screen of the pre-menopausal SNM. Differences between the 
male and female pre-menopausal conditions perturbation analysis and drug screen indicate several potential 
regulatory mechanisms that warrant further study. Future model development and validation will require more 
generation of sex-specific data to further enhance modeling capabilities for clinically relevant sex-specific pre-
dictions of cardiac fibrosis and treatment.
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Data availability
The data and codes generated during this study are available on GitHub (https:// github. com/ SysMe chBio Lab/ 
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