
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17246  | https://doi.org/10.1038/s41598-023-44436-5

www.nature.com/scientificreports

A smart device for non‑invasive 
ADL estimation 
through multi‑environmental 
sensor fusion
Homin Kang , Cheolhwan Lee  & Soon Ju Kang *

This research paper introduces the Smart Plug Hub (SPH), a non‑invasive system designed to 
accurately estimating a patient’s Activities of Daily Living (ADL). Traditional methods for measuring 
ADL include interviews, remote video systems, and wearable devices that track behavior. However, 
these approaches have limitations, such as patient memory dependency, privacy violations, and 
careless device management. To address these limitations, SPH utilizes sensor fusion to analyze time‑
series environmental signals and accurately estimate a patient’s ADL. We have effectively optimized 
the utilization of computing resources through the implementation of “device collaboration” in SPH 
to receive event data and segments portions of the time‑series environmental signal. By segmenting 
the data into smaller segments, we extracted an analyzable dataset, which was processed by an edge 
device—SPH. We have conducted several experiments with the SPH, and our research has resulted in 
a significant 75% accuracy in the classification of patients’ kitchen ADLs and an 85% accuracy in the 
classification of toilet ADLs. These activities include actions such as eating activities in the kitchen 
and typical activities performed in the toilet. These findings have substantial implications for the 
progress of healthcare and patient care, highlighting the potential uses of the SPH technology in the 
monitoring and improvement of daily living activities.

Activities of daily living (ADL)1,2 are significant medical indicators that assess a patient’s ability to carry out 
routine activities in their daily life. ADL assessment is typically performed by evaluating a patient’s ability to 
carry out basic  activities3 such as bathing, dressing, and using cooking appliances. Due to the direct observation 
of the patient’s behavior by a physician is the most effective way to assess ADL, because the number of doctors 
and their consultation time are insufficient, it is often impractical. Assessments are commonly carried out by 
means of interviews with the patient or their caregivers, video monitoring using closed-circuit television (CCTV) 
systems, or the utilization of wearable devices to observe the patient’s health  condition4. However, it is important 
to acknowledge that each of these approaches has limitations, such as low reliability observed in interviews 
conducted with elderly patients who are suffering from degenerative brain  diseases5. Additionally, there are 
concerns regarding privacy violations, as well as challenges associated with the proper usage of wearable devices. 
To facilitate the ongoing assessment of activities of daily living (ADL) without dependence on visual data, the 
utilization of a device capable of continuous measurement becomes necessary.

This paper introduces a novel edge device called the “Smart Plug Hub” (SPH). The SPH incorporates a range 
of sensors to detect environmental changes and uses the concepts of “Sensor Fusion” and “Device Collaboration” 
to infer human actions. Sensor Fusion is a data-processing technique that integrates and analyzes multiple sensor 
measurements to derive high-level inferences that cannot be achieved by a single  sensor6,7. As human behavior 
leads to specific environmental changes, it becomes necessary to conduct a thorough analysis using multiple 
sensors in order to identify and understand the patterns associated with these changes. SPH has the capability 
to gather and analyze time-series signals obtained from a diverse range of environmental sensors, which exhibit 
variations in response to behavioral changes. Nevertheless, the process of analyzing time-series signals over 
a prolonged duration can prove to be inefficient due to the constant need for collecting and accumulating a 
substantial volume of signals. To tackle this concern, SPH employs the mechanism of “Device Collaboration”. 
A terminal device, referred to as a “device,” is utilized to convert raw sensor signals into abstracted signals. This 
device is capable of detecting triggering event data that leads to segmentation in the time-series environmental 
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signals collected by the SPH. As SPH is equipped with the capability to support multiple communication 
protocols, it has the ability to receive event signals from a wide range of Internet of Things (IoT) devices within 
its proximity. Furthermore, it can effectively segment the area of sensed environmental signals based on various 
criteria. By conducting an analysis of the recorded environmental time-series signals and the received triggering 
event data, the SPH is able to infer the activities performed by the patient within the designated unit space at a 
given point in time. Moreover, it sends feedback signals to external devices, such as actuators attached to home 
appliances or other SPHs based on its deductions.

There have been previous studies on understanding human behavior from systems that integrate multiple 
sensors. Studies that employ sensor fusion techniques to integrate and analyze time-series signals from various 
sensors, including a smartphone’s built-in acceleration sensor, illumination sensor, microphone, and Wi-Fi 
scanning module, have been conducted. However, these studies have limitations as they do not consider 
environmental changes and do not utilize indirect data sources such as human voice  detection8. In addition, 
studies that provide directions for predicting behavior using smartphone sensors do not use environmental sensor 
data and present sensor sampling with very short periods using acceleration sensors, which are difficult to use 
with low-power mobile  devices9. Similar to the study discussed in this paper, a research investigation employing 
multiple environmental sensors has been conducted to gather data on environmental changes, acceleration, 
electromagnetic interference (EMI), and sound alterations. However, unlike the study mentioned, the collected 
data has not been analyzed at the device  level10. The difference with this study is that it is difficult to provide 
real-time feedback to the patient at the device level, although the data is collected and compiled on an offline 
computer to perform machine learning. Unlike the aforementioned studies, the SPH proposed in this paper does 
not involve the transmission of sensor data to a remote server or cloud. Instead, it processes the data directly at 
the device level and offers real-time feedback to the patient.

The research contributions and objectives of this paper will be discussed in the following sections.

• We suggest a non-invasive ADL assessment approach through the use of IoT devices, avoiding the utilization 
of invasive wearable devices or recording devices that may cause privacy violations.

• The proposed system enhances the predictability of ADL by utilizing sensor fusion of various environmental 
time-series signals and improves accuracy. Furthermore, the system operates on an edge device, utilizing 
triggering event data to selectively process relevant data, thereby conserving computing resources.

• The SPH system reduces the risk of sensitive personal information breaches by performing data collection 
and analysis at the edge level, rather than transmitting raw data to external servers. Only inferred abstracted 
data is transmitted outside the network. Transmissions to the outside are restricted to specific purposes, such 
as analysis of ADL and notification to a doctor or caregiver, recognition of dangerous situations, operation 
of indoor actuators, or construction of a database for authorized personnel.

• In order to optimize the “Segmented signal” that can be obtained using Device Collaboration into the SPH 
system, we proposed a Predefined Weight Factor Mapping Algorithm in this paper. Similar to weights in the 
machine learning field, different predefined weights are applied depending on the appropriate space where 
ADL SPH are installed and the sensor type to estimate the ADL with highest probability.

A proposed Smart Plug Hub (SPH) edge device is designed to detect and predict residents’ activities of daily 
living (ADL) through the integration of multiple environmental time-series signals and collaboration with 
surrounding Iot devices. The paper begins with an introduction, followed by a review of related works. The 
conceptual properties of the proposed system are then discussed, along with a detailed design of the device. 
The article continues with the implementation and evaluation of the SPH, and concludes with a discussion of 
the study’s findings.

Related works
Sensor fusion is a method used in various fields. Sensor fusion is an approach that uses several different sensors 
to capture information that is difficult to grasp with a single  sensor6. In modern studies, sensor fusion is 
utilized in autonomous driving or autonomous robot control  systems11,12. In autonomous driving, localization, 
motion estimation, data fusion, object recognition, path planning, action prediction, intercommunication, and 
obstacle avoidance are performed using sensors such as GPS, IMU (Inertial Measurement Unit), Radar, Camera, 
LiDAR, Ultrasonic, and V2X can be  performed13. Such a sensor fusion mechanism and execution operation 
implementation are implemented on various operating systems and hardware platforms. In automatic robot 
control, contact switches, optical/magnetic encoders, infrared/LiDAR sensors, gyroscopes, and CCD/CMOS 
cameras for vision systems are used to overcome locomotion, navigation, and obstacle avoidance through sensor 
fusion. Various studies are also being conducted to monitor the conditions of indoor residents/patients14. The 
most widely used method is to analyze  RSSI14,  TOA15,  TDOA16,  CSI17 values using wearable terminals or smart 
devices, Predict the location of fixed nodes and moving residents/patients. Research is also being conducted to 
determine the location of residents in real time by analyzing images collected from each sensor node through a 
wireless visual sensor network and recognizing the indoor location without using a wearable  terminals18. These 
studies can detect abnormal situations, such as when a resident does not move in a specific space for a long time 
or moves to a dangerous space, helping guardians or doctors to identify and treat behavioral patterns of residents.

The surrounding environment changes according to our behavioral patterns. Several studies have been 
conducted to measure and compare these changes using sensors. In particular, research is being actively 
conducted to detect the movement of body parts, such as arms and legs, and to deduce the actions that have 
been performed by attaching an inertial measurement unit(IMU)-based acceleration/gyro sensor to wearable 
 terminals19. Research has also been conducted to record data from acceleration sensors inside smartphones that 
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humans commonly carry and to identify stopping, sitting, and climbing stairs using deep learning models, not 
just using sensors attached to a human  body20. In a study that presented a scenario in which a person identified 
a specific situation by attaching an inertial sensor to objects used in daily life without wearing an inertial sensor, 
sensor data were collected using fuzzy theory and used as machine learning  data21. Similar to the research 
objectives presented in this paper, the disadvantage is that low-power implementation is disadvantageous when 
using acceleration sensors, and additional steps are needed to transfer raw data delivered by the sensor to the 
 MQTT22 broker and post-processing by other computing devices. Unlike this study, the edge device proposed 
in this paper could receive post-processed data with the help of other external “Devices” and utilize computing 
power more efficiently. Studies are also ongoing which integrate acceleration sensor and environmental sensor 
(PIR) data to determine the exact location of the subject and predict the direction to  move23. However, while 
wearable devices can identify various postures such as waking up, walking, and sitting in place, it is difficult 
to determine complex behaviors other than basic movements such as washing dishes and cooking food using 
accelerometer sensors. The “SPH”, an edge device proposed in this study, can predict what kind of behavior a 
person’s behavior was performed with only indirect data through communication between environmental sensor 
data and “Device” connected to SPH.

Conceptual properties of the proposed system
The proposed system’s conceptual properties are illustrated in Fig. 1. The SPH utilizes time-series environmental 
signals from various sensors and triggering event data from IoT “Devices” to predict the actions of patients. In 
this paper, “Devices” refers to all kinds of IoT devices that generate triggering event data that segment time-series 
signals collected by SPH (SPH supports a variety of wireless communication protocols because it segments based 
on triggering event data generated by the surrounding “device”). When the SPH receives triggering event data 
from the IoT “devices”, it segments the environmental time-series signals. After segmentation, the SPH analyzes 
the segment of the time-series signals to estimate emergency situations or the patient’s daily behavior. Depending 
on the estimation results, the operation of SPH is divided into one of the following: transmitting environmental 
time-series signals to an external server, transmitting estimation results to the external server or the other SPHs, 
or transmitting feedback or alarms to the caregivers of doctors. To implement the functions described above, 
SPH uses sensor fusion and device collaboration.

Sensor fusion in SPH
A single sensor is limited to detecting only one type of state change that it is designed to measure. However, 
irrespective of the sensitivity of a single sensor, it may exhibit similar patterns for different behaviors of different 
individuals. For instance, differentiating between humid air from outside and artificially increased humidity 
inside, such as by a humidifier or boiling water in the kitchen, is challenging using only humidity. However, 

Figure 1.  Overview of SPH System. The patient carries out an activity on the detection of the event. SPH 
predicts this activity by environmental time-series signals which was changed according to the patient’s ADL 
behavior.
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the possibility of distinguishing such activities increases when the temperature is analyzed concurrently for 
the same period, location, change value, and speed of the rate of temperature change. Combining signals from 
multiple sensors that measure different state changes to perform high-level situation determination, which 
cannot be established using a signal from a single sensor, is called “Sensor Fusion”24. As illustrated in Fig. 2, SPH 
incorporates various sensors for sensor fusion. The use of multiple sensors allows for the determination of more 
situations, and hence greater accuracy.

Segmenting continuous‑sensing time‑series signals on the SPH
The SPH continuously collects environmental time-series signals and stores them in its internal memory or 
streams them into an external server. However, analyzing all the time-series signals at once on the edge device 
is not practical because of the large amount of processing signal. Instead, the objective is to determine what the 
person has done at a specific point in time. To analyze time-series signals, segmenting method is required to 
divide the signals into sections based on triggering event  data25. The idea of dividing time-series signals into 
segmentation is also referred to as “Segmentation of time-series signals” in this paper. Whenever the SPH receives 
the triggering event data from the “devices”, it establishes the starting and ending points of the behavior and 
creates a segmented time-series signal collection to predict the patient’s action. Then, the SPH uses the segmented 
time-series signal as input for its prediction model.

To implement this, it is necessary to assume that various types of IoT “devices” can be connected to the SPH. 
The SPH supports several types of connection methods, including  Bluetooth26, IEEE802.1127, and 433 MHz 
Sub-1 GHz communication protocol, to connect multiple types of devices, which include not only self-developed 
devices but also commercial equipment. Figure 3 shows an example of the segmentation of time-series signals. 

Figure 2.  Mechanism and Advantage of Sensor Fusion. The gray features are the basic parameters of each 
sensor. With these features, colored features like taking a shower or cooking can be estimated through the sensor 
fusion mechanism.

Figure 3.  Segmenting continuously-sensing data. The situation-start point cannot be fixed by flows of time-
series signal alone. Therefore, the SPH receives the triggering event data of the external “device” to begin the 
segmentation of time-series signals.
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Segmentation using only sensor data is a challenging task, but it can be made more reliable and easier by using 
other devices that generate triggering event data.

Situation estimation and classification algorithm
The conventional approach for time-series classification has proven to be effective; however, it suffers from the 
drawback of limited real-time performance and high computational burden when executed in an edge device 
environment [citation needed]. Therefore, the present study introduces the predefined weight factor mapping 
algorithm (PWFMA), which demonstrates the ability to achieve real-time performance and low computational 
load. Figure 4 depicts the diagram outlining the procedure for conducting the PWFMA. All segmentation 
operations commence by receiving triggering event data from the device. Upon the reception of triggering event 
data, SPH initiates the process of extracting signal features from the environmental signals that were previously 
sensed. SPH continuously collects environmental signals and computes the duration, average, as well as the high 
or low peak value of each signal. These values represent information that can be dynamically updated in real-time 
during signal collection. They can be extracted without the need to store all segmented data within the SPH. 
When the subsequent data indicating the finish of signal segmentation is received, the duration, average, and peak 
values for each sensor type (specifically, temperature, humidity, eCO2, and TVOC values) can be retrieved from 
the SPH system. The features extracted through this methodology serve as input parameters for the PWFMA.

SPH is capable of extracting signal features and utilizing them to predict emergencies based on their duration 
and peak value before applying them to PWFMA. Both the act of cooking food in the kitchen and the presence of 
fire have the tendency to gradually elevate the temperature. However, there exists a significant disparity in terms 
of the magnitude and duration of temperature increase. Given the utilization of predefined data, it is possible 
to apply variations in duration, average, and peak values to SPH in the context of food cooking and fire. If the 
SPH extracts signal features that are excessively steep and abnormal, it will be classified as an emergency and 
will have the capability to notify external entities about the hazardous situation.

The PWFMA is a computational method used to estimate the most probable Activities of Daily Living (ADL) 
performed by a patient. This algorithm applies various weight factors to the extracted signal features, depending 
on the specific ADL being analyzed [Algorithm 1]. Given that the sensor response sensitivity varies across 
different situations, it is necessary to establish varying levels of importance for each sensor based on the ADL. 
Essentially, when an individual enters a unit space and engages in an activity within the ADL category, the 
surrounding environmental signals inevitably change. Nevertheless, the outcome of the patient’s action can 
vary significantly, as some signals exhibit substantial changes while others remain relatively unaffected. For 
instance, during the act of showering in a bathroom, the signals recorded by the SPH device generally exhibit an 
upward trend. However, it is observed that the changes in humidity levels are more pronounced and occur at a 
faster rate compared to instances of urination or handwashing. In this particular scenario, in order to accurately 
estimate the occurrence of “having taken a shower” based on the corresponding signal, a more intensive analysis 
of the change in humidity is required compared to other signals. This is necessary to achieve a higher level of 

Figure 4.  Signal reference analysis diagram. To estimate the ADL what the resident does, first, extract features 
from time-series signals, second, calculate.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17246  | https://doi.org/10.1038/s41598-023-44436-5

www.nature.com/scientificreports/

accuracy in the estimation process. The analysis and emphasis of sensors vary depending on the type of action, 
necessitating a consideration of different perspectives such as the time of action, magnitude of change, and rate 
of change. Therefore, the PWFMA assigns a unique weight factor to each ADL. By calculating the weight result 
based on the signal characteristics extracted from the segmented signal, the PWFMA estimates the ADL with 
the highest probability of being performed by indoor residents. The weight values in question are determined 
through empirical methods, which involve the combination of predefined reference data. Weight values should 
be assigned differently based on the unit space where SPH is installed, the ADL to be estimated, and the number 
and type of the sensors utilized.

After computing the estimated probability for each ADL based on the weighted signal features, the 
analysis also takes into account the device by which the signal was obtained. Signal division cannot always be 
accomplished solely through start/stop events originating from a single device. Given the existence of diverse 
device events, such as water usage, microwave usage, and refrigerator opening/closing, it becomes necessary to 
assign and take into account different weights based on these device-specific events. By incorporating the device 
base weight factor into the final calculation in SPH, taking into account the triggering event of each device, it is 
possible to derive the final estimated score for each ADL activity. The ADL estimation result can be determined 
by selecting the highest score among them. This estimation result can then be publicly announced or provided 
as feedback to residents within the indoor environment.

Detailed design
Hardware configuration
The system’s sensors and devices are presented in detail in Fig. 5. The SPH can manage up to 8 Bluetooth Low-
Energy (BLE) peripheral devices that cover a small unit space. However, due to the limitations of the 2.4 GHz 
communication band and the BLE connection between edge devices for large amounts of data  streaming28, 
only 3 to 5 peripheral connections can be reliably maintained. The SPH employees BLE, IEEE802.11, and 
433 MHz RF wireless communication to interact with other SPHs or peripheral devices. The SPH differs from 
existing communication hubs since it comes with built-in sensors, allowing it to function in a stand-alone 
mode. A commercial wireless connection device can be integrated if the ID, authentication, and packet protocol 
information are available.

Software configuration
Figure 6 depicts the software structure of the SPH, which operates on the  Ubinos29 real-time operating system 
(RTOS). The SPH contains modules for communication with each sensor, which operate through a device 
driver and multitask for each function. The sensor’s time-series signal handler task delivers the sensor’s signal 
modified to the application that requested the time-series signals when specific events, such as timer events and 
triggering device data. The SPH can then transmit information to an external server via the Message Queuing 
Telemetry Transport  Protocol22, transfer information to other devices of SPHs, or proceed with internal inference 
to generate additional data based on each event and application. Each operation is performed in an abstracted 
application layer, and the task management layer controls the detailed operations according to the multitasking 
technique of the Ubinos kernel.

1: while sensing time-series environmental signals do
2: if received the device event then
3: while receiving second device event for segmentation do
4: signal event segmentation, for several signals

5: end while
6: end if
7: if all signal events are segmented then
8: for all signal events segmented at same time period do
9: calculate duration, average and (high or low)peak value of each signal events

10: for pre-defined weight factor for each ADL do
11: multiply weight factor for duration, average and peak-value respectively

12: end for
13: end for
14: for all weighted signal event’s features do
15: for predefined device based weight factor do
16: multiply weighed-duration, weighted-average, weighed-peak-value by predefined device based weight

factor

17: end for
18: end for
19: find max ADL estimation score

20: end if
21: end while

Algorithm 1.  Predefined weight factor mapping algorithm.
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IoT devices for ADL identification
This paper defines “device” as a tool that interprets raw signals gathered by a sensor that detects and measures 
simple state changes, converting it into abstracted data that can be easily comprehended by humans. For instance, 
a tilt measurement sensor can indicate the extent to which an object is inclined, but if the object is a lever that 
regulates the motor’s speed, it functions as an IoT “device” that can determine the current state of the motor. 
SPH collects triggering event data from various types of “devices” and uses them as a measure of data analysis 
to determine the situation. The primary content analyzed by SPH is a change in environmental sensor data 
collected according to behavioral changes. However, since analyzing data in all sections is inefficient and yields 
low accuracy, the time-series signal segmentation is performed by receiving triggering event data from the 
“device” linked to SPH. As explained above, SPH obtains data from different “devices” and conducts appropriate 
time-series signal segmentation. In this study, the “devices”, utilized for time-series signal segmentation, transmits 
triggering event data with a pre-processing sequence utilizing their own Micro Controller Unit (MCU). Figure 7 
illustrates the “devices” that are used in this study, such as the 2D infrared array  sensor30, current sensing  tag31, 
analog analysis tag, etc., to analyze time-series signals in SPH.

Accurate measurement of certain activities, such as opening a door or using a faucet, is essential as it enables 
doctors to assess symptoms more efficiently based on ADL measurements. Thus, a specific home appliance’s 
usage is recorded to analyze the time-series signal accurately from the moment the appliance is turned off, 

Figure 5.  Hardware overview of Smart Plug Hub.

Figure 6.  Software overview of smart Plug Hub.
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and it can significantly simplify the analysis process. In this study, the use and mode of a home appliance were 
identified through the current sensing tag (CST), and an analog ADL tag identified appliances that cannot 
determine whether they are being used according to current intensity. These tags operate as “devices” connected 
to the SPH to facilitate signal processing by segmenting the time-series signals. The SPH supports various 
communication protocols, enabling the connection and processing of different “devices”. Furthermore, time-
series signals collected by the SPH can be processed using “devices” with various applications such as door 
opening detection, PIR motion detection, and indoor light on/off detection using an ambient light sensor. The 
2D infrared array sensor operated as a “device”, detects a heat source in a two-dimensional plane using an infrared 
temperature sensor, enabling the determination of the absolute temperature value in the direction of view. This 
sensor checks the direction in which the patient moves and generates triggering event data that is delivered to 
SPH to segment environmental time-series signals.

Time‑series signal handling and analysis
The SPH is designed to continuously collect environmental and noisy sound time-series signal, which is stored 
in its internal memory for a short period of time, with updates occurring at every sensing time. Monitoring 
and analyzing the time-series signal is performed by watching two memory regions: a short period of the start 
part of queue memory and all part of queue memory illustrated in Fig. 8. Initially, the SPH transforms the short 
period of internal time-series signals into normalized, timestamp-labeled signals for optimal analysis. Next, the 
SPH examines the pattern and determines the rate of signal change to identify whether an estimated situation 
is an emergency or a general situation using linear regression. If the state is normal—it means the absolute 

Figure 7.  Concept of appliance usage check device and 2D infrared array sensor based movement 
identification.

Figure 8.  Detailed time-series signal handling procedure.
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value of inclination of linear regression is small enough—the SPH resumes normal operation and continues to 
collect time-series environmental signals. If an emergency situation arises—it means the absolute value of the 
inclination of linear regression is too big—the SPH generate the triggering event data to notify other “devices” 
or other SPHs located in different unit space.

As ADL behaviors occur over different periods of time, ranging from short bathroom visits to longer 
meal times, the SPH requires time-series signals that span a longer period to estimate ADL. The length of the 
time-series signal collected for ADL estimation can be either variable or fixed, depending on the peripheral 
“device’s” triggering event signal. Variable-length time-series signal is determined by triggering event data such 
as emergency detection alarms from other SPHs, patient’s behavior detected by 2D infrared array sensors, or 
pre-processed triggering event data from wireless “devices” regarding the use of home appliances. As analyzing 
all data for an extended period is inefficient, the SPH stores sets of time-series signals for each ADL in advance. 
These “reference time-series signals” is stored in a remote server and can be applied by the SPH to estimate ADL. 
By evaluating the historical ADL data and sets of time-series signals estimated and transmitted by the SPH, 
human s can assess the performance of the SPH. When a developer selects a suitable ADL set from the server, 
they inform the SPH, which then compares the updated pre-defined ADL sets of time-series signals with newly 
collected signals.

Implementation and evaluation
The performance evaluation was conducted with the aim of assessing three primary metrics: 1. The delay between 
triggering event and actual ADL activity, 2. The presence of any changes in the environmental time-series signals 
post-activity, and 3. Similar changes in environmental data with ADL.

The delay between triggering event and actual ADL activity
The estimation of Activities of Daily Living (ADL) in SPH is dependent on triggering event data. This data is 
generated by external devices or tasks that monitor environmental time-series signals and is subsequently utilized 
by the SPH. The 2D infrared array sensor is a highly effective means of capturing triggering event data, as it 
has the ability to detect the entry and exit of individuals within a defined area and monitor movement in front 
of specific household appliances. This capability greatly facilitates the segmentation of time-series signals. The 
detection delay of the SPH is characterized as the time interval between the detection of entry or exit by the 2D 
infrared array sensor and the execution of the corresponding ADL action.

We conducted a series of experiments employing door-opening detection sensors directly connected to the 
host computer, and the SPH, connected to the host computer via Bluetooth. The SPH, positioned on the ceiling, 
utilizes an infrared 2D array sensor to detect the direction of movement of individuals passing beneath it. The 
SPH’s motion tracking feature is designed to identify movements in multiple directions, albeit with a slightly 
delayed response compared to the more immediate door opening detection. However, this feature allows for the 
detection of movements in various directions. Considering that the majority of Activities of Daily Living (ADL) 
involve entering or leaving a designated space, we utilized the “door opening” behavior as a triggering event 
to initiate specific ADLs in our experiments. The accurate measurement of the triggering event’s exact time is 
crucial, as the time-series signal is segmented based on this triggering event. The bar graph presented in Fig. 9 
displays the time deviation between the detection time of the 2D infrared array sensor and the time of actual ADL 
performance (in this experiments, door opening). Also, the experiment summary is stated in Table 1. The analysis 
of the ADL behavior’s actual start time and the measured time indicated an average difference of approximately 
2 s, using a standard based on typical adult males. The performance evaluation shows that the SPH receives, 
on average, triggering event data indicating the entry of a resident into the unit space after a duration of 5–6 s.

Figure 9.  2D Infrared array sensor’s detection delay graph.
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The presence of any changes in the environmental data post‑activity
The proposed edge device, known as SPH, has been specifically designed to gather and analyze time-series signals 
related to the environment, as well as triggering event data, from various devices located in residential settings. To 
validate our hypothesis, it was imperative to examine alterations in environmental data that are associated with 
ADL behavior. To this end, we conducted a long-term study by installing the SPH in a real-life residential setting.

A portion of time-series signals collected throughout a day is depicted in Fig. 10. The directional detection 
triggering event data from the 2D infrared array sensor is represented by blue boxes, while the line graphs 
illustrate the patterns in changes of environmental time-series signals. The data indicates that variations in 
environmental time-series signals exhibit greater speed and diversity subsequent to movements within the unit 
space, in comparison to other regions. This observation provides confirmation that the daily activities of patients 
result in environmental modifications that are conducive to their actions.

Merely observing changes in the environment based on daily behavior is inadequate for maintaining a 
comprehensive record of a patient’s ADL history. Therefore, it is imperative for the SPH system to possess 
the ability to identify and track environmental changes that align with each ADL performed by the patients. 
To evaluate its performance, we recorded the actions performed in each unit space as specific times daily and 
compared the results with the 2D infrared array sensor’s detection of access times and the occurrence of similar 
environmental changes for the same actions.

Similar changes in environmental data with ADL
In the present study, we conducted an investigation into the relationship between human behavior patterns and 
environmental changes. This was achieved by collecting time-series environmental signals using the SPH which 
was installed in a real-life residential setting. Therefore, data was collected from the patient’s living environment 
over a span of several weeks in order to investigate the potential correlation between human behavior patterns and 
patterns of environmental change. For a duration of several weeks, we conducted data collection of environmental 
signals in various areas such as the kitchen, bathroom, and unit space entry and exit. This was achieved through 
the utilization of 2D infrared array sensors. Additionally, we provided instructions to both patients and caregivers 
to accurately record the start and end times of their respective behaviors. We successfully acquired data that 
was annotated with various behaviors and confirmed that environmental modifications were indeed strongly 
correlated with human behavior, as hypothesized in this study. Additionally, the integration of sensor fusion 
proved to be beneficial in our analysis. Figure 11 depicts the evaluated method. The signals identified by the 
patient in the indoor setting were designated as “answer” signals, and a time-series signal was generated for 
each item. For instance, the breakfast meals were served a total of 20 times during a span of several weeks. We 
calculated the average of the 20 labeled signals and designated them as the “answer”. Subsequently, we assessed 

Table 1.  Delay comparison between ADL performing and entrance detection.

Average ADL assessment delay 2.11 s

Average entrance detection delay 5.67 s

Trial count 142 times

Figure 10.  A graph displaying environmental data collected over a day the bathroom of an indoor resident. 
Each line graph is a time-series signal of environmental changes collected by multiple sensors, and the blue 
boxes and lines are the result of segmenting the significant behavior of a patient entering the bathroom.
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the similarity of the graph over the entire interval. The graph similarity was analyzed over the entire interval 
collected using the well-known method of Dynamic Time Wrapping (DTW)32–34.

Tables 2 and 3 present the results of the evaluation. False detection and miss detection in Tables 2 and 3 
represent “SPH detected an ADL event but detected it differently from the actual behavior” and “SPH had an ADL 
event but did not detect it”, respectively. This phenomenon bears resemblance to the concepts of false positive 
and false negative in the field of machine learning.

To evaluate the SPH’s ability to accurately identifying specific behaviors, we conducted an analysis of the 
time-series signals obtained from the SPH installed in the kitchen and bathroom. During the study, patients 
were instructed to record the initiation and completion times of each targeted ADL behavior. Table 2 presents 
the results of the analysis, which revealed that events with predictable and rapid changes in execution times, 
such as breakfast and ventilation, were easily identified on the graph. However, the varying meal menus and 
meal durations of lunch, and the irregular meal menus and collective participation of most family members 
during dinner, made it challenging to accurately capture all the environmental changes caused by people. The 
“Activity” category in Table 2 denotes occurrences in which the 2D infrared array sensor detected movement, 
but the participant engaged in an action that was not the focus of the experiment.

In addition, we analyzed the environmental time-series signals collected to observe the behaviors performed 
by the patient in bathroom, where changes in the environment such as using the toilet and taking a shower can 
be easily discerned. Table 3 presents the results of analysis, which revealed that activities with relatively long 
duration could be identified with a high degree of accuracy. The limited duration of urination led to negligible 

Figure 11.  Examples of the relationship between the recorded ADL behaviors and the collected environmental 
time-series signals and triggering event data: movement.

Table 2.  Kitchen event detection evaluation.

Target ADL event Breakfast Lunch Dinner Ventilation Washing dishes Activity

Correct detection 16 24 35 21 19 55

False detection 1 7 12 1 4 *

Miss detection 3 3 2 0 3 *

Accuracy 80% 70.6% 71.4% 95.4% 73% *

Table 3.  Bathroom event detection evaluation.

Target ADL event Bowel movement Urination Shower Ventilation Activity

Correct detection 52 61 58 17 94

False detection 8 17 9 3 *

Miss detection 5 11 0 2 *

Accuracy 80% 68.5% 86.5% 77.3% *
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environmental alterations, posing challenges for the SPH sensor to effectively detect it in numerous cases. In the 
kitchen, the 2D infrared array sensor detected motion, indicating the occurrence of a triggering event. However, 
there were also events in the bathroom that were not targeted by the sensor for detection.

Conclusion and future works
This study proposes the design and evaluation of the Smart Plug Hub (SPH), an edge device that collects 
and analyzes environmental time-series signals and triggering event data from surrounding IoT “devices” in 
residential environments. The SPH can detect and estimate the patient’s Activities of Daily Living (ADL) through 
the integration of multiple environmental time-series signals and collaboration with IoT “devices”. The advances 
over previous research that we would like to highlight in this paper are that we: (1) correlated environmental 
data with ADL behavior, and (2) used device-triggered event data to segment the time series signal. It has been 
established through numerous studies and human experience that environmental changes are influenced by 
human behavior. However, it is important to note that there are distinct environmental changes associated with 
each behavioral pattern. In addition, a significant strength of this paper is the segmentation of the time-series 
signal using triggering event data from the “device” that identifies specific human behaviors. This segmentation 
allows for the identification of patterns in edge-level devices. The study conducted a long-term experiment in a 
real-life residential setting to observe changes in environmental time-series signals that are correlated with ADL 
behavior. These signals are critical for maintaining a comprehensive record of a patient’s ADL history. The results 
demonstrate a clear association between resident movement and environmental changes, as well as the SPH’s 
ability to detect patterns of environmental change that correspond to each ADL action performed by the patient.

However, the proposed SPH device uses wired power and does not take lower power consumption into 
consideration. In future research, the authors plan to develop mobile SPH devices with low power consumption 
by reducing the number of sensors and devices connected using wireless communication protocols. The collected 
set fo time-series signals will be used to build machine/deep learning models and compare their performance 
with the algorithms applied in this study. These developments will enable more efficient and accurate ADL 
evaluation and improve the use of SPH devices in healthcare settings.

Data availibility
The data collected during and/or analyzed during this study is available from the corresponding author if the 
patients, involved in this study, allows.
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