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Construction of diverse water wave 
structures for coupled nonlinear 
fractional Drinfel’d‑Sokolov‑Wilson 
model with Beta derivative and its 
modulus instability
Muhammad Shakeel 1,2*, Salman A. AlQahtani 3*, Muhammad Junaid U Rehman 4, 
Grzegorz Kudra 4, Jan Awrejcewicz 4, Abdulaziz M. Alawwad 5, Abdullilah A. Alotaibi 5 & 
Mejdl Safran 5

This paper aims to analyze the coupled nonlinear fractional Drinfel’d-Sokolov-Wilson (FDSW) model 
with beta derivative. The nonlinear FDSW equation plays an important role in describing dispersive 
water wave structures in mathematical physics and engineering, which is used to describe nonlinear 
surface gravity waves propagating over horizontal sea bed. We have applied the travelling wave 
transformation that converts the FDSW model to nonlinear ordinary differential equations. After 
that, we applied the generalized rational exponential function method (GERFM). Diverse types of 
soliton solution structures in the form of singular bright, periodic, dark, bell-shaped and trigonometric 
functions are attained via the proposed method. By selecting a suitable parametric value, the 3D, 2D 
and contour plots for some solutions are also displayed to visualize their nature in a better way. The 
modulation instability for the model is also discussed. The results show that the presented method is 
simple and powerful to get a novel soliton solution for nonlinear PDEs.

A solitary wave is a special type of wave that maintains its shape as it propagates through a medium, without 
changing its speed or amplitude. Solitary waves can arise in various fields, including water waves, metamaterials, 
engineering, plasma waves, and optical fibers1–12. In recent years, there has been increasing interest in the study 
of solitary waves in nonlinear fractional differential equations (NFDEs), which are differential equations involv-
ing fractional derivatives. NFDEs are generalizations of classical differential equations, in which the order of the 
derivative is not necessarily an integer. Solitary wave solutions of NFDEs have important applications in various 
fields, including physics, mathematics, engineering, and biology13–20. The study of solitary waves in NFDEs is a 
challenging task, due to the nonlinearity and fractional nature of these equations.

In recent few decades, many efficient methods or techniques have been used to find the analytical solutions 
for nonlinear models, such as the Ricatti approach21, the Kudryashov method22, the Darboux transformation23, 
the Jacobi elliptic function approach24, the sine-cosine approach25, the direct algebraic technique26, the extended 
tanh function method27–31, sine-Gordon approach32,33, Fokas technique34, the Hirota bilinear transformation 
approach35,36, the first integral approach37, the trial solution technique38, the 

(
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′

G

)

-expansion approach39, 
(

G
′

G2

)

-expansion technique40,
(

G
′

G
, 1
G

)

-expansion technique41–43, Lie Symmetry method44, the unified method45, and 
so on. The travelling wave solution of DSW was attained by utilizing the auxiliary equation method46. By utilizing 
the modified extended direct algebraic method bell, anti-bell, periodic and dark solitary wave solution of DSW 
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has been attained in47. The series solution of the DSW model was attained by using the Adomian decomposition 
method48.

The coupled (1+1)-dimensional DSW model49 which read as,

We can write the above system in the form of fractional derivative with respect to time is given by,

Here, a, γ1, �1 and η1 are the constant and the α represents the order of fractional derivative with 0 < α ≤ 1 . When 
α = 1 Eq. (2) is converted to classical DSW equation, which was first introduced by Drinfel’d and Sokolov50,51 
and studied by Wilson52. In this article, we will construct an exact solution for the Drinfel’d-Sokolov-Wilson 
model using the generalized rational exponential function method approach with the help of well-known Beta 
derivative. The solutions are attained in the form of singular bright, dark, periodic, bell and lump-type water wave 
structures. The achieved solutions might be useful to comprehend nonlinear phenomena. It is worth noting that 
the implemented method for solving NPDEs is efficient, and simple to find further and new-fangled solutions 
in the area of mathematical physics and coastal engineering. Diverse types of fractional derivatives have been 
used in the past, such as Caputo fractional53, Beta derivative54, Conformable fractional55, Reimann-Liouville56 
and truncated M-fractional derivative57 etc. have importance in fractional calculus.

The remaining article is distributed into various sections. Section (2) contain definition from fractional cal-
culus relevant to our study. In Sect. (3) we have discussed the main step of the method. In Sect. (4) solitary wave 
solutions have been described. Numerical simulations of some attained solutions are given in (5). In Sects. (6) 
and (7) modulus instability, a conclusion is presented.

Beta derivative

Definition  Let �(t) be a function defined for all non-negative t. The function �(t)58 is,

Theorem  Let � and g be any two function, �  = 0 , and α ∈ (0, 1] then

1: Dα
t {b1�(t)+ b2ϒ(t)} = b1D

α
t �(t)+ b2D

α
t ϒ(t),

where b1, b2 ∈ ℜ

2: Dα
t {�(t).ϒ(t)} = �(t)Dα

t {ϒ(t)} + ϒ(t)Dα
t {�(t)},

3: For c any constant, the following relation can be easily satisfied Dα
t c = 0,

4: Dα
t (

�(t)
ϒ(t)

) = ϒ(t)Dα
t {�(t)}−�(t)Dα

t {ϒ(t)}
ϒ(t)2

,

5: Dα
t {�(t)} = (t + 1

Ŵ(α)
)1−α d�(t)

dt
,

Methodology
The GERF method is a quite novel technique for nonlinear partial differential equations (NLPDE)49. The main 
steps are given as:

Step:1
Consider the NLPDE as,

Suppose the travelling wave transformation,

Substituting (5) into (4) then we get ODE given as,

Step:2

(1)
�t + a��x = 0

�t + γ1��x + �1��x + η1�xxx = 0.

(2)
D
α
t �+ a�Dx� = 0

D
α
t � + γ1�Dx�+ �1�Dx� + η1Dxxx� = 0.

(3)D
α
t {�(t)} = lim

ε→0

�(t + ǫ(t + 1
Ŵ(α)

)1−α)−�(t)

ε
,

(4)H(�,�x ,�t ,�xx ,�tt ...) = 0.

(5)�(x, t) = �(̟)eιφ(x,t).

(6)̥(� ,�
′
,�

′′
,�

′′′
, ...) = 0.
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Solution of equation of (7) is,

Here, a0, an , and bn are unknown parameters to be found. The function φ(̟) is defined as

Step:3
We apply the homogeneous balance technique on (7) to attain the value of N.
Step:4 Substituting (7) with equation (8) into (6), then we attain the system of algebraic equations. The system 

is solved by utilizing Mathematica software, and then the achieved solution of (8) is put into (7) by using (5). 
Finally, the solution of (4) is attained.

Solitary wave structure
We consider the travelling wave transformation for FDSW (2) as follows,

Using (9) to (2) and then we get ,

From (10), we have

Putting the value of � into (11) and integrating one time then we get,

Now we have to apply the balancing technique on (13) then we get N = 1 . Utilizing N = 1 in (7) then we get,

where a0, a1 , and b1 are unknown constants to be find. The solution of (2) is discussed as,
Case-1 If [σ1, σ2, σ3, σ4]=[1,−1, 1, 1] and [µ1,µ2,µ3,µ4]=[1,−1, 1,−1] then (8) become,

When equations (14) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions. set-1

Putting (16) into (14) then solution of (2) is,

Set-2

Substituting (19) into (14) then solution of (2) is,

(7)�(̟) = a0 +
N
∑

n=1

(anφ(̟)n + bnφ(̟)−n).

(8)φ(̟) =
µ1e

σ1̟ + µ2e
σ2̟

µ2e
σ2̟ + µ3e

σ3̟
.

(9)�(x, t) = �(̟), �(x, t) = �(̟), ̟ = κ1

(

x +
ω1

α
(t +

1

Ŵ(α)
)α
)

.

(10)aκ1��
′
− κ1ω1�

′
= 0.

(11)�1κ1��
′
+̟1κ

3
1�

′′′
− κ1ω1�

′
+�γ1κ1�

′
= 0.

(12)� =
a�2

2ω1

.

(13)6̟1κ
2
1ω1�

′′
− 6ω2

1� + a(�1 + 2γ1)�
3 = 0.

(14)�(̟) = a0 + a1φ(̟)+ b1φ(̟)−1.

(15)φ(̟) = Tanh(̟).

(16)a0 = 0, b1 = −a1, a1 = a1, γ1 =
−aa

2
1�1 − 48̟ 2

1 κ
4
1

2aa21
,ω1 = 4̟1κ

2
1 .

(17)�(̟) =a1(−csch(̟))sech(̟), ̟ = κ1

(

x +
4̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(18)�(̟) =
aa

2
1csch

2(2̟)

2̟1κ
2
1

, ̟ = κ1

(

x +
4̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(19)a0 = 0, b1 = a1, a1 = a1, γ1 =
96̟ 2

1 κ
4
1 − aa

2
1�1

2aa21
,ω1 = −8̟1κ

2
1 .

(20)�(̟) =a1(tanh(̟)+ coth(̟), ̟ = κ1

(

x −
8̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.
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Set-3

Putting (22) into (14) then solution of (2) is,

Set-4

Substituting (25) into (14) then solution of (2) is,

Case-2 If [σ1, σ2, σ3, σ4] = [ı ,−ı , 1, 1] and [µ1,µ2,µ3,µ4] = [ı ,−ı , ı ,−ı] then (8) become,

When equations (28) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

Putting (29) into (14) then solution of (2) is,

Set-2

Substituting (32) into (14) then solution of (2) is,

Set-3

Putting Eq. (35) into (14) then solution of (2) is,

(21)�(̟) =−
aa

2
1(tanh(̟)+ coth(̟))2

16̟1κ
2
1

, ̟ = κ1

(

x −
8̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(22)a0 = 0, a1 = a1b1 = 0, γ1 =
24̟ 2

1 κ
4
1 − aa

2
1�1

2aa21
,ω1 = −2̟1κ

2
1 .

(23)�(̟) =a1Tanh(̟), ̟ = κ1

(

x −
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(24)�(̟) =−
aa

2
1 tanh

2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x −
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(25)a0 = 0, a1 = 0, b1 = b1, γ1 =
24̟ 2

1 κ
4
1 − ab

2
1�1

2ab21
,ω1 = −2̟1κ

2
1 .

(26)�(̟) =b1 coth(̟), ̟ = κ1

(

x −
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(27)�(̟) =−
ab

2
1 coth

2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x −
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(28)φ(̟) = −Tan(̟).

(29)a0 = 0, b1 = −a1, a1 = a1, γ1 = −
2
(

aa
2
1γ1 + 48̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = 8̟1κ
2
1 .

(30)�(̟) =a1 cos(2̟) csc(̟) sec(̟), ̟ = κ1

(

x +
8̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(31)�(̟) =
aa

2
1 cot

2(2̟)

4̟1κ
2
1

, ̟ = κ1

(

x +
8̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(32)a0 = 0, b1 = a1, a1 = a1, γ1 = −
2
(

aa
2
1γ1 − 24̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = −4̟1κ
2
1 .

(33)�(̟) =a1(− csc(̟)) sec(̟), ̟ = κ1

(

x −
4̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(34)�(̟) =−
aa

2
1 csc

2(2̟)

2̟1κ
2
1

, ̟ = κ1

(

x −
4̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(35)a0 = 0, a1 = a1, b1 = 0, γ1 = −
2
(

aa
2
1γ1 + 12̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = 2̟1κ
2
1 .
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Set-4

Substituting (38) into (14) then solution of (2) is,

Case-3 If [σ1, σ2, σ3, σ4] = [1+ ı , 1− ı , 1, 1] and [µ1,µ2,µ3,µ4] = [ı ,−ı , ı ,−ı] then (8) become,

When equations (41) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

Putting (42) into (14) then solution of (2) is,

Case-4 If [σ1, σ2, σ3, σ4] = [2+ ı , 2− ı , 1, 1] and [µ1,µ2,µ3,µ4] = [ı ,−ı , ı ,−ı] then (8) become,

When equations (45) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

Substituting (46) into (14) then solution of (2) is,

Case-5 If [σ1, σ2, σ3, σ4] = [2, 1, 1, 1] and [µ1,µ2,µ3,µ4] = [1, 0, 1, 0] then (8) become,

When equations (49) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

(36)�(̟) =− a1Tan(̟), ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(37)�(̟) =
a tan2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(38)a0 = 0, a1 = 0, b1 = b1, γ1 = −
2
(

ab
2
1γ1 + 12̟ 2

1 κ
4
1

)

ab
2
1

,ω1 = 2̟1κ
2
1 .

(39)�(̟) =b1(− cot(̟)), ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(40)�(̟) =
ab

2
1 cot

2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(41)φ(̟) = 1− Tan(̟).

(42)a0 = −a1, a1 = a1, b1 = 0, �1 = −
2
(

aa
2
1γ1 + 12̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = 2̟1κ
2
1 .

(43)�(̟) =− a1Tan(̟), ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(44)�(̟) =
aa

2
1 tan

2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(45)φ(̟) = 2+ Tan(̟).

(46)a0 = −2a1, a1 = a1, b1 = 0, �1 = −
2
(

aa
2
1γ1 + 12̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = 2̟1κ
2
1 .

(47)�(̟) =a1Tan(̟), ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(48)�(̟) =
aa

2
1 tan

2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x +
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(49)φ(̟) =
2e̟ + 1

e̟ + 1
.
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Putting (50) into (14) then solution of (2) is,

Set-2

Putting (53) into (14) then solution of (2) is,

Case-6 If [σ1, σ2, σ3, σ4] = [2, 0, 1, 1] and [µ1,µ2,µ3,µ4] = [−1, 0, 1,−1] then (8) become,

When equations (56) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

Putting (57) into (14) then solution of (2) is,

Case-7 If [σ1, σ2, σ3, σ4] = [−3,−1,−1, 1] and [µ1,µ2,µ3,µ4] = [−1, 1,−1, 1] then (8) become,

When equations (60) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

Putting (61) into (14) then solution of (2) is,

Set-2

(50)a0 = −
1

4
(3b1), a1 = 0, b1 = b1, �1 = −

2
(

ab
2
1γ1 − 12̟ 2

1 κ
4
1

)

ab
2
1

,ω1 = −
1

2
̟1κ

2
1 .

(51)�(̟) =
b1(1− 2e̟ )

8e̟ + 4
, ̟ = κ1

(

x −
̟1κ

2
1

2α
(t +

1

Ŵ(α)
)α
)

.

(52)�(̟) =−
ab

2
1(1− 2e̟ )2

(8e̟ + 4)2̟1κ
2
1

, ̟ = κ1

(

x −
̟1κ

2
1

2α
(t +

1

Ŵ(α)
)α
)

.

(53)a0 = −
1

2
(3a1), b1 = 0, a1 = a1, �1 = −

2
(

aa
2
1γ1 − 3̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = −
1

2
̟1κ

2
1 .

(54)�(̟) =
a1(e

̟ − 1)

2(e̟ + 1)
, ̟ = κ1

(

x −
̟1κ

2
1

2α
(t +

1

Ŵ(α)
)α
)

.

(55)�(̟) =−
aa

2
1(e

̟ − 1)2

4(e̟ + 1)2̟1κ
2
1

, ̟ = κ1

(

x −
̟1κ

2
1

2α
(t +

1

Ŵ(α)
)α
)

.

(56)φ(̟) = 1− tanh(̟).

(57)a0 = −a1, a1 = a1, b1 = 0, �1 = −
2
(

aa
2
1γ1 − 12̟ 2

1 κ
4
1

)

aa
2
1

,ω1 = −2̟1κ
2
1 .

(58)�(̟) =− a1Tanh(̟), ̟ = κ1

(

x −
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(59)�(̟) =−
aa

2
1 tanh

2(̟)

4̟1κ
2
1

, ̟ = κ1

(

x −
2̟1κ

2
1

α
(t +

1

Ŵ(α)
)α
)

.

(60)φ(̟) = tanh(̟)− 2.

(61)a0 = 2a1, a1 = a1, b1 = 0,ω1 = −
√
aa1

√

2γ1 + �1√
6

,̟1 =
√
aa1

√

2γ1 + �1

2
√
6κ21

.

(62)�(̟) =a1Tanh(̟), ̟ = κ1

(

x −
√
aa1

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(63)�(̟) =−

√

3
2

√
aa1 tanh

2(̟)
√

2γ1 + �1

, ̟ = κ1

(

x −
√
aa1

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.
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Putting (64) into (14) then solution of (2) is,

Case-8 If [σ1, σ2, σ3, σ4] = [1, 0, 1, 1] and [µ1,µ2,µ3,µ4] = [0, 0, 1, 0] then (8) become,

When equations (67) and (15) are putting into equation (13), we arrive at a system of algebraic linear equations. 
By solving these equations simultaneously, we obtain the following set of solitary wave solutions.

Set-1

Putting (68) into (14) then solution of (2) is,

Set-2

Substituting (71) into (14) then solution of (2) is,

Numerical simulation and discussion
In this section, we have drawn the graph of some attained solutions for the structure solution of solitary waves. 
The value fractional parameter α = 1 is fixed in all 2D graphs. Figs. (1 and 2) shows the singular bright soliton 
wave structure. Figures 3,4,6, 5, 7 and 8 shows the dark, periodic, bell and lump type soliton wave structure. In59 
authors have attained the bright soliton solutions of the FDSW model by using the homotopy analysis transform 
method. Similarly in60 authors have achieved bright type soliton solution with the help of the Laplace Adomian 
decomposition method. Periodic-type soliton solutions have been attained by using the sine-cosine method61. 
But in this study, we get more generalized soliton solutions such as bright, dark, periodic, bell and lump.

Modulus instability
We have found the modulation instability of the coupled nonlinear DSW model (1) through linear stability. We 
consider the steady-state solution,

Substituting (74) into (1) then after linearize we get,

(64)a0 = 2a1, a1 = a1, b1 = 0,ω1 =
√
aa1

√

2γ1 + �1√
6

,̟1 =
√
aa1

√

2γ1 + �1

2
√
6κ21

.

(65)�(̟) =a1Tanh(̟), ̟ = κ1

(

x +
√
aa1

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(66)�(̟) =

√

3
2

√
aa1 tanh

2(̟)
√

2γ1 + �1

, ̟ = κ1

(

x +
√
aa1

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(67)φ(̟) =
1

1+ e̟
.

(68)a0 = a0, a1 = −2a0, b1 = 0,ω1 = −
√
aa0

√

2γ1 + �1√
6

,̟1 =

√

2
3

√
aa0

√

2γ1 + �1

κ21
.

(69)�(̟) =a0(1−
2

1+ e̟
), ̟ = κ1

(

x −
√
aa1

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(70)�(̟) =−

√

3
2

√
aa0

(

1− 2
e̟+1

)2

√

2γ1 + �1

, ̟ = κ1

(

x −
√
aa0

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(71)a0 = a0, a1 = −2a0, b1 = 0,ω1 =
√
aa0

√

2γ1 + �1√
6

,̟1 = −

√

2
3

√
aa0

√

2γ1 + �1

κ21
.

(72)�(̟) =a0(1−
2

1+ e̟
), ̟ = κ1

(

x +
√
aa0

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(73)�(̟) =

√

3
2

√
aa0

(

1− 2
e̟+1

)2

√

2γ1 + �1

, ̟ = κ1

(

x +
√
aa0

√

2γ1 + �1√
6α

(t +
1

Ŵ(α)
)α

)

.

(74)

{

�(x, t) =
√
P + u(x, t)ePδǫt

�(x, t) =
√
P + v(x, t)ePδǫt .
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It is supposed that the solution of (75) has as,

(75)

{

ut + Pδǫu+ a
√
Pvx = 0

vt + Pδǫv + γ1
√
Pux + �1

√
Pvx +̟1vxxx = 0.

(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 1.   Graphical solution of (20) with parameters κ1 = −0.1,̟1 = −0.5, a1 = 0.01.
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where κ and ω are the wave number and frequency of perturbation. Putting (76) into (75), the dispersion rela-
tion (DR) is acquired as

from (77), one can see that the real component is negative for all values of κ then any superposition of the results 
will appear to decay. So, the dispersion is stable.

Conclusion
In this work, we have successfully achieved some fresh and further general traveling wave solutions to the 
nonlinear fractional Drinfel’d-Sokolov-Wilson (FDSW) model with beta derivative. The solutions attained by 
using the GERF method for the proposed model are competent to examine the scientific model of gravity water 
waves in shallow water. It is capable of investigating plasma waves in the seaside oceans and breaking down the 
unidirectional spread of long waves in oceans and harbors. The proposed method is not only more powerful than 
previous approaches but has also introduced novel solutions that have not been reported before.

(76)

{

u(x, t) = ρ1e
κx−ωt

v(x, t) = ρ2e
κx−ωt ,

(77)ω =
ρ2

(

aκ
√
P +̟1κ

3 + �1 + δPǫ

)

+ ρ1

(

γ1κ
√
P + δPǫ

)

ρ1 + ρ2
,

(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 2.   Graphical solution of (21) with parameters κ1 = 0.2,̟1 = −0.8, a1 = 0.1, a = 0.5.
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(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 3.   Graphical solution of (23) with parameters κ1 = 1,̟1 = 0.5, a1 = 2.
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(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 4.   Graphical solution of (24) with parameters κ1 = 1,̟1 = 0.1, a1 = 1, a = 2.
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(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 5.   Graphical solution of (47) with parameters κ1 = 1,̟1 = 0.01, a1 = 1.
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(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 6.   Graphical solution of (52) with parameters κ1 = 2,̟1 = 0.01, b1 = 2, a = 0.8.



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17528  | https://doi.org/10.1038/s41598-023-44428-5

www.nature.com/scientificreports/

(a) 3D-Graph (b) Contour Graph

(c) 2D-Graph (d) 2D-Graph

Figure 7.   Graphical solution of (69) with parameters 
κ1 = −0.8, γ1 = 0.01, �1 = 0.02, a = −5, a0 = 0.3, a1 = −5.
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