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Bio‑inspired artificial somatic 
index for reflecting the travel 
experience of passenger agents 
under a flexible transportation 
scenario
Daniel Cabrera‑Paniagua 1, Diego Flores 1, Rolando Rubilar‑Torrealba 2* & Claudio Cubillos 3

This work analyzes the implementation of an artificial mechanism inspired by a biological somatic 
marker that ables a passenger agent to both, react to changes in the service, as well as keep said 
reactions as a memory for future decisions. An artificial mental model was designed, and the 
passenger agent was implemented as an autonomous decision‑making system, where both, the 
choice of the transport operator and the evaluation of the received service were fully delegated to the 
system. The evaluation of the service experience is not only based on rational aspects (such as the cost 
of the trip) but also on subjective aspects related to the satisfaction level derived from the passenger’s 
experience. The experimental scenario considered 10,000 trip requests simulated within an artificial 
map that emulates characteristics that are usually present in a city, such as vehicular congestion, the 
unsafety of certain streets, or the benefits of an area with tourist interest. The results show that the 
option to travel under a transport operator with a touristic profile is a trend. Unlike current cases in 
the industry, this research work explores the scenario where the passenger can have as a client a trip 
profile with memory, differentiated from other clients, and can receive more than one trip proposal for 
the same trip request, according to the different conditions that the passenger is looking for.

Passenger transportation in urban areas remains a topic of international interest. Criteria such as  coverage1, 
 reliability2, and service  efficiency3,4 have been supplemented and expanded to include additional criteria and 
restrictions related to the environment, such as CO2  emissions5,6, carbon  footprint7,8, and circular economy 
practices in the automotive  industry9,10. With the emergence and use of autonomous  vehicles11,12 and the increas-
ing focus on passenger travel  experience13,14, these considerations have become even more critical. At the urban 
level, conventional public transportation systems have been complemented by flexible transportation options, 
such as taxi services (flexible in terms of route and timetable, but more expensive), and in general, by different 
transportation options that can potentially be integrated into multimodal systems (subway, urban elevators, 
bicycle, among others, according to each city context).

Over the past decade, with the emergence and expansion of flexible passenger transportation based on the 
use of mobile  applications15,16, the possibilities of transportation have increased, fundamentally contributing to 
the availability and coverage of transportation service as well as its sustainable  consumption17. However, within 
the context of mobile app-based transportation, there is usually an asymmetry in the passenger–transport opera-
tor relationship. While there is flexibility in the service schedule and the choice of pick-up and drop-off points, 
passengers have limited control over the travel route, which remains at the discretion of the transport operator.

This work investigates the use of a psychosomatic variable for reflecting the travel experience of passenger 
agents under a simulated flexible transportation scenario. Particularly, both rational and affective decisions factors 
are considered within a decentralized decision model. The above allows a digital passenger assistant evaluating by 
itself the different available travel options, and then, selecting the best option according to the passenger prefer-
ences and past experience. Thus, the “best travel route” does not correspond to the single travel option offered 
by a transport operator but is personalized and chosen by each client/passenger.
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When a trip request is sent, the passenger agent must choose between travel proposals generated by three 
types of transport operators: express (provides faster routes), low cost (offers cheaper routes), and tourist profile 
(delivers routes with better travel experience). During the transportation service, if real-time route replanning is 
necessary due to accidents, incidents, or road work, the passenger is notified of the updated route. This modifica-
tion in the initially established travel conditions leads to variations in travel time, cost, distance, and perceived 
utility level (a subjective measure of satisfaction) for the passenger. In turn, an (artificial) somatic reaction occurs 
within the passenger agent. This reaction is modulated through an artificial somatic index, which is registered 
in association with the specific transport operator providing the service. In the next trip request, the passenger 
agent utilizes information from the artificial somatic index to evaluate whether to select the same transport 
operator again. It is important to note that each transport operator has an independent artificial somatic index 
associated with the passenger’s experience of their service.

The somatic marker hypothesis, proposed by Antonio Damasio in the 90  s18, suggests that individuals experi-
ence bodily sensations and changes when making decisions. These sensations and bodily changes accompany and 
guide decision-making consciously and unconsciously. Somatic markers develop throughout a person’s life, with 
early stages of life such as childhood and adolescence being particularly significant. In this way, incorporating 
an artificial mechanism inspired by biological somatic markers provides the passenger agent with the ability to 
react to service changes and retain these reactions as memories for future decisions. An artificial agent equipped 
with such a built-in mechanism represents an autonomous decision-making system where both the choice of the 
transport operator and the evaluation of the received services are fully delegated to the system.

There are different attributes or factors for addressing passenger satisfaction, such as efficiency, security, 
convenience,  amenity19, network design, service reliability and  professionalism20, connectivity, cleanliness, sta-
tion facilities,  operations21, to name a few. In the present research work, the evaluation of the service experience 
is not only based on rational aspects (such as the trip cost), but also subjective aspects related to the on-route 
passenger’s experience, that is, what kind of streets conform the travel route.

There have been some studies proposing the design of artificial somatic  markers22–24. However, to the best 
of our knowledge, no previous work has suggested implementing a bio-inspired mechanism based on somatic 
markers to reflect the passenger’s reactions within the flexible passenger transportation domain, understanding 
the passenger agent as an autonomous decision-making system. Considering all the above, the novelty of our 
research lies in the following aspects: (1) designing an artificial mental model that incorporates cognitive com-
ponents and artificial somatic reactions of a passenger agent, (2) developing a bio-inspired mechanism based 
on somatic marker to reflect the passenger’s reaction when facing real-time route replanning, (3) designing an 
algorithm that uses the mechanism defined in (2) to support decision-making in the flexible passenger trans-
portation domain, (4) defining an experimental scenario for real-time route replanning in the flexible passenger 
transportation domain, and (5) analyzing the results obtained from one hundred different experimental cycles, 
each consisting of 100 sequentially received trip request.

The remainder of this work is organized as follows: “Literature review” Section includes a literature review; 
“Mechanisms description” Section describes the mechanisms in terms of the artificial mental model, mathemati-
cal formulation of trip indicators (time, distance, cost, and utility), mechanisms for evaluating travel routes and 
calculating the artificial somatic index, and the algorithmic for the passenger agent’s decision-making; “Scenario 
description and experimental results” Section presents the scenario description and experimental results; “Dis-
cussion” Section discusses the obtained results; finally, “Conclusion” Section concludes the paper and provides 
suggestions for future research.

Literature review
Flexible passenger transportation represents a service modality that allows the passenger to define the trip’s start 
time and origin and destination coordinates. Over the past decade, traditional urban taxi services, which relied on 
telephone calls or face-to-face interactions, have been accompanied by the emergence of flexible transportation 
services based on mobile  applications25–27. Examples of such transport operators  are28–30, which enable passengers 
to indicate their intention to travel from a specific origin to a destination. The transport operator then links the 
passenger with an available vehicle whose driver is affiliated with said operator. Since the passenger is human, 
who requests the service, they usually express their level of conformity with the service received and consider 
this experience in the next trip request eventually. Several studies have analyzed passenger experiences and travel 
 preferences31–35, discussing factors such as passenger loyalty, app-based booking experience, hospitality during 
the journey, and travel post-booking service.

On the other hand, regarding works related to automated systems in the passenger transportation domain, 
several studies focus on autonomous  vehicles36–38, transportation within smart  cities39–41, and the impacts of 
mobility  services42,43, among other things. Specifically in relation to the use of artificial agents in passenger 
transportation, studies have simulated information  availability44, optimized passenger evacuation optimization 
in metro  stations45, and simulated passenger boarding and alighting spatially confined transportation  scenarios46. 
A study by Cabrera-Paniagua et al. (2022) incorporated affective criteria into the decision-making of cognitive 
agents within the flexible passenger transportation domain. The study focused on the integration of artificial emo-
tions in passenger agents. However, it did not contemplate an experimental scenario with repeated trip requests 
from the same passenger, the above with the aim to make use of previous travel experiences. Likewise, it did 
not incorporate the design of any artificial somatic marker. The design and implementation of artificial somatic 
markers in autonomous decision-making systems have been minimally explored, with applications limited to 
tasks such as card  gambling22, theoretical tourism case  studies47, and stock  markets23,24.

Considering the aforementioned literature, we observe the availability of technologies aimed to support 
passenger transportation processes. However, these technologies still require significant human intervention, 
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from trip request submission to the generation of service evaluations that can be retained and considered for 
future trips. Meanwhile, autonomous vehicle technology primarily focuses on vehicle navigation, rather than 
representing the interests of human passengers within an automated environment for negotiating and contracting 
transportation services. The incorporation of affective aspects within autonomous systems based on agents has 
seen increasing attention in recent  years48,49. However, to the best of our knowledge, no previous work has sug-
gested implementing a mechanism based on somatic markers to reflect the passenger’s reactions within the flex-
ible passenger transportation domain, treating the passenger agent as an autonomous decision-making system.

In this work, given the impossibility of carrying out field tests with an already established passenger transport 
provider (e.g., an enterprise of app-based ride services) that would like to incorporate the dimension of user 
preferences within their route planning system, a simulation technique has been used. In addition, the application 
context of our proposal of user preferences and affective factors model does not consider traditional central-
ized planning, but rather a decentralized approach, thought of as an open market of transportation providers 
and demanders (customers). Considering the above, the traditional measures of minimizing the total distance 
traveled, route time and waiting time (in a centralized single objective function) do not represent the novelty of 
the proposal. The novelty is outlined on the side of the client who uses a flexible transport system and how his 
preferences (both rational and emotional in nature) are incorporated into a digital assistant (artificial passenger 
agent) that is capable of negotiating the best route with one or more transport operators, where the idea of “best 
route” is personalized to each client/passenger. Therefore, what is interesting to verify is that the conceived model 
is capable of capturing this complexity and variability in terms of preferences and types of users.

Mechanisms description
Artificial mental model
Following Minsky’s mental model of general  purposes50 as a general guide, Fig. 1 shows an approach of an artifi-
cial mental model for the passenger agent, composed of three levels—Reactive, Deliberative, and Reflective—and 
two layers—Executive and Memory.

Reactive Level: This level represents the first level of response to internal and external stimuli. The "Stimu-
lus–Response Mechanism" is directly associated with actions such as "If … then Do." Additionally, the component 
"Primary Emotions Engine" controls the valuation and status of the entity’s primary emotions.

Deliberative Level: This level addresses stimuli and situations that require more sophisticated responses. Its 
components are as follows:

• Analogies Mechanism This component looks for analogies between the current problem or situation and past 
successful mechanisms used for problem-solving and decision-making.

• Heuristic Mechanism This component allows the use of ad hoc methods or experience-based methods to 
address specific situations.

• Logical Mechanism This component applies logical rules to problem-solving and decision-making.
• Specific Solving Mechanism This component represents all procedures the entity employs to deal with situa-

tions and respond to stimuli that cannot be classified under the above components.
• Secondary Emotions Engine This component combines knowledge, experience, feelings, primary emotions, 

and somatic reactions.

Figure 1.  Artificial mental model (source: own elaboration).
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Reflective Level: This level enables the entity to think and reflect on its decision-making processes and the 
accomplishment of its goals. In addition, it is possible to reflect on how its internal processes are performed, 
including the use of heuristics, logical procedures, and analogies mechanism.

Executive Layer: This layer has mechanisms to classify stimuli based on their origin, level of intensity, dura-
tion, etc. It also identifies opportunities and threats in the environment that may affect goal achievement, and 
measures success in decision-making. The component called "Executive Process Mechanism" is enabled to control 
and monitor the implementation of each decision.

Memory Layer: This layer includes the "Memory Manager" component, which is responsible for storing and 
retrieving information required for the current action (Operative Memory) as well as information related to past 
events, situations, and decisions (Long-Term Memory).

Mathematical formulation
This work considers a simulated artificial city comprising four types of streets: normal, unsafe, congested, and 
tourist. For the purposes of this research work, the travel time corresponds to the simple sum of the required 
transit time for each of the streets that make up a travel route:

where nStreeti,t, uStreetj,t, cStreetk,t, and tStreetl,t represent the trip made from street i in iteration t, corresponding 
to a normal, unsafe, congested, and tourist street, respectively. On the other hand, the parameters nt, ut, ct, and 
tt, represent the time factors of a normal, unsafe, congested, and tourist street, respectively.

The travel distance corresponds to the simple sum of the required transit distance for each of the streets that 
make up a travel route:

where the parameters nd, ud, cd, and td, represent the distance factors of a normal, unsafe, congested, and tourist 
street, respectively, similar to the definition of Eq. (1), considering the factor of distance instead of time.

On the other hand, the cost of travel is determined according to Eq. (3):

where  veCostt corresponds to the operational cost associated with a specific type of vehicle (e.g., city car, luxury 
car) considered in the trip t; timet corresponds to the travel time of the trip t calculated according to Eq. (1); dis-
tancet corresponds to the route distance from an origin point to a destination point in the trip t defined in Eq. (2). 
Parameters vtf, tfc, and dfc correspond to the cost impact of a specific vehicle-type choice, the cost associated 
with the time spent in transportation, and the cost per unit of distance traveled, respectively.

Meanwhile, the utility derived from travel is determined according to Eq. (4):

where nu, uu, cu, and tu represent the utility factor of a normal, unsafe, congested, and tourist street, respectively, 
which is the utility derived from traveling a block of this type of street. It is worth mentioning that utility is 
conceived as a subjective measure of each passenger agent that influences the decision-making process of which 
type of service to use and tries to be a simile of the way in which human beings make their decisions, based on 
their experience and stimuli.

When a passenger agent sends a trip request, they may receive several travel proposals, which are evaluated 
independently by calculating a score, as shown in Eq. (5):

where scoreto,t represents the score associated with the travel proposal received from the transport operator 
to in the trip t; furthermore, somaticIndexto,t, corresponds to an index proposed in this research that links the 
somatic reaction derived from the transport experience with the quantification of that experience. In this case, 
ti, ci, ui, and sii correspond to parameters representing the weight of time, cost, utility level, and somatic index, 
respectively.

Concerning the somaticIndex variable, a positive value represents a good level of travel experiences of a pas-
senger with the transport operator to. Conversely, a negative value represents a poor level of travel experiences of 
a passenger with the transport operator to. It is important to mention that for each passenger-transport operator 
relationship, there is an independent somaticIndex variable that represents said relationship. Likewise, the initial 
somaticIndex value is zero (i.e., a neutral value) and varies over time according to how the passenger evaluates 
the travel experience derived from transport operator service.

As mentioned in previous sections, this work suggests the incorporation of a somatic index as a mechanism 
for evaluating and registering the passenger travel experience associated with different transport operators. 
Particularly, the somaticReaction variable allows determining the intensity of the reaction experienced by the 
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passenger after being notified that it is necessary to replan (in real-time) the travel to the destination point. In 
this sense, somaticReaction is calculated according to Eq. (6):

where Δtimeto, Δcostto, and Δutilityto correspond to the variation between the original travel and the updated travel 
time, cost, and utility, respectively, associated with the travel proposal received from the transport operator to 
in the trip t. On the other hand, the parameters itv, icv, iuv, and irf represent the weight of time, cost, utility, and 
random effect, respectively. For this research, the random effect is uniformly distributed between [− 0.5, 0.5], a 
value that can be modified according to the specific requirement of the application.

The calculation of the somaticReaction variable suggests the use of a smoothing function with the idea of 
smoothing extreme values (of very high positive intensity or very low negative intensity), such as a logistic, sig-
moid, or arctangent function, among others. For this research, the arctangent function was used for calculation 
simplicity. However, it can be replaced by a more general function depending on the application. Likewise, the 
incorporation of a random value allows granting a degree of flexibility in the somaticReaction value, understand-
ing that exposure of a person to the same stimulus (or result) over time does not guarantee the same somatic 
reaction. It should be noted that the Somatic reaction is associated with the transport operator to.

Below we show the example of somatic reaction behavior for synthetic data in Fig. 2. In this graph, we can see 
that as the values become more extreme, the value of the reaction tends to stabilize, which allows us to control 
the overall agent behavior. In addition, confidence bands are shown which correspond to the randomness effect 
described in Eq. (6).

The somaticIndex is defined according to Eq. (7):

where somaticIndexto initially in zero, registers the passenger’s experience regarding the service of a transport 
operator to and siw corresponds to the weight of the previous somatic index in the modeling. Somatic index 
modeling is characterized by an autoregressive effect, in other words, the effect of the previous somatic index 
affects the observed value of the current somatic index. The modeling proposed in this initial work considers an 
equivalent weight between the value of the previous somatic index and the somatic reaction, which allows us to 
conceptualize a memory of the artificial agent about its previous experiences.

Regarding the somaticIndexto valuation, this research considers assigning an equivalent connotation both to 
the memory of the "passenger agent—transport operator" relationship and the most recent reaction experienced 
by the passenger agent prior to the service received from transport operator to. In relation to the somatic marker 
hypothesis, this last experienced reaction by the passenger agent can be associated with a “somatic reward” or 
a “somatic punishment,” which correspond to positive or negative sensations that may linger in the working 
memory of the autonomous  agent47. These sensations can emulate a sense of well-being, regret, or discomfort, 
and they influence the decision-making process. In the case of this work, the somaticReaction variable acts as 
an artificial somatic reward or punishment based on the assessment derived from the most recent experience.

Algorithm 1 describes the general trip request process of a passenger agent. All the steps contained in the 
algorithm are associated with the passenger agent. The algorithm begins with the definition of the trip’s origin 
and the destination points. The passenger agent then submits their request. The algorithm utilizes the route 
determination algorithm designed and presented  by51. Upon receiving travel proposals, the passenger agent 
calculates the travel time, distance, cost, and utility for each route. Each travel proposal is assigned a score, and 
the proposals with the highest score are chosen. The passenger agent then activates the service provision with 
the corresponding transport operator. Subsequently, the passenger agent receives route information, where if 
said information corresponds to a replanning notification, the agent obtains the new route to follow. From this 
new route, the passenger agent recalculates the travel metrics, which comprise the travel time, distance, cost, 
and utility derived from the route. Once the travel metrics have been updated, the passenger agent experiences 
an artificial somatic reaction, which, in turn, affects the update of the somaticIndex, generating a record in the 
working memory for the next decision and a record in the long-term memory.

(6)somaticReactiontot = tan−1
[

�timetot · itv +�costtot · icv +�utilitytot · iuv
]

± rand[−0.5, 0.5] · irf

(7)somaticIndexto = siw · somaticIndexto + (1− siw) · somaticReactiontot

Figure 2.  Example of somatic reaction behavior [source: own elaboration].
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Regarding algorithm 1 and the artificial mental model presented in Fig. 1, steps 1, 2, and 4 are associated 
with an executive process mechanism (within the executive layer). Meanwhile, steps 3 and 6 are associated with 
the memory layer, specifically, the operative memory (of the passenger agent). On the other hand, steps 7–11 
are specific solving mechanisms since they correspond to mechanisms for calculating travel metrics. Both the 
travel proposal and its score are recorded in the working memory. Meanwhile, steps 14–17 are associated with 
the deliberative level since they allow the passenger agent to decide on the transport operator and operationalize 
said decision. In addition, faced with a real-time route replanning (logical evaluation of step 18 of the algorithm), 
steps 19–23 associated with calculating travel metrics are performed (that is, at a deliberative level).

The primary effect derived from the route change corresponds to the somatic reaction experienced by the 
passenger agent and is obtained in step 24 (at the reactive level of the artificial mental model, through the 
Somatic Engine component). Meanwhile, the subsequent effect of this somatic reaction is obtained in step 25 
(at the deliberative level of the artificial mental model, through the Secondary Emotions Engine component), 
and is reflected by using an index (at the level of secondary emotions) representing the passenger’s experience 
with the service received from a specific transport operator.

Scenario description and experimental results
Scenario description
This research work considers a simulated artificial city, represented by a 30 × 30 matrix, where four types of streets 
are present: normal, unsafe, congested, and tourist. The proportion of each kind of street corresponds to 25% 
of the total streets, and their distribution within the matrix is randomly determined. A normal street represents 
a neutral state in terms of travel time and the sensation it evokes in people. An unsafe street has characteristics 

18: If (routeInformation == ‘route replanning’)

19: updatedRoute = get New Route(service)

20: time = determine Time (updatedRoute) [using Eq. 1]

21: distance = determine Distance (updatedRoute) [using Eq. 2]

22: cost = determine Cost (updatedRoute) [using Eq. 3]

23: utility = determine Utility (updatedRoute) [using Eq. 4]

24: somaticReaction = get Somatic Reaction (updatedRoute) [using Eq. 6]

25: somaticIndex = update Somatic Index (somaticReaction) [using Eq. 7]

26: Add (somaticReaction, somaticIndex; transportOperator) in {workingMemory}

27: Add (somaticReaction, somaticIndex; transportOperator) in {longTermMemory}

28: End If   
End Algorithm 1

Problem description: Considering points of origin and destination, request travel proposals for a passenger agent.

Preconditions: There is a passenger agent with points of origin and destination.

Postconditions: There is a list of travel proposals that are analyzed by travel metrics: time, distance, cost, utility, 

somaticIndex, and score.

Input: Travel coordinates.

Output: Travel decision made by the passenger agent; an updated experience related to a transport operator service.

Begin
1: set {origin} from {input parameter}

2: set {destination} from {input parameter}

3: Add (origin; destination) in {tripRequest}
4: send Trip Request (tripRequest)
5: For each travelProposal received:

6: Add (travelProposal) in {travel_Proposal_List}
7: time = determine Time (travelProposal) [using Eq. 1]

8: distance = determine Distance (travelProposal) [using Eq. 2]

9: cost = determine Cost (travelProposal) [using Eq. 3]

10: utility = determine Utility (travelProposal) [using Eq. 4]

11: score = determine Score (time, cost, utility, somaticIndex) (Using Eq. 5)

12: Add (travelProposal; score) in {proposals_List}
13: End For
14: Sort {proposals_List} by {score}

15: {decision} = get {travelProposal} by Max {score} from {proposals_List}
16: service = activate Service (decision)

17: routeInformation = get Travel Route Information (service)

Algorithm 1. General trip request process of a passenger agent.
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that may represent a risk or danger to those who pass through it (e.g., poor lighting, presence of blind walls, 
abandoned sectors), evoking negative sensations in people. Meanwhile, a congested street requires more time 
to travel and leads to a lower level of satisfaction. Finally, a tourist street also requires more time to travel, but it 
elicits pleasant sensations. A street is considered to have a single prevailing characteristic (i.e., it can belong to 
only one of the four previously mentioned types). Likewise, a travel route can contemplate the passage through 
streets of different types.

The scenario is based on the execution of Algorithm 1 by the passenger agent, who requests to be transported 
from coordinate (1,1) to coordinate (30,30). Then, the passenger receives three different travel proposals: one 
from an “express” transport operator (generating faster routes), one from a “low cost” transport operator (gen-
erating cheaper routes), and one from a “touristic” transport operator (providing routes with a better travel 
experience). The passenger agent selects one of the travel proposals. The experimental scenario considers route 
replanning is always required, triggering a somatic reaction in the passenger agent. The somaticIndex specifi-
cally associated with the transport operator offering the service is then updated. At the end of the execution of 
Algorithm 1, the passenger agent has a new travel experience provided by a particular transport operator (whose 
effect is registered in the respective somaticIndex variable).

Algorithm 1 is executed 100 times sequentially by the passenger agent, with the passenger agent requesting 
transportation 100 successive times from the origin to the destination. Thus, the somatic reactions of the pas-
senger agent are successively transferred from execution to execution, as well as the update of the somaticIndex 
variable associated with the transport operator that provided the last service received. The set of 100 execution 
times of Algorithm 1 is called "Cycle." The experimental results of this work summarize the execution of 100 
independent cycles.

On the other hand, Table 1 shows the general parameters used in the different equations presented previ-
ously. The "Time" column is associated with Eq. (1), where time is measured in "time units." The time required 
to pass through a normal (nt) or unsafe (ut) street is 1 (time unit). Meanwhile, a congested street (ct) and a 
tourist street (tt) require 3 and 2 units of time, respectively. The “Distance” column is associated with Eq. (2), 
where the distance traveled on any types of streets will always 1 unit of distance. The "Cost" column is associated 
with Eq. (3), where the first variable veCost represents an initial operational cost associated with the specific 
type of vehicle that the transport operator has suggested for the service. Meanwhile, vtf, dfc, and tfc represent 
the level of importance given to the cost of the vehicle (0.1), the distance traveled on a trip (0.5), and the time 
spent on the route (0.4), respectively. The “Utility” column is associated with Eq. (4), where the utility derived 
from transit through a normal (nu), unsafe (uu), congested (cu), and tourist (tu) street is 1, 0.2, 0.5, and 3 utility 
units, respectively. Meanwhile, the “Score” column is associated with Eq. (5), where travel time, cost, utility, and 
somaticIndex have an importance level of 0.25. Finally, the “somR” column is associated with Eq. (6), where an 
equivalent level of importance of 0.3 is proposed for the variations of time (itv), cost (icv), and utility (iuv). To 
give a degree of variability in the somaticReaction, a random value has an importance level of 0.1.

Given that the present research work uses synthetic data, for the calculation of the score it has been decided 
to grant equivalent weights to time, cost, utility, and somaticIndex. In the same way, for the calculation of 
the somaticReaction variable, an equivalent weight has been given to the variation of time, cost, and utility, 
respectively.

Experimental results
The results of all the experiments for the dimensions “Time,” “Cost,” and “Utility” are summarized in Table 2. 
It can be seen that the time used to travel from the initial point to the endpoint for the Express service takes an 
average of 83.37 time units, with a standard deviation of 3.31. The minimum and maximum values correspond 
to 77.00 and 97.00, respectively, which indicates that the data distribution is skewed to the “left.” Similarly, in 
the case of the Low Cost and Tourist service, we observe an average value of 84.35, and 89.93, respectively, and 
a standard deviation of 1.45, 2.59. The above suggests that it is more likely to find observations smaller than 
larger, in relation to the mean value.

In the case of the "Cost" dimension, it is observed a total of 63.93, 63.88, and 67.65 monetary units were spent 
on average with a level and variability of 1.51, 1.45, and 2.59, considering its standard deviation for Express, 
Low Cost, and Tourist service, respectively. Similarly, for the time spent, a greater concentration of values can 
be observed to the "left," although more pronounced, showing the existence of extreme values in costs, lower 
than the mean value.

The case of the "Utility" dimension shows a total of useful centered at 61.57, 61.10, and 70.75 with a variability 
of 5.11, 5.57, and 6.83, measured by its standard deviation for Express, Low Cost, and Tourist service, respectively.

Table 1.  General parameters for all the experimental cycles.

Time 
(Eq. 1) Value

Distance 
(Eq. 2) Value Cost (Eq. 3) Value

Utility 
(Eq. 4) Value

Score 
(Eq. 5) Value

somR 
(Eq. 6) Value

nt 1 nd 1 veCost Rand[0,10] nu 1 ti 0.25 itv 0.3

ut 1 ud 1 vtf 0.1 uu 0.2 ci 0.25 icv 0.3

ct 3 cd 1 dfc 0.5 cu 0.5 ui 0.25 iuv 0.3

tt 2 td 1 tfc 0.4 tu 3 sii 0.25 irf 0.1
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Figures 3, 4, and 5 graphically show the behavior of the experimental results related to time, cost, and utility, 
respectively. Figure 3 shows the touristic profile transport operator is the one that spends the longest time on 
its journey and the highest level of variability in its results, which is consistent with the search for routes that 
deliver higher levels of satisfaction or well-being. The low-cost profile transport operator has less travel time than 
the tourist company and less variability. Finally, the express profile transport operator is the one that shows the 
lowest average level of time spent and the lowest variability compared to the previous cases.

Figure 4 shows that the tourist profile transport operator has a higher level of cost and variability. The low 
cost and express transport operators present a lower level of total costs and less variability in the tourist profile. 
A lower level of variability is observed in the low-cost case when compared to express, although they are simi-
lar with respect to its mean values. The explanation for this phenomenon, in which no major differences were 
detected concerning cost, is given by experimentation parameters related to the factors of time, vehicle type, 
and distance that influenced the cost of the service. In this sense, the low-cost service, which seeks routes with 
shorter distances and cheaper vehicles, can be compared with the express service because the latter seeks routes 
with a shorter arrival time, reducing the time costs of the service.

Figure 5 shows the level of utility experienced by the passenger agent in the experimental scenario. In the case 
of the touristic transport operator, it is possible to observe a higher level of average utility and a higher level of 

Table 2.  General descriptive statistics.

Type of service Dimension Mean Standard deviation Minimum Maximum

Express

Time 83.37 3.31 77.00 97.00

Cost 63.93 1.51 61.21 69.28

Utility 61.57 5.11 41.10 75.00

Low Cost

Time 84.35 3.54 75.00 93.00

Cost 63.88 1.45 60.18 66.96

Utility 61.10 5.57 37.70 78.00

Tourist

Time 89.93 4.99 77.00 110.00

Cost 67.65 2.59 61.4 79.89

Utility 70.75 6.83 51.30 101.00

Figure 3.  Average of time for each transport operator profile.

Figure 4.  Average of cost for each transport operator profile.
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variability, finding an important group of values considered extreme. Meanwhile, the utility of the low-cost and 
express transport operators has similar levels of satisfaction in mean and standard deviation, with no significant 
differences between them.

Table 3 shows the use levels of the different services available. The touristic transport operator is predominant 
with a level of use of 63.3% on average, considering the 100 experimental cycles with 100 trips each. The express 
transport operator obtained a level of use of 26.1%, while the low-cost transport operator obtained 10.6%. It can 
also be seen that the touristic transport operator presents the highest level of variability measured by its standard 
deviation, followed by the express and the low-cost transport operators.

On the other hand, the choice model between the three types of transport services (choice of transport ser-
vices) for a period t is defined according to Eq. (8):

where somaticIndext,lc, somaticIndext,exp, somaticIndext,tou correspond to the somaticIndex of the low cost, express, 
and touristic service in period t, respectively.

To model the choice of a specific service we propose a Multinomial Logit model:

where Pr(Yi = j) corresponds to the probability that the passenger agent chooses the service j; xi represents the 
somatic index variable associated with each transport operator, which is low cost, express, and touristic artificial 
reactions; and β corresponds to the vector of parameters to be estimated for each of the possible choices. The 
model assumes that the somatic reactions of the different contracted services conditionate the service choice to be 
taken at the next opportunity. For this research, we are going to assume complete independence in the selection 
of travel routes, meaning that a route used by a particular service is not correlated with another type of service. 
In this sense, this assumption, although unrealistic in the real world, allows us to explore selection alternatives 
through the use of synthetic data and a potential future line of research with the implementation and use of 
empirical data. This model provides a concrete tool for estimating the parameters of artificial agents, based on 
behavior that can be observed in the real world, allowing artificial agents to behave similarly to the behavior and 
decisions of human beings. The regression results of synthetic data are shown in Table 4.

For the regression model, the choice of express transport operator is taken as a basis, so the analysis is carried 
out by comparing this service. It is possible to observe that in the case of the low-cost transport operator, the 
somatic reaction from the choice of the tourist transport operator is positively related, while the other somatic 
reactions are not significant.

Meanwhile, in the case of the tourist transport operator, a significant and negative relationship is observed 
concerning an increase in the somatic reaction of the Express service, so that the higher the level of somatic 
reaction of the Express service, the lower the probability of the tourist service option be chosen. Additionally, 
a significant and positive relationship can be observed with the somatic reaction of the tourist company, which 
implies that the higher the level of somatic reaction, the greater the possibility of being chosen in the next period.

(8)CTSt = f
(

somaticIndext,lc , somaticIndext,exp, somaticIndext,tou
)

,

(9)Pr
(

Yi = j
)

=
eβjxi

∑3
k=1 e

βkxi
, j = 1, 2, 3,

Figure 5.  Average of utility for each transport operator profile.

Table 3.  Usage levels for each type of transport operator.

Transport operator Mean (%) Standard deviation (%) Minimum (%) Maximum (%)

Express 26.1 4.2 17.0 37.0

Low cost 10.6 2.9 4.0 18.0

Touristic 63.3 5.1 49.0 74.0
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Discussion
The experimental results were obtained from the execution of 100 independent cycles, each of them consisting 
of 100 travel requests generated by the passenger agent in a sequential manner. In total, 10,000 trip requests 
were analyzed. It should be noted that all these travel requests were generated from a single configuration of 
parameters available in Table 1.

The experimental scenario considered a single passenger agent profile. Given that three travel proposals were 
generated for each trip request (one for each type of transport operator), the option that the passenger agent 
chose the proposal with the best score was always considered. The trip metrics were the same for each proposal 
from each transport operator. The results indicate a trend toward passengers preferring travel options provided 
by transport operators with a touristic profile. This suggests that passengers may prioritize factors other than cost 
or travel time. For example, some recent studies have shown that passengers give greater importance to factors 
other than cost or travel time, such as in-vehicle environment (e.g., comfortable seats and temperature), frequent 
and regular service, and driver’s  attitude52, vehicle condition and  hygiene53, and the perceived vehicle and driver-
related  risk54. Additionally, the results demonstrate that express or low-cost transport operators occasionally pro-
vide successful trips. It is the global score indicator that gives flexibility to the passenger agent to select the travel 
proposal that balances the metrics of time, cost, and utility, all the above along with the somaticIndex variable.

The general experimental scenario studies an artificial map that simulates characteristics usually present in a 
city, such as vehicular congestion, the insecurity of certain streets, or the benefits of an area with a tourist profile. 
The map can be extended in terms of dimensions and characteristics by, for example, incorporating sections of 
high-speed highways, specifying street or neighborhood types through which it travels (university, commercial, 
and residential), and highlighting critical public services (hospitals, police).

Meanwhile, Eqs. (1), (2), (3), and (4) allow determining essential metrics of the passenger agent’s movement 
on the map. A change in the characteristics of the map also entails reviewing and updating the equations that 
determine the travel metrics.

Equation (5) considers travel metrics and somaticIndex variable, which synthesizes the passenger agent’s level 
of travel experiences with a specific transport operator. This index is updated based on the artificial somatic reac-
tion experienced by the passenger agent when notified to replan the initially informed travel route. It should be 
noted that the somatic reaction equation considers a random factor, so that in the eventual presence of identical 
stimuli, the artificial somatic reaction in the passenger agent does not yield the same result.

The current updating mechanism of the somaticIndex variable gives an equivalent weight to both the record 
of past experience and the last somatic reaction that took place in the passenger agent (derived from the most 
recent travel experience with a specific transport operator). It is possible to modify the current proposal to reflect 
the passenger agent’s travel experience. An alternative is to give more importance to the recent somatic reaction 
to the extent that the travel experience with a specific transport operator becomes systematically poor. Another 
alternative is to determine a proportion of recent somatic reactions over the total of recorded travel experiences 
with a specific transport operator.

The general trip request process algorithm is defined from the passenger agent’s perspective, encompassing 
all the steps that the passenger agent requires to evaluate and select the travel proposal and to record their travel 
experiences. The foregoing also considers the option of being able to process a route replanning in real-time. In 
this work, this replanning was always considered within the experimental scenario to derive both the somatic 
reaction and the updating of the somaticIndex. The present work establishes the context in which the passenger 
agent should face some circumstance that would lead to some type of somatic reaction. Currently, it is accepted 
that the generation of memories is directly influenced by people’s somatic  states55. Thus, this accumulated travel 
experience is reflected in the following decisions of the passenger agent.

In the experimental scenario, the autonomous system recurrently requests to be transported considering 
the same origin–destination coordinate pair. This seeks to represent a passenger who needs to be transported 
frequently between usual places (e.g. home to work and work to home) or between places within a city that are 

Table 4.  Multinomial Logit model estimation. Number of replicates 10,000. a The reference category Express. 
***p < 0.01, **p < 0.05, *p < 0.1.

3-categories of artificial  agenta β Std. Error

95% confidence interval

Lower bound Upper bound

Tourist agent

 Low cost reaction 0.029 0.065 − 0.098 0.157

 Express reaction − 0.138* 0.072 − 0.279 0.003

 Tourist reaction 0.261*** 0.057 0.149 0.372

 Constant 0.771*** 0.027 0.717 0.825

Low cost agent

 Low cost reaction − 0.039 0.083 − 0.203 0.124

 Express reaction − 0.087 0.093 − 0.269 0.095

 Tourist reaction 0.132* 0.729 − 0.011 0.275

 Constant − 0.620*** 0.035 − 0.689 − 0.551
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weakly covered by the conventional public transport system (in frequency or in travel experience), or directly 
without coverage.

The current work seeks to reflect the experience of a user concerning his trip. In this case, the passenger agent 
acquires information from his previous trips (from the somaticIndex variable). About the User Equilibrium 
 criterion56 and the present research work, it is possible to indicate that: (1) in the conformation of each route 
option, the information about each route segment is known during the route generation process itself (since the 
algorithm for path generation, presented  by51, is a constructive algorithm in nature); (2) the passenger agent will 
not necessarily select the route option with the lowest cost or time; (3) the passenger agent profiles have different 
characteristics that differentiate them from each other.

On the other hand, mental models are analog representations that preserve the structure of the thing they 
 represent57. Cognitive psychology suggests that a mental model is composed of two major components: knowl-
edge structures (schemes) and processes for using this knowledge (mental operations)58. Meanwhile, emo-
tions and somatic reactions influence human perception and decision-making18,59. Considering the above, the 
proposed artificial mental model is bio-inspired in cognitive human processes and disaggregates the different 
cognitive functions present in people into specialized components. The proposed artificial mental model can 
be further specialized, for example, by incorporating sub-components, allowing facing thematic deliberative 
processes based on the types of problems to be addressed, or designing sub-components that allow recording 
events or memories through alternative mechanisms. Likewise, the management of the affective dimension could 
be grouped within a specific additional layer that can be transversal to the three existing levels in the artificial 
mental model.

The proposed artificial mental model represents an abstract approach to the human mind. It corresponds to 
a static view, that is, it does not describe a flow or procedure. In this sense, the relationship between the com-
ponents requires the definition of procedures that make articulated use of them. As an example, in algorithm 1 
the component "Executive Process Mechanism" is used in steps 1, 2, and 4. Lines 7 to 11 represent actions that 
can be associated with a "Specific Solving Mechanism." Meanwhile, step 24 represents an action that can be 
associated with the "Somatic Engine" component, while step 25 represents an action that can be associated with 
the "Secondary Emotions Engine" component. For its part, line (27) is an action associable to the "Long-Term 
Memory" component.

Due to the specific context of the experimental scenario, the reflective level of the artificial mental model was 
not considered in the evaluation of the proposal. However, incorporating the reflective level would enable the 
passenger agent to retrospectively evaluate their experiences derived from the use of the service provided by each 
transport operator. This would allow the passenger agent to share their opinions derived from their perception 
of the service received. Consequently, the decision regarding which travel proposal to select could be based not 
only on travel metrics (i.e., objective dimension) and individual travel experience (i.e., individual subjective 
dimension) but also on the opinion of other passengers (i.e., social subjective dimension).

The purpose of the trip, preferences and psycho-emotional factors must be known, captured and modeled 
by the passenger agent that corresponds to the client’s digital assistant (and not transferred to the operator) 
under a decentralized planning or assignment approach. Then, the model proposed in this article focuses on a 
particular aspect of user preferences. These are their psycho-emotional reasons/factors and modeled in terms 
of a psychosomatic factor. These factors, and therefore the proposed model, can be complemented with more 
rational factors for capturing preferences and valuing trips. Our proposal is in line with expanding and enriching 
the set of factors and measures to model customers’ preferences and route selection mode in a flexible passenger 
transport scenario, and not replacing the factors and measures with purely psycho-emotional ones.

In relation to the distance factors of each type of street traveled, and with a view to the implementation of 
a mobile app or electronic platform, they can be obtained and derived from the application of questionnaires 
(with Likert scales) to reveal people’s preferences, and thereby training or adjusting the weights and parameters 
of the model to the characteristics and preferences of the user.

Given the decentralized nature of service planning, different actors (passenger agents, transport operators) 
can pursue different objectives and therefore each one can be modeled differently and considering their own 
measures and variables. Operators could try to minimize the number of vehicles and balance the routes within 
those used vehicles, while customers could seek to satisfy their travel preferences, but not in a group mode but 
rather individually.

The proposed model can also be extended to passengers of private vehicles, under the scenario in which a 
driver asks his personal digital transportation assistant (e.g. Waze, Google Maps) which is the best route between 
two points, but not only considering distance, vehicle congestion, current or historical average speed of the dif-
ferent alternatives, but also incorporates the preferences in terms of previous personal experiences of said driver. 
For example, an experienced and perhaps more risky driver will not distinguish or select a street that has priority 
at intersections with other streets, compared to another where he has to give up preferences. However, a more 
novice or new driver will prefer easier, safer and less demanding routes in terms of driving skills (e.g. calculating 
distances to cross an intersection or pass another vehicle). Other factors that can affect drivers’ preferences may be 
the number of curves, the slope of the street, the general movement of other vehicles, buses and even pedestrians 
that may be crossed. In this sense, good and bad previous experiences will clearly influence a driver’s choice of 
streets and routes. And in this sense, the proposed model seeks to complement current preference models so 
that they can incorporate these conditions due to past experiences.

This research work presents an autonomous decision-making system that represents a human passenger 
under a flexible passenger transport modality, specifically, in a case of a passenger who makes a frequent trip 
between an origin and a destination. Unlike current cases in the industry, this research work explores the case 
where the passenger can have as a client a trip profile with memory, differentiated from other clients, and can 
receive more than one trip proposal for the same trip request, according to the different conditions that the 
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passenger is looking for. The current proposal extends the service typically seen on flexible transportation mobile 
platforms, where people are limited in their options for choosing routes and in the automated recording of their 
travel experiences. In this sense, affective artificial intelligence offers a reasonable alternative to extend current 
decision models and develop sensitive business models with human life experience. Indeed, it is necessary to 
deepen the analysis on the incorporation of AI within technologies to support the movement of people, in such 
a way as to explore business models that, while remaining viable, give greater importance to human factors and 
flexible travel conditions.

In the future, technological systems accompanying people in their daily lives will not only be oriented toward 
recommending decisions for said people (e.g., which product to buy, what urban travel service to hire, and what 
tourist destination to visit) but also possess the capability to fully and autonomously carry out decision-making 
processes. For individuals to be able to fully delegate their decisions to autonomous technological systems, these 
systems must not only possess the computing capacity to operate under big data scenarios, cloud environments, 
and real-time constraints but also encompass the criteria and variables that represent both human thinking and 
feeling in their decision-making. Traditional technological approaches and decision models, often assuming 
full rationality in human decision-making, will progressively give way to new forms and approaches of decision 
systems and models that embrace a greater richness in terms of decision criteria. These criteria will be defined 
based on the complexity of the modern world, where the purchase of the most reliable product, the selection of 
the cheapest travel route, and the choice of the most popular tourist destination are not always the only determin-
ing factors. People are essentially rational-emotional beings, and therefore, the nature of their decisions must be 
reflected in autonomous systems that aspire to be representative of human decision-making.

Conclusion
This work analyzed the implementation of an artificial mechanism bio-inspired in a biological somatic marker, 
which enables a passenger agent to react to changes in the service and retain those reactions as memories for 
future decisions. An artificial mental model was designed to incorporate both the representation of cognitive 
components and the presence of artificial somatic reactions of a passenger agent. The passenger agent was 
implemented as an autonomous decision-making system, where both the choice of the transport operator and 
the evaluation of the service received were fully delegated to the system. Hence, the evaluation of the service 
experience was based not only on rational aspects, such as the cost of the trip, but also on subjective aspects 
related to the level of satisfaction derived from the passenger’s experience.

Our artificial mental model presents three levels and two cognitive layers (whereas Minsky’s  model50 sug-
gested seven levels). The algorithm of the present research work, specifically in line (5), assumes that another 
additional algorithm operates generating routes (presented  by51). Meanwhile, the somatic marker hypothesis 
presented by  Damasio18, was not applied by himself at an artificial level. In this sense, our proposal designs a 
mechanism bio-inspired in Damasio’s proposal but in artificial terms.

One limitation of this work is that it only considers the participation of a single passenger agent as an entity 
requesting transport services. Another limitation is that real-time route replanning does not distinguish or 
report the cause, even though different types of causes could lead to different types of artificial somatic reac-
tions. Moreover, the experimental results were carried out using a single configuration of parameters. Another 
limitation corresponds to the use of synthetic data, along with a general definition of values for simulation 
parameters (Supplementry file).

A future line of work corresponds to calibrating the simulation parameters from empirical data, intending 
to reflect different types of travel profiles from real passenger profiles. Likewise, to incorporate different magni-
tudes of reactions for the somaticReaction variable, according to the variations in the travel proposals received.

Another area of future research could focus on exploring alternative mechanisms for updating the somaticIn-
dex variable. As mentioned, the current mechanism recognizes the concept of somatic reward or punishment. 
However, it is worth considering the possibility of analyzing other alternative mechanisms that allow for flexible 
variations in the magnitude of the reward or punishment. This would provide a more adaptable approach to 
evaluating the impact of different experiences. Another line of future work involves expanding the number of 
passenger agents, in such a way that the individual evaluation model of the travel proposals received can con-
sider with some degree of influence the travel experience of other passengers. Furthermore, future studies can 
explore the incorporation of compensatory mechanisms by transport operators who have demonstrated subpar 
performance in providing their service.

Data availability
All data generated and analyzed during this study are included in this published article.
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