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Comparative study on free 
vibration analysis of rotating 
bi‑directional functionally 
graded beams using multiple 
beam theories with uncertainty 
considerations
Moustafa S. Taima  1, Mohamed B. Shehab  1, Tamer A. El‑Sayed  1* & Michael I. Friswell  2

The present study investigates the free vibration behavior of rotating beams made of functionally 
graded materials (FGMs) with a tapered geometry. The material properties of the beams are 
characterized by an exponential distribution model. The stiffness and mass matrices of the beams are 
derived using the principle of virtual energy. These matrices are then evaluated using three different 
beam theories: Bernoulli–Euler (BE) or Classical Beam Theory (CBT), Timoshenko (T) or First-order 
Shear Deformation Theory (FSDT), and Reddy (R) or Third-order Shear Deformation Theory (TSDT). 
Additionally, the study incorporates uncertainties in the model parameters, including rotational 
velocity, beam material properties, and material distribution. The mean-centered second-order 
perturbation method is employed to account for the randomness of these properties. To ensure the 
robustness and accuracy of the probabilistic framework, numerical examples are presented, and 
the results are compared with those obtained through the Monte Carlo simulation technique. The 
investigation explores the impact of critical parameters, including material distribution, taper ratios, 
aspect ratio, hub radius, and rotational speed, on the natural frequencies of the beams is explored 
within the scope of this investigation. The outcomes are compared not only with previously published 
research findings but also with the results of 3-Dimensional Finite Element (3D-FE) simulations 
conducted using ANSYS to validate the model’s effectiveness. The comparisons demonstrate a 
strong agreement across all evaluations. Specifically, it is observed that for thick beams, the results 
obtained from FSDT and TSDT exhibit a greater agreement with the 3D-FE simulations compared to 
CBT. It is shown that the coefficient of variation (C.O.V.) of first mode eigenvalue of TSDT, FSDT and 
CBT are approximately identical for random rotational velocity and discernible deviations are noted 
in CBT compared to FSDT and TSDT in the case of random material properties. The findings suggest 
that TSDT outperforms FSDT by eliminating the need for a shear correction coefficient, thereby 
establishing its superiority in accurately predicting the natural frequencies of rotating, tapered beams 
composed of FGMs.

List of symbols
A(X)	� Beam cross-sectional area as a function of X (m2)
A0	� Beam cross-sectional area at the beam root (m2)
b(X)	� Beam width as a function of X (m)
b0	� Beam width at the beam root (m)
bL	� Beam width at the beam free end (m)
Cb	� Width taper ratio
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Ch	� Thickness taper ratio
C.O.V	� Coefficient of variation
{ds}	� Displacement vector
E	� Young’s modulus (Pa)
E[omega]	� Mean approximated natural frequencies
gx	� Gradient index through the longitudinal direction
gz	� Gradient index through the thickness direction
h(X)	� Beam thickness or height as a function of X (m)
h0	� Beam thickness at the beam root (m)
hL	� Beam thickness at the beam free end (m)
I0	� Beam second area moment of inertia at the beam root (m4)
[K]	� Stiffness matrix
KE	� Kinetic energy
L	� Beam total length (m)
Li	� Offset distance from the origin to the ith element
ℓ	� Element length (m)
[M]	� Mass matrix
MC	� Monte Carlo
Ne	� Number of elements
P(x, z)	� Beam effective material properties
PEcf 	� Potential energy due to centrifugal force
PEs	� Potential energy due to stress field
R	� Hub radius (m)
R̄	� Dimensionless hub radius (R/L)
Sω	� Standard deviation of natural frequency
Svi	� Standard deviation of random variables
t	� Time (s)
u(x, z, t)	� Axial displacement field
u0	� Axial displacement on the neutral axis (i.e., z = 0)
U1 , U2	� Axial displacements at nodes 1 and 2 respectively
vi	� Random variables
v̄i	� Mean value of the random variable
V	� Volume (m3)
Var[ω]	� First-order approximated variance of natural frequencies
w(x, z, t)	� Lateral or flapping displacement field
w0	� Lateral displacement on the neutral axis (i.e., z = 0)
∂w0
∂x 	� Pure bending cross-sectional slope in CBT
W1 , W2	� Lateral displacements at nodes 1 and 2 respectively
W ′

1 , W
′
2	� Pure bending slopes of CBT at nodes 1 and 2 respectively

x, y, z	� Local coordinates
X, Y, Z	� Global coordinates
Z	� Rotating axis
γxz	� Shear strain field
ε	� Strain vector
εxx	� Axial strain field
� = ω̄/

√
12	� Another dimensionless natural frequency form

ν	� Poisson’s ratio
ρ	� Density ( kg/m3)
σ	� Stress vector
σxx	� Axial stress
τxz	� Shear stress
φ	� Cross-section rotation in FSDT
�1 , �2	� Cross-section rotations of FSDT at nodes 1 and 2 respectively
ψ	� Cross-section slope at z = 0 in TSDT
�1 , �2	� Line slopes at z = 0 of TSDT at nodes 1 and 2 respectively
ω	� Natural frequency (rad/s)
ω(0)	� Zero-order term of natural frequency
ω
(1)
,i 	� First-order term of natural frequency

ω
(2)
,ii 	� Second-order term of natural frequency

ω̄	� Dimensionless natural frequency(ω
√

ρ0A0L4/E0I0)
�	� Rotating velocity (rad/s)
�̄	� Dimensionless rotating velocity(�

√

ρ0A0L4/E0I0)
δ	� Virtual operator
�	� Mode shape vector

Rotating beams can be used to simulate structures such as industrial fans, helicopter and propeller blades, wind 
and steam turbines, robot manipulators, and spinning space structures1. Understanding the dynamical behavior 
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of rotating beams is critical during the early design stages to avoid resonance within the operational speed range 
and to evaluate rotating beam performance. These structural components are made of various material classes to 
satisfy various engineering design specifications. Because of their superior properties, rotating beams manufac-
tured from composite materials have been widely applied in a range of industrial applications during the last few 
decades. When compared to traditional engineering materials, the advantages of composite materials, together 
with their ability to customize their designs to specific uses, have given them a competitive advantage. Aksencer 
and Aydogdu2 investigated the free vibration of a rotating laminated composite beam with attached mass using 
the Ritz method. The authors used different beam theories (CBT, FSDT, and TSDT) in the formulation and con-
sidered the cross-ply lamination configuration. In addition, attached mass to beam mass ratio, position of the 
mass and aspect ratio were examined. Based on Timoshenko beam theory and nonlinear strain-displacement, 
Khosravi et al.3 discussed the thermal vibration of rotating composite beams. The beams were reinforced by 
Carbon Nano-Tubes (CNTs) according to a uniform and two symmetric gradient distributions. The authors 
used the differential transform method to obtain the natural frequencies for different parameters such as hub 
radius, rotating speed, aspect ratio, temperature, and boundary conditions. Xu et al.4 used the TSDT with the 
Ritz technique to investigate the first resonance frequency of rotating nanocomposite beams reinforced with 
carbon nanotubes. Mohammadi et al.5 used the Differential Quadrature Method (DQM) to solve the governing 
equations for a rotating beam composed of multilayer piezoelectric nanobeams. The authors employed surface 
elasticity theory in conjunction with nonlocal continuum theory for the Timoshenko beam to derive the equa-
tions of motion. Furthermore, they investigated the effects of four different boundary conditions, thermal stress, 
external voltage, and angular velocity on the natural frequency.

A class of composites called Functionally Graded Materials (FGMs) has attracted significant attention in 
several modern engineering applications. The required variational features of the material combinations are 
increased by the application of FGMs to increase functional performance. Because of this continual fluctuation, 
FGMs have a continuous stress distribution and prevent stress concentrations. Another exceptional quality of 
FGMs is their capacity to endure high temperatures while preserving structural integrity. Akbaş6 used Lagrange’s 
equations to derive the equations of motions and then the Finite Element Method (FEM) to obtain the thermal 
natural frequencies for axially FGM Bernoulli-Euler beam. The material properties were changed by a power-law 
and were temperature dependent. To examine the nonlinear free thermal vibration of pre/post buckled rotating 
FGM beams, Arvin et al.7 employed Bernoulli-Euler theory and a nonlinear strain displacement relationship 
to propose some new algorithms in conjunction with the nonlinear finite element method. Van Dang8 applied 
Bernoulli-Euler theory and the FEM to investigate the static bending of functionally graded porous rotating 
beams. The beam was impacted by lateral and axial compressive force and embedded in an elastic foundation with 
two parameters. The material properties vary in the thickness direction according to the power law. Binh et al.9 
obtained and solved the equations of motion for a rotating Timoshenko beam formed of functionally graded 
porous material reinforced by graphene platelets using the Chebyshev–Ritz method. The material characteristics 
change according to two different types of porosity distributions through thickness and two different graphene 
platelet dispersion patterns. The authors investigated the influence of rotational speed, hub radius, porosity, and 
weight fraction on the natural frequency. Dang et al.10 considered the Coriolis and centrifugal forces in deriv-
ing the equations of motion by using Hamilton’s principle with Love’s shell theory for a cylindrical shell made 
of Functionally Graded Porous (FGP) material. The porosity was changed through the thickness according to 
three different porosity distributions. The authors used Galerkin’s method to obtain the natural frequencies for 
different boundary conditions. Also, they studied the effect of porosity distribution, rotational speed, Coriolis 
acceleration, and geometric parameters.

Unfortunately, the 1D-FGMs are ineffective at meeting the technical specifications for shuttles and aerospace 
craft, such as the stress distributions and temperature in various directions11. Utilizing material properties that 
change in desirable directions, such as two-directional FGM, can address this limitation12. Fang et al.13 investi-
gated the time response and coupled axial, flap-wise, and chord-wise vibration of a rotating BFGM cantilever 
beam. The beam material was gradually changed according to a power-law though the width and thickness. 
Lagrange’s equation and the Ritz method were used to derive the dynamic equations and then solved by using 
the state space method for different material gradients and rotating speeds.

Rotating beams can be classified based on their geometric properties as either uniform or tapered. The later is 
often preferred due to its ability to provide an optimal distribution of weight and strength, which is particularly 
useful in meeting specific structural and functional requirements14. Banerjee et al.15 used Hamilton’s principle 
to derive the equations of motion for the flap vibration of a rotating double tapered Bernoulli-Euler beam. The 
author used the Wittrick-Williams algorithm to solve the resulting dynamic stiffness matrix for different taper 
ratios, rotational speeds, and hub radii. Lagrange’s form with the FEM were used to develop mass, elastic, and 
centrifugal stiffness matrices for a rotating tapered Bernoulli-Euler beam by Bazoune14. The author examined the 
tapering effect in two planes, hub radius, and rotational speed. Chen et al.16 examined the accuracy and efficiency 
of the variational iteration method for the free vibration analysis of a rotating Timoshenko beam. The beam 
was linearly tapered though the width and height. Adair and Jaeger17 reformulated the fourth-order differential 
equation as a first order matrix and used the power series method to obtain the natural frequencies of a rotating 
taper Bernoulli-Euler beam. The authors studied both cone and wedge cantilever beams for different taper ratios. 
Nourifar et al.18 compared the differential transform method and the finite element method for the vibration of 
a rotating cylindrical tapered Bernoulli-Euler beam. The effect of rotating speed and taper ratio were examined 
on the natural frequencies. An improved transfer matrix method was developed by Lee and Lee19 to obtain the 
bending natural frequencies for a tapered rotating Bernoulli-Euler beam. The Frobenius method for a power 
series was used to solve the equations of motion. The authors studied the effect of centrifugal axial force, taper 
ratio, and hub radius on the natural frequencies. Wang and Li20 used the differential quadrature method to solve 
the differential equations obtained by Hamilton’s principle for the lateral vibration of a tapered rotating hollow 
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beam. The beam has constant inner cross-section radius and tapered outer radius. The authors examined the 
effect of rotating speed, hub radius, aspect ratio, taper ratio, and inner radius.

Some literature has explored the use of both taper and composite materials in rotating beams. Piovan and 
Sampaio21 used the variational principle to develop a nonlinear model for a rotating FGM tapered Timoshenko 
beam. The FEM was used to obtain the natural frequencies for different material distribution, aspect ratios, and 
speeds. Zarrinzadeh et al.22 conducted an in-depth investigation of the vibration characteristics of a rotating 
tapered axially functionally graded material (AFGM) Bernoulli-Euler beam using the finite element method. 
Their study encompassed a systematic exploration of various influential parameters, including material proper-
ties, taper ratio, rotational speed, hub radius, boundary conditions, and the presence of a tip mass. For both 
Bernoulli-Euler and Timoshenko rotating tapered FGM beams, Hajheidaria et al.23 investigated the lead-lag, flap, 
and flap-lag vibration. The metal/ceramic-based FGM beam properties changed though the thickness according 
to a power-law in a symmetric structure. The authors used the finite element method with 4 DOF and 8 DOF 
element models. Also, they studied the effect of volume fraction, rotational speed, hub radius, and taper ratio. 
Kumar et al.24 used the differential transform method to estimate the flap wise natural frequencies of tapered 
FGM beams. The material properties changed laterally from the middle to the outer surface symmetrically and 
were estimated using Mori Tanaka methods. The authors discussed the effect of rotational speed, hub radius, 
taper ratio, and gradient index on the frequency.

The modified variational method and multidomain mixed approximations were used by Tian et al.25 to inves-
tigate the vibration analysis of a double-tapered rotating FGM beam. The beam material including porosities 
was distributed based on the modified rule of mixtures. In this model, the Coriolis and nonlinear effects were 
considered for bending-stretching, twist-stretching, and bending twist vibration modes. The authors investigated 
the material, rotation speed, and various geometric effects. Bhattacharya and Das26 considered the non-linear 
geometry, Coriolis acceleration, spin-softening, and thermal environment to study the free vibration of rotating 
micro-beams. In this study, Timoshenko theory, along with modified couple stress theory, investigated a double 
taper BFGM rotating beam. Also, the authors examined the effect of FGM composition, size-dependence, taper 
ratio, aspect ratio, hub radius, and temperature. To obtain the natural frequencies and mode shapes of a rotating 
BFGM for a tapered cantilever beam, Zhou et al.27 used the Rayleigh-Ritz method. The equations of motion for 
time-dependent rotating velocity with periodic coefficients were derived by using Hamilton’s principle and the 
Galerkin method. Bolotin’s method with a higher-order approximation is used to solve the dynamic instability 
caused by periodic rotational velocity. The authors examined the effect of hub radius, rotational speed, FGM 
index, dynamic amplitude factor, and taper ratio on dynamic instability and natural frequency. Özdemir28 inves-
tigated the free vibration and buckling behavior of rotating beams. Considerations included linearly tapered 
beams and axially functionally graded materials using a simple power law. Bernoulli-Euler and Timoshenko 
beam theories were applied using the Finite Element Method. The author investigated many parameters includ-
ing the hub radius, rotational speed, power law index, aspect ratio, taper ratio, and other boundary conditions.

Various beam theories have been employed to investigate the vibration characteristics of rotating beams. The 
classical beam theory, also known as Bernoulli-Euler theory (CBT), represents the oldest and most fundamental 
approach. CBT assumes that the cross-section of the beam remains planar and perpendicular to the beam axis 
after deformation. Due to its simplicity and suitability for thin beams where transverse shear deformation is less 
significant, CBT continues to be widely utilized6–8,14,15,17–20,22–24,27,29.

For situations involving thick beams, Timoshenko beam theory, categorized as a First-order Shear Defor-
mation Theory (FSDT), is commonly employed3,5,9,16,21,23,26,30–39. In FSDT, the assumption of the cross-section 
staying perpendicular to the beam axis after deformation is no longer taken for granted. Additionally, the shear 
distribution across the beam section is approximated as constant. To compensate for the uniform shear distribu-
tion, a shear correction factor κs is introduced in this theory.

Third-order shear deformation theory (TSDT), also known as Reddy beam theory, goes a step further, and 
accounts for the fact that the cross-section will no longer remains straight or perpendicular to the beam axis 
after deformation. In TSDT, the transverse shear strain and stress are assumed to have a parabolic distribution 
with respect to the thickness coordinate4,8,40.

In the literature, there is a paucity of studies that compare different beam theories for rotating beams. How-
ever, Hajheidaria et al.23 and Özdemir28 discussed and compared Bernoulli-Euler and Timoshenko beam theories. 
Furthermore, Aksencer and Aydogdu2 conducted a comparison of the Reddy, Timoshenko, and Bernoulli-Euler 
beam theories for rotating beams. These studies provide important insights into the performance of different 
beam theories and can assist in the design and analysis of rotating beam structures. Nonetheless, further research 
is needed to fully understand the behavior of rotating beams and determine the most appropriate beam theory 
for specific applications.

The prior investigations have primarily focused on the vibration of rotating beams characterized by deter-
ministic properties. Nevertheless, it is crucial to acknowledge that real-world structures and mechanical systems 
inherently possess random properties. These uncertainties have a significant impact on both performance and 
structural reliability. Within the realm of rotating structural systems, these uncertainties arise from various 
sources, including variations in loads and material properties. To design highly reliable rotating beam structures, 
it is essential to comprehensively examine the collective effects of uncertainties in material and sectional prop-
erties, geometric parameters, and angular velocity on the stochastic response of rotating beams. Furthermore, 
conducting sensitivity analyses is crucial as it allows us to identify the design parameters that have the most 
significant influence on the computed statistical characteristics of the structural responses. Several numerical 
studies have been conducted to explore uncertainties in the dynamics of rotating beams41–44. However, based on 
the existing literature and the authors’ knowledge, no study has explored the uncertainty associated with material 
distribution in functionally graded material (FGM) rotating beams and its impact on their natural frequencies.
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The vibration analysis of rotating beams is crucial for various engineering applications, and it is necessary to 
identify the appropriate beam theory for specific scenarios. However, there is a lack of studies in the literature 
that compare different beam theories for rotating beams with BFGM and tapered geometries. This study aims 
to address this research gap by comparing the performance of three different beam theories: Bernoulli–Euler, 
Timoshenko, and Reddy, using finite element analysis with three-dimensional finite elements using the ANSYS 
software. Thus, this study is significant as it will provide valuable insights into the behavior of rotating FGM 
tapered beams and determine the most appropriate beam theory for specific applications. Additionally, uncer-
tainties are addressed by incorporating them into the analysis of rotating velocity, beam material, and material 
distribution. Key parameters, including elasticity modulus, shear modulus, density, and material distribution, 
are treated as random fields, while rotational speed is regarded as a random variable. The remaining sections of 
this article are organized as follows: Section “Mathematical model formulation” presents the theoretical model 
based on the three theories and the finite element analysis using the ANSYS software. In Section “Results and 
discussion”, examples of verification are showcased, and the corresponding model results are presented. Finally, 
the conclusions section summarizes the key findings of this work, highlighting its contributions to the existing 
literature and potential advancements in the field.

Mathematical model formulation
A bi-directional functionally graded material beam of total length L along the axial axis X and a double tapered 
cross-sectional area A(X) is shown in Fig. 1. b(X) is the width and parallel to the Y axis and h(X) is the thickness 
and parallel to the Z axis. The beam is attached to a rigid hub of radius R. The beam rotates in the X − Y  plane 
with a constant angular speed � in rad/s about the Z axis. Also, the beam is divided into Ne elements with equal 
length ℓ and has a local coordinate system x, y, z , where X, Y , Z is the global coordinate system. Li denotes the 
offset of the ith element from the Z-axis as follows:

Geometry and material properties
The double tapered beam geometrical dimensions and cross-sectional area and moment of inertia is given as a 
function of x by

(1)Li = (i − 1)
L

Ne

(2)

b(x) = b0

(

1− Cb
x + Li

L

)

h(x) = h0

(

1− Ch
x + Li

L

)

A(x) = A0

(

1− Cb
x + Li

L

)(

1− Ch
x + Li

L

)

Iyy(x) = Iyy0

(

1− Cb
x + Li

L

)(

1− Ch
x + Li

L

)3

Figure 1.   Schematic drawing of a double tapered rotating BFGM beam.
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where x + Li = X and h0 , b0 , A0 and Iyy0 are the thickness, width, cross-sectional area and second area moment 
of inertia at the beam root, respectively. hL and bL denote the beam thickness and width at the free end. Also, 
0 ≤ Cb = 1− bL

b0
< 1 is the width taper ratio and 0 ≤ Ch = 1− hL

h0
< 1 is the thickness taper ratio. It is noted 

that Cb = Ch = 0 for a uniform beam cross section and for Cb  = Ch the beam has different taper values in the 
width and thickness directions.

In this work, the beam material properties vary continuously along the beam thickness or the longitudinal 
direction or both according to exponential rule of mixtures12. Thus

where P(x, z) is the effective material properties (Young’s modulus E, density ρ and shear modulus G) and P0 is 
the material property at the reference position 

(

0,− h0
2

)

 . gx and gz are the gradient indexes through the longitu-
dinal and thickness direction, respectively. The beam material is homogeneous for gx = gz = 0.

Displacement and strain fields
In the current work, the coupled axial and flap-wise transverse vibration is considered; hence the lag-wise or 
twisting vibration is not considered. The axial displacement u and transverse displacement w of any point on 
the beam according to CBT, FSDT, and TSDT are given by Eqs. (4)–(6), respectively and shown in Fig. 2b–d 
respectively. Figure 2a represents the undeformed cross-section for reference.

The superscripts ( )C , ( )F , and ( )T are used to represent CBT, FSDT, and TSDT, respectively. u0 and w0 are 
the axial and transverse deflection on the neutral axis (i.e., z = 0 ) and t is time. ∂w0

∂x  denotes the pure bending 
cross-section slope in CBT, φ is the cross-section rotation in FSDT and ψ is the slope of the deformed line at 
z = 0 in TSDT as shown in Fig. 2b–d respectively.

Equations (4)–(6) can be rewritten in terms of the displacement vector ds as:

(3)P(x, z) = P0e
gx

(

x+Li
L

)

+gz

(

z
h(x)+

1
2

)

,

(4)
uC(x, z, t) = u0 − z

∂w0

∂x

wC(x, z, t) = w0

(5)
uF(x, z, t) = u0 − zφ

wF(x, z, t) = w0

(6)
uT (x, z, t) = u0 + zψ −

4

3h2
z3
(

ψ +
∂w0

∂x

)

wT (x, z, t) = w0

Figure 2.   The cross-section deformation for CBT, FSDT, and TSDT theories45.
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where the superscript prime ( )′ denotes the derivative with respect to x and the superscript ⊺ denotes the trans-
pose. For linear and small deformations, the non-zero strain fields can be represented by Eqs. (10)–(12) for CBT, 
FSDT, and TSDT, respectively.

or in vector form as

Stress–strain constitutive equations
The stress–strain constitutive equations according to Hooke’s law for linear and small deformations can be con-
sidered for the FGM beam for CBT, FSDT, and TSDT beam theory as, respectively:

where κs denotes the shear correction factor for FSDT.

Virtual energy expressions
The virtual potential energy expression due to the stress field of a single beam element can be obtained in the form

where the subscript s indicates stress field, the superscript ⊺ denotes the transpose and V is the volume. Sub-
stituting Eqs. (13)–(18) into Eq. (19) gives the virtual strain energy for CBT, FSDT, and TSDT, respectively, as

(7){ds}C =
{

u
w

}

=
[

1 0 − z
0 1 0

]

{

u0 w0 w
′
0

}

⊺

(8){ds}F =
{

u
w

}

=
[

1 0 − z
0 1 0

]

{

u0 w0 φ
}

⊺

(9){ds}T =
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w

}

=
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z3 z − 4
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⊺
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0
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w here  DC =
∫

h(x)
2

− h(x)
2

∫

b(x)
2

− b(x)
2

[σC εC] dy dz  ,  DF =
∫

h(x)
2

− h(x)
2

∫

b(x)
2

− b(x)
2

[σ F εF ] dy dz  ,  and  D
T =

∫

h(x)
2

− h(x)
2

∫

b(x)
2

− b(x)
2

[σT εT ] dy dz
.

The virtual potential energy expression due to the axial centrifugal force of a single beam element is given by

where the subscript cf denotes centrifugal, and Fcf  is the centrifugal force that can be obtained as

The virtual kinetic energy expression of a single beam element is

where the superscript dot ˙( ) indicates the time derivative. The specific virtual kinetic energy for CBT, FSDT, and 
TSDT can be obtained by substituting Eqs. (7)–(9) into the general form of virtual kinetic energy Eq. (25) as:

where HC =
∫

h(x)
2

− h(x)
2

∫

b(x)
2

− b(x)
2

[ρ{ds}C δ{ds}C] dy dz , HF =
∫

h(x)
2

− h(x)
2

∫

b(x)
2

− b(x)
2

[ρ{ds}F δ{ds}F ] dy dz , and HT =
∫

h(x)
2

− h(x)
2

∫

b(x)
2

− b(x)
2

[ρ{ds}T δ{ds}T ] dy dz.

Finite element modeling
The condition of equilibrium of a dynamical structure for free vibration based on the principle of virtual energy is

To accurately analyze the vibration behavior of rotating double taper beams made of BFGM, FEM techniques 
are employed using three distinct theories: CBT, FSDT, and TSDT. Each theory requires a specific number of 
degrees of freedom (DOFs) to adequately capture the axial and transverse displacements, as well as the rotational 
motion of the beam. In the CBT approach, a two-node, six DOFs element is utilized to capture the desired dis-
placement and rotation components. These DOFs comprise two DOFs for axial displacement, two for transverse 
displacement, and an additional two for rotational bending motion, as illustrated in Fig. 3a. Axial displacement is 
estimated using Lagrange linear shape functions, while the transverse displacement is estimated using Hermitian 
shape functions as given in Eq. (30).

To achieve higher precision in the analysis, the FSDT method is employed, utilizing a two-node, ten DOFs 
element to accurately capture axial and transverse displacements, as well as rotation. The ten DOFs element for 
Timoshenko beam analysis offers advantages over the six-DOF element, including a superior convergence rate23. 
The nodal displacement vector in this model consists of two degrees of freedom for axial displacement, two for 
transverse displacement, two for rotational motion, and their corresponding derivatives as shown in Fig. 3b. Axial 
displacement is estimated using Lagrange linear shape functions, while transverse displacement and rotation are 
estimated using Hermitian shape functions based on the nodal displacements as given in Eq. (31).

For enhanced accuracy in the analysis, TSDT theory is utilized, employing a two-node, eight DOFs element. 
These eight DOFs encompass two degrees of freedom for axial displacement, two for transverse displacement, 
two for the derivative of transverse displacement, and two for rotation as shown in Fig. 3c. The estimation of axial 
displacement and rotation relies on Lagrange linear shape functions, while transverse displacement is approxi-
mated using Hermitian shape functions, both formulated in terms of nodal displacements as given in Eq. (32).

(21)δPEFs =
∫ ℓ

0

[{

u′0 w
′
0 φ φ′}

D
F δ

{

u′0 w
′
0 φ φ′}⊺] dx

(22)δPETs =
∫ ℓ

0

[

{

u′0 w
′
0 w

′′
0 ψ ψ ′}

D
T δ

{

u′0 w
′
0 w

′′
0 ψ ψ ′}⊺

]

dx

(23)δPEcf =
∫ ℓ

0
Fcf w

′
0δw

′
0dx ,

(24)Fcf (x) =
∫ L

x

∫
h(x)
2

− h(x)
2

∫
b(x)
2

− b(x)
2

ρ(x, z)�2(x + Li)dy dz dx

(25)δKE =
∫∫∫

V

ρ{dṡ}⊺δ{dṡ}dV,

(26)δKEC =
∫ ℓ

0

[{

u̇0 ẇ0 ẇ0
′}

H
C δ

{

u̇0 ẇ0 ẇ0
′}⊺]dx

(27)δKEF =
∫ ℓ

0

[{

u̇0 ẇ0 φ̇
}

H
F δ

{

u̇0 ẇ0 φ̇
}

⊺
]

dx

(28)δKET =
∫ ℓ

0

[

{

u̇0 ẇ0 ẇ
′
0 ψ̇

}

H
T δ

{

u̇0 ẇ0 ẇ
′
0 ψ̇

}⊺
]

dx

(29)δPEs + δPEcf − δKE = 0.
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where {qC} , {qF} , and {qT } represent the displacement, {qCe } , {qFe } , and {qTe } denote the nodal displacement, and 
[NC] , [NF ] , and [NT ] represent the matrix of shape functions for CBT, FSDT, and TSDT, respectively and given 
in Appendix A.

By substituting Eqs. (30)–(32) into Eqs. (20)–(23) and Eqs. (26)–(28), summing the energies for all elements, 
and then applying Eq. (29), we obtain the following equation of motion:

where [M] is the mass matrix and [K] is the stiffness matrix of the beam. The free vibration analysis is applied to 
Eq. (33) to calculate the natural frequencies by solving the eigenvalue problem Eq. (34), where � is the mode 
shape.

Finite element modeling using ANSYS
To validate the obtained results from the developed mathematical models, 3-Dimensional Finite Element (3D-
FE) simulations were conducted using ANSYS Workbench. A model of a tapered beam was created using the 
ANSYS Design Modeler, see Fig. 4. The simulations were performed for both isotropic and functionally graded 
material beam models. The geometrical parameters under investigation such as taper ratios (Cb and Ch) , aspect 
ratio 

(

L
h0

)

 , and hub radius (R) were integrated into the model as variables to easily control them through the 
Workbench’s parametric table. In addition to these parameters, other variables such as rotational speed 

(

�̄
)

 and 
index parameters for the material distribution 

(

gx and gz
)

 were also included to assess their impact on the natural 
frequencies of the beams.

Quadratic hexahedral SOLID185 elements were used to discretize the tapered beam geometry. Mesh con-
trols were utilized to manipulate the mesh size of the beam edges, ensuring that only hexahedral elements were 
present in the mesh.

(30){qC} = [NC]{qCe }

(31){qF} = [NF ]{qFe }

(32){qT } = [NT ]{qTe }

(33)[M] ¨{dS} + [K]{ds} = {0},

(34)
(

[K]− ω2[M]
)

� = {0}

Figure 3.   The beam elements for CBT, FSDT, and TSDT theories.
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The implementation of functionally graded material properties in the model involved incorporating APDL 
commands within the modal module of Workbench. The material properties of the BFGM beam are determined 
at the coordinates of the centroid of each element, as described in Eq. (3). Thus, in order to achieve a uniform 
distribution of material properties, discretizing the beam into regular hexahedral elements is necessary. A typical 
mesh is shown in Fig. 4. The material properties were then assigned into the respective element.

Uncertainties and stochastic modal analysis
As commonly recognized, system uncertainties encompassing material properties (E, G, and ρ ) as well as mate-
rial distribution ( gx and gz ) in a rotating beam are subject to fluctuations in proximity to their designated values 
throughout processes such as measurement, structural element manufacturing, and structure assembly. Conse-
quently, it is imperative to consider system parameters as stochastic rather than deterministic. Furthermore, the 
dynamic behavior of a rotating beam differs from that of a non-rotating beam due to the additional influence 
of centrifugal forces. The angular velocity � assumes a pivotal role in these phenomena and frequently exhibits 
variations in the vicinity of its operational speed. Thus, the angular velocity is inherently characterized by ran-
domness. Henceforth, we will employ the notation vi ( i = 1, 2, . . . , 6 ) to represent the individual baseline random 
variables, with v1 denoting � , vi ( i = 2, 3, 4 ) representing the material properties E, G, and ρ , and vi ( i = 5, 6 ) 
signifying the material gradient indices gx and gz , respectively. These uncertainties have the potential to intro-
duce variations in the components of the matrix [K] as outlined in Eq. (34). Given the uncertainty associated 
with the matrix [K], the natural frequencies themselves become stochastic variables. To ascertain the statistical 
characteristics of these natural frequencies, one can deduce them from the statistical properties of the baseline 
random parameters, employing a mean-centered second-order perturbation methodology.

The stochastic modal analysis of BFGM tapered rotating beams utilizes the mean-centered second moment 
method41. This perturbation approach is founded on the principle of expanding the random response around 
the mean values of the baseline random variables while retaining terms up to the second order. Within the 
framework of the mean-centered second-order method, the second-order approximate mean and the first-order 
approximated variance of natural frequencies can be mathematically expressed as follows:

Here ω(0) represents the zero-order term of the natural frequency, equivalent to the deterministic natural 
frequency. ω(1)

,i  signifies the first-order term of the natural frequency concerning the random variable vi , and ω(2)
,ii  

corresponds to the second-order term of the natural frequency with respect to the random variable vi . Sω and Svi 
are the standard deviation of ω and vi , respectively. Hence the first and second-order term of natural frequency 
according to the finite difference approximation:

where �vi = vi − v̄i , with v̄i denoting the mean value of the random variable vi.

Results and discussion
The axial and flap-wise bending vibration analysis of a rotating BFGM double-tapered cantilever beam is inves-
tigated for CBT, FSDT, and TSDT. The beam material varies according to the exponential law of distribution as 
given in Eq. (3). Several parameters such as the index parameters for the material distribution (gxandgz) , rotating 
speed (�) , taper ratios (CbandCh) , hub radius (R), and aspect ratio 

(

L
h0

)

 are discussed. This section is divided 
into two subsections. The first subsection gives the convergence and validation of the present model with 3D-FE 

(35)E[ω] ∼= ω(0) +
1

2

9
∑

i=1

9
∑

i=1

(

ω
(2)
,ii + S2vi

)

(36)Var[ω] ∼= S
2
ω ≈

6
∑

i=1

(

w
(1)
i

)2

S
2
vi

(37)ω
(1)
,i =

ω(vi +�vi)− ω(vi)

�vi

(38)ω
(2)
,ii =

ω(vi +�vi)− 2ω(vi)+ ω(vi −�vi)

(�vi)2

Figure 4.   Discretization of a tapered beam model (CbandCh = 0.5).
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and the previously published literature. The second subsection presents and discusses the new findings. The 
dimensionless parameters used in the tables and figures are:

where ω̄ is the dimensionless natural frequency, �̄ is the dimensionless rotating speed, and R̄ is the dimension-
less hub radius.

To investigate the statistical characteristics of natural frequencies in BFGM rotating beams with varying 
baseline random variables, we consider the following scenarios:

Case 1: Only the rotational velocity ( � ) is treated as a random variable.
Case 2: Only the material properties (E, G, and ρ ) are considered as random variables.
Case 3: Only the material distribution indices ( gx and gz ) are subject to randomness.
In order to obtain comparative results, we also employ the Monte Carlo (MC) method, generating 500 samples 

for analysis for case 1 only.

Convergence and validation
The current model includes many parameters that should be taken into consideration to ensure a through veri-
fication procedure. These various parameters are the gradient index parameters for the material distribution (gx
and gz) , taper ratios (Cb andCh) , rotating speed (�̄) , hub radius (R̄) , and aspect ratio 

(

L
h0

)

.

Convergence rate
The convergence rates of the first five dimensionless natural frequencies are presented in Table  1 
for CBT, FSDT, and TSDT and compared with 3D-FE results, where the subscripts f and ax denote 
flapping and axial modes respectively. The following data is used: (b0 = 0.04 m, h0 = 0.02 m, 
ρ0 = 7850kg/m3, E0 = 210 GPa, ν = 0.3, Cb = Ch = 0.5, gx = gx = 0.4, �̄ = 2, and R̄ = 0.05) for both 
L
h0

= 20and5 . The analysis of the data presented in Table 1 indicates a rapid convergence of results as the num-
ber of elements (Ne) increases for the CBT, FSDT, and TSDT beam theories. Notably, when Ne reaches 100, the 
accuracy of the obtained results becomes satisfactory for practical purposes, and hence this number of elements 
is employed for conducting free vibration analysis of rotating BFGM double-tapered beams. Remarkably, the 
outcomes derived from TSDT, FSDT, and 3D-FE analysis demonstrate a noteworthy level of agreement, particu-
larly for thick beams at higher modes, when compared to the classical beam theory (CBT). This disparity can 
be attributed to the inherent limitations of CBT, which neglects the significant influence of shear deformation 
effects that become increasingly prominent in the higher modes of thick beam structures.

Effect of gradient index and aspect ratio
The provided data in Table 2 presents the first three dimensionless natural frequencies of a non-rotating 

(

�̄ = 0
)

 
BFGM uniform beam (Cb = Ch = 0) . The beam is analyzed using three different theories: TSDT, FSDT, and 
CBT. The frequencies obtained from these theories are compared with the reference values calculated using the 
dimensionless parameter � = ω̄√

12
 from12 using TSDT and 3D-FE results. The beam dimensions and material 

properties used in the analysis are (b0 = 0.5 m, h0 = 1 m, ρ0 = 7850 kg/m3 , E0 = 210 GPa, ν = 0.3, and 
R̄ = 0) . Two different aspect ratios, Lh0 = 20 and 5, are considered.

It can be observed from Table 2 that TSDT, FSDT, and 3D-FE demonstrate a commendable level of agreement 
with the reference results, regardless of whether the beams are thick or thin. This indicates the robustness and 
reliability of these methods in accurately predicting the natural frequencies. While CBT shows good agreement 
with the reference results for the 1st mode of a thin beam 

(

L
h0

= 20
)

 , its performance deviates from the TSDT, 
FSDT, 3D-FE, and12 results for other modes and thicker beams. However, it is worth noting that for the third 
mode of 

(

L
h0

= 5
)

 , which corresponds to the first axial mode, all three theories (TSDT, FSDT, and CBT) exhibit 
satisfactory agreement with both the 3D-FE and reference results.

Furthermore, the results show that as the gradient index 
(

gx = gz
)

 increases, the frequency values tend to 
decrease for all three modes across all methods, and both Lh0 = 20 and 5.

Effect of rotating speed and hub radius
Table  3 presents the first three dimensionless natural frequencies of a rotating double-tapered homo-
geneous (gx = gz = 0) beam analyzed using three different theories: TSDT, FSDT, and CBT. The fre-
quencies obtained from these theories are compared with the reference values from23 using FSDT and 
3D-FE results. The analysis is conducted with two different hub radii (R = 0 & L) , and three rotating 
speeds (� = 0, 50 and 100 rad/s) . The beam dimensions and material properties used in the analysis are 
(b0 = 0.05 m, h0 = 0.01 m, L = 2 m, Ch = Cb = 0.5, ρ0 = 7800kg/m3, E0 = 214 GPa, G0 = 82.2 GPa, and ν = 0.3) . The 

(39)

ω̄ = ω

√

ρ0A0L4

E0I0

�̄ = �

√

ρ0A0L4

E0I0

R̄ =
R

L
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Table 1.   Convergence of the first five dimensionless natural frequencies of a rotating BFGM double tapered 
beam.

L
h0

Modes

Beam Ne

3D-FETheory 10 30 50 70 90 100

20

ω̄1f

CBT 2.1773 2.1773 2.1773 2.1773 2.1773 2.1773

2.1793FSDT 2.1760 2.1760 2.1760 2.1760 2.1760 2.1760

TSDT 2.1763 2.1760 2.1760 2.1760 2.1760 2.1760

ω̄2f

CBT 4.3980 4.3976 4.3976 4.3976 4.3976 4.3976

4.3926FSDT 4.3841 4.3838 4.3838 4.3838 4.3838 4.3838

TSDT 4.4015 4.3850 4.3841 4.3840 4.3839 4.3839

ω̄1ax

CBT 6.9332 6.9312 6.9311 6.9311 6.9311 6.9311

6.8971FSDT 6.8825 6.8811 6.8810 6.8810 6.8810 6.8810

TSDT 6.9610 6.8863 6.8826 6.8819 6.8816 6.8816

ω̄3f

CBT 9.5265 9.5193 9.5191 9.519 9.519 9.5189

9.4232FSDT 9.4022 9.3979 9.3977 9.3976 9.3976 9.3976

TSDT 9.6134 9.4119 9.4020 9.4001 9.3994 9.3992

ω̄2ax

CBT 11.444 11.440 11.440 11.440 11.440 11.440

11.449FSDT 11.444 11.440 11.440 11.440 11.440 11.440

TSDT 11.444 11.440 11.440 11.440 11.440 11.440

5

ω̄1f

CBT 2.1725 2.1724 2.1724 2.1724 2.1724 2.1724

2.1610FSDT 2.1519 2.1519 2.1519 2.1519 2.1519 2.1519

TSDT 2.1528 2.1524 2.1523 2.1523 2.1523 2.1523

ω̄2f

CBT 4.3486 4.3483 4.3483 4.3483 4.3483 4.3483

4.1888FSDT 4.1649 4.1647 4.1647 4.1647 4.1647 4.1647

TSDT 4.1779 4.1710 4.1702 4.1699 4.1698 4.1698

ω̄1ax

CBT 5.7218 5.7200 5.7198 5.7198 5.7198 5.7198

5.7195FSDT 5.7218 5.7199 5.7198 5.7198 5.7197 5.7197

TSDT 5.7218 5.7199 5.7198 5.7198 5.7197 5.7197

ω̄3f

CBT 6.7487 6.7469 6.7468 6.7468 6.7468 6.7468

6.2473FSDT 6.2075 6.2068 6.2067 6.2067 6.2067 6.2067

TSDT 6.2512 6.2288 6.2262 6.2253 6.2249 6.2248

ω̄4f

CBT 9.0759 9.0694 9.0691 9.0691 9.0690 9.0690

8.0921FSDT 8.0331 8.0315 8.0314 8.0314 8.0314 8.0314

TSDT 8.1239 8.0778 8.0727 8.071 8.0703 8.0701

Table 2.   The first three dimensionless natural frequencies of a non-rotating BFGM uniform beam. Note that 
� = ω̄/

√
12.

� gx = gz

L
h0

= 20
L
h0

= 5

TSDT FSDT CBT Ref.12 3D_FE TSDT FSDT CBT Ref.12 3D_FE

�1

0 1.0130 1.0130 1.0145 1.0130 1.0147 0.9847 0.9843 1.0072 0.9848 0.9911

0.2 0.9515 0.9515 0.9529 0.9515 0.9533 0.9261 0.9257 0.9463 0.9261 0.9324

0.6 0.8329 0.8329 0.8340 0.8329 0.8346 0.8125 0.8123 0.8288 0.8126 0.8187

1 0.7214 0.7214 0.7223 0.7214 0.7230 0.7055 0.7054 0.7182 0.7055 0.7113

�2

0 6.2750 6.2742 6.3394 6.2758 6.2867 5.3237 5.3011 6.0419 5.3263 5.3491

0.2 6.1516 6.1508 6.2148 6.1524 6.1634 5.2168 5.1944 5.9229 5.2195 5.2418

0.6 5.8762 5.8758 5.9365 5.8771 5.8879 4.9832 4.9635 5.6596 4.9861 5.0060

1 5.5687 5.5688 5.6254 5.5696 5.5801 4.7272 4.7127 5.3675 4.7302 4.7463

�3

0 17.2569 17.2513 17.6687 17.2627 17.2930 7.8541 7.8541 7.8541 7.8540 7.8883

0.2 17.1308 17.1254 17.5391 17.1368 17.1671 7.5388 7.5388 7.5388 7.5387 7.5738

0.6 16.7945 16.7911 17.1911 16.8007 16.8300 6.9271 6.9271 6.9271 6.9270 6.9633

1 16.3556 16.3561 16.7349 16.3618 16.3889 6.3415 6.3415 6.3415 6.3414 6.3783
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comparison of the results presented in Table 3 reveal a notable level of agreement among the TSDT, FSDT, CBT, 
and 3D-FE methods with the reference results. Particularly, the CBT method exhibits excellent agreement in this 
specific example, where the beam under investigation is characterized by being extremely thin.

Regarding the effect of rotating speed, it is evident that an increase in rotational velocity leads to an increase 
in the natural frequencies. Furthermore, it can be inferred that the eigenfrequencies exhibit an increasing trend 
with the rise in angular velocity and hub radius. This behavior can be attributed to the centrifugal stiffness effect. 
As the angular velocity and hub radius increase, the centrifugal force acting on the beam also increases, result-
ing in a higher stiffness. Consequently, the eigenfrequencies of the beam are influenced and exhibit an upward 
trend in response.

New results
This subsection presents the vibrational behavior of a BFGM double tapered rotating beam. The beam material 
properties are E0 = 210 GPa, ρ0 = 7850kg/m3 , and ν = 0.3 , and the beam dimensions are b0 = 0.04 m and 
L = 0.4 m. Several parameters such as the index parameters ( gx and gz ) for the material distribution, rotating 
speed ( � ), hub radius (R), and aspect ratio ( Lh0 ) are considered.

Effect of aspect ratio on natural frequencies: CBT, FSDT, and TSDT comparison
Figure 5 presents the variation of the first four dimensionless natural frequencies of a non-rotating (� = 0 rad/s) 
homogeneous 

(

gx = gz = 0
)

 uniform (Cb = Ch = 0) beam versus the aspect ratio. The results demonstrate a 
correlation between the aspect ratio and the natural frequency, indicating that an increase in the aspect ratio 
leads to a higher natural frequency. However, this increase becomes less significant for the flapping modes as 
the aspect ratio reaches higher values. Furthermore, there is a deviation between the CBT theory and the other 
two theories, FSDT and TSDT, which is more pronounced for higher modes of flapping vibration. However, in 
the case of axial vibration, there is a good agreement between the three theories. Additionally, there is a good 
agreement between the FSDT and TSDT theories, particularly for low aspect ratios or thick beams.

Moreover, with changing aspect ratio, the axial and flapping modes may interchange their order. This means 
that as the aspect ratio varies, there is a possibility for the axial mode and the flapping mode to switch positions 
in the mode sequence, resulting in a change in their relative order.

Effect of taper ratio on natural frequencies: CBT, FSDT, and TSDT comparison
Figure 6 presents the variation of the first four dimensionless natural frequencies of a non-rotating (� = 0 rad/s) 
homogeneous 

(

gx = gz = 0
)

 beam versus taper ratios for aspect ratio 
(

L
h0

= 10
)

 . Subfigures (a) and (d) depict 
the first flapping and axial modes, respectively. These subfigures provide clear evidence of a direct relationship 
between the taper ratio and the natural frequency, indicating that an increase in the taper ratio leads to an 
increase in the natural frequency. Furthermore, the highest natural frequencies are achieved when the taper ratio 
is increased in both the height and width directions, followed by tapering in the width direction only and then 
tapering in the height direction only. Notably, when the taper ratio is changed in either the height or width 
direction alone, the first axial mode exhibits identical natural frequencies due to the beam’s consistent width and 
height. Moreover, a slight deviation can be observed in the results obtained from the CBT method compared to 
both the FSDT and TSDT methods in the first flapping mode.

In Subfigures (b) and (c), the second and third flapping modes are presented, respectively. These subfigures 
clearly demonstrate that an increase in the taper ratio in the width direction corresponds to an increase in the 
natural frequency. Conversely, increasing the taper ratio in both the height and width directions or in the height 
direction alone leads to a decrease in the natural frequency. Furthermore, the highest natural frequencies are 
obtained when the taper ratio is increased in the width direction only, followed by tapering in both the height 
and width directions and then tapering in the height direction only. Additionally, the observed deviations in the 
results obtained from the CBT method, compared to both the FSDT and TSDT methods, are more pronounced 
in the third mode than in the second mode.

Table 3.   The first three natural frequencies of a homogenous rotating double tapered for various rotating 
speed, and hub radii.

ωi � R = 0 R = L

(Hz) (rad/s) TSDT FSDT CBT Ref.23 3D-FE TSDT FSDT CBT Ref.23 3D-FE

ω1

0 2.7826 2.7826 2.7826 2.7826 2.7856 2.7826 2.7826 2.7826 2.7826 2.7856

50 9.0874 9.0873 9.0874 9.0872 9.0929 13.702 13.702 13.702 13.702 13.708

100 17.004 17.004 17.005 17.004 17.014 26.581 26.580 26.581 26.581 26.590

ω2

0 11.760 11.759 11.760 11.759 11.774 11.760 11.759 11.760 11.759 11.774

50 21.585 21.584 21.585 21.584 21.600 29.958 29.957 29.958 29.957 29.974

100 37.673 37.672 37.674 37.672 37.695 55.820 55.817 55.820 55.819 55.841

ω3

0 29.228 29.220 29.225 29.222 29.261 29.228 29.220 29.225 29.222 29.261

50 40.499 40.493 40.497 40.494 40.532 51.999 51.994 51.998 51.995 52.031

100 62.829 62.823 62.828 62.824 62.867 89.785 89.778 89.785 89.782 89.821
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Effect of rotating speed and hub radius on natural frequencies: CBT, FSDT, and TSDT comparison
Figure 7 presents the variation of the first four dimensionless natural frequencies of a homogeneous (gx = gz = 0) 
uniform (Cb = Ch = 0) beam versus rotating speed and hub radius for aspect ratio 

(

L
h0

= 10
)

 . Figure 7a–c show 
the first three flapping modes, respectively. Increasing the rotating speed is associated with higher natural fre-
quencies in all three flapping modes, attributed to the stiffening effect of centrifugal force. The hub radius also 
influences the natural frequency, particularly at higher rotating speeds, where the larger hub radius induces a 
stronger centrifugal force. Both increasing rotating speed and larger hub radius contribute to higher natural 
frequencies due to the enhanced effect of centrifugal force as shown in Eq. (24). Furthermore, the deviation 
between the CBT method and the FSDT and TSDT methods increases with higher modes, indicating that dif-
ferences in predictions become more pronounced as the mode number increases.

Figure 7d indicates that the rotating speed and hub radius do not have a significant effect on the natural 
frequency in the first axial mode.

Effect of gradient index on natural frequencies: TSDT
The findings presented in Fig. 8 demonstrate the relationship between the gradient indexes gx and gz and the 
first four dimensionless natural frequencies of a uniform beam for two dimensionless speeds 

(

�̄ = 0 and 5
)

 
according to TSDT. Figure 8a–c results indicate a clear inverse correlation, where the dimensionless natural 
frequencies decrease as the gradient index increases. Furthermore, it is observed that the gradient index in the 
x-direction ( gx ) has a more significant impact on the natural frequencies compared to the gradient index in the 
z-direction ( gz ). The natural frequencies of all three flapping modes exhibit an increase as the rotating speed is 
increased. Figure 8d illustrates that the natural frequency in the first axial mode remains largely unaffected by 
changes in the rotating speed.

Uncertainties and stochastic results
Figures 9, 10, 11 and 12 show the Coefficient of Variation (C.O.V.) for the 1st and 2nd natural frequencies, 
denoted as Vωi (i = 1, 2) , of a uniform beam with R̄ = 0.1 and Lh0 = 10 . These plots are generated as a function of 
rotational velocity. Figure 9 illustrates the Coefficient of Variation (C.O.V.) for the case where only the rotational 
velocity is treated as a random variable (Case 1), with a standard deviation of 10% � . The analysis is conducted on 
a homogeneous beam ( gx = gz = 0 ) using the three different theories. Strong agreement is observed between the 
second-order perturbation and Monte Carlo methods, confirming the accuracy of the results across all rotational 
speeds. It is evident that Vωi increases with an increase in rotational velocity. Consequently, the C.O.V. of the first 

Figure 5.   The first four dimensionless natural frequencies versus aspect ratio.
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mode natural frequency remains nearly identical across all three theories, with only a slight deviation observed 
in the second mode, particularly between CBT and the other two theories, FSDT and TSDT.

Figure 10 represents the Coefficient of Variation (C.O.V.) for the case where only the material properties are 
considered as random variables (Case 2), with a standard deviation of 10% for E, G, and ρ . The analysis is per-
formed on a homogeneous beam ( gx = gz = 0 ) using the three theories. It is observed that Vωi decreases with 
an increase in rotational velocity. Consequently, the C.O.V. of the natural frequency in the case of CBT deviates 
from that of FSDT and TSDT, with this deviation increasing from the first to the second mode. A comparison 
between Figures 9 and 10 reveals that the randomness of material properties has a more significant influence on 
Vωi than the randomness of rotational velocity within the speed range of 0 to 600 rad/s.

Figures 11 and 12 represent the Coefficient of Variation (C.O.V.) for the case where only the material dis-
tribution is subject to randomness (Case 3) according to TSDT. Figure 11a and b is applied to a BFGM beam 
( gx = gz = [0.5 1 2] ) with a standard deviation of 10% for gx and gz . It is observed that Vωi decreases as the 
rotational velocity increases. Additionally, Vωi exhibits higher values for larger gradient indices. Figure 12a and 
b is applied to a BFGM beam ( gx = gz = 0.5 ) with standard deviations of [10 20 30 40 ]% for gx and gz . It is 
observed that Vωi decreases as the rotational velocity increases. Additionally, Vωi exhibits higher values for larger 
standard deviations.

Conclusions
In this study, a comparative analysis of free vibration behavior and stochastic analysis was conducted for rotat-
ing double-tapered beams composed of BFGM using three different beam theories: CBT, FSDT, TSDT. The 
material properties of the beams were characterized by an exponential distribution model. The investigation 
aimed to assess the impact of various parameters such as material distribution, taper ratios, aspect ratio, hub 
radius, and rotational speed on the natural frequencies. It also focused on studying uncertainties in material 
properties, material distribution, and rotational velocity. The results obtained from the study demonstrated the 
convergence and validation of the proposed model by comparing it with 3D-FE simulations conducted using 
ANSYS and previously published research. The convergence analysis indicated that the accuracy of the results 
reached a satisfactory level for practical purposes. Additionally, the stochastic analysis outcomes, derived using 

Figure 6.   The first four dimensionless natural frequencies of a non-rotating homogeneous beam versus taper 
ratios.
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Figure 7.   The first four dimensionless natural frequencies of a homogeneous uniform beam versus rotating 
speed and hub radius.

Figure 8.   Comparison of the first four dimensionless natural frequencies between non-rotating and rotating 
uniform beams versus the gradient index.
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the mean-centered second-order perturbation approach, underwent validation through comparison with the 
Monte Carlo method. Furthermore, the comparison between the beam theories showed that FSDT and TSDT 
exhibited a greater agreement with the 3D-FE simulations, particularly for thick beams, compared to CBT. This 
finding highlights the importance of considering shear deformation effects, which become more significant 
in thick beam structures. The results of the study showed that the natural frequencies of the rotating beams 
increased with increasing taper ratio in the width direction, aspect ratio, rotational speed, and hub radius. 
The results also showed that the natural frequencies of the beams decreased with increasing gradient index. In 
the context of random parameters, distinct trends emerge in the coefficient of variation (C.O.V.) concerning 
rotational velocity and various sources of uncertainty. Specifically, an increase in rotational velocity results in 
an increasing C.O.V. for random velocity, while random material properties and material distribution exhibit 
a decreasing C.O.V. trend with increasing velocity. Notably, for the first mode, a consistent C.O.V. is observed 
across all three theories for random rotational velocity. However, in the case of random material properties, 
discernible deviations are noted for CBT compared to FSDT and TSDT.

Figure 9.   C.O.V. of 1st and 2nd natural frequencies for random rotating velocity (Case 1) versus rotating 
velocity for three beam theories using the second-order perturbation method compared to Monte Carlo (MC).

Figure 10.   C.O.V. of 1st and 2nd natural frequencies for random material properties (Case 2) versus rotating 
velocity for three beam theories using the second-order perturbation method.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Appendix A: displacement, nodal displacement and matrix of shape functions
In this section, a comprehensive overview of the details pertaining to displacement, nodal displacement, and the 
matrix of shape functions is presented. The displacements are

the vectors of nodal displacements are

(40)

{qC} =
[

uC0 (x, t) wC
0 (x, t)

]

⊺
,

{qF} =
[

uF0 (x, t) wF
0 (x, t) φF(x, t)

]

⊺
,

{qT } =
[

uT0 (x, t) wT
0 (x, t) ψT (x, t)

]

⊺
,

Figure 11.   C.O.V. for random material distribution (Case 3) versus rotating velocity at gx = gz = [0.5 1 2] for 
TSDT in second-order perturbation method, (a) 1st mode and (b) 2nd mode.

Figure 12.   C.O.V. for random material distribution (Case 3) versus rotating velocity at gx = gz = 0.5 for TSDT 
in second-order perturbation method, (a) 1st mode and (b) 2nd mode.
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and the shape functions are

where ξ = x
ℓ
 , U1 and U2 are the axial displacements, W1 and W2 are the transverse displacements, W ′

1 and W ′
2 

are the pure bending slopes of CBT, �1 and �2 are the cross-section rotations of FSDT, and �1 and �2 are the 
deformed line slopes at z = 0 of TSDT at nodes 1 and 2, respectively.
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