
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17110  | https://doi.org/10.1038/s41598-023-44392-0

www.nature.com/scientificreports

Estimation and update 
of betweenness centrality 
with progressive algorithm 
and shortest paths approximation
Nan Xiang 1,2,3*, Qilin Wang 1 & Mingwei You 1

Betweenness centrality is one of the key measures of the node importance in a network. However, 
it is computationally intractable to calculate the exact betweenness centrality of nodes in large-
scale networks. To solve this problem, we present an efficient CBCA (Centroids based Betweenness 
Centrality Approximation) algorithm based on progressive sampling and shortest paths 
approximation. Our algorithm firstly approximates the shortest paths by generating the network 
centroids according to the adjacency information entropy of the nodes; then constructs an efficient 
error estimator using the Monte Carlo Empirical Rademacher averages to determine the sample size 
which can achieve a balance with accuracy; finally, we present a novel centroid updating strategy 
based on network density and clustering coefficient, which can effectively reduce the computation 
burden of updating shortest paths in dynamic networks. The experimental results show that our CBCA 
algorithm can efficiently output high-quality approximations of the betweenness centrality of a node 
in large-scale complex networks.

Network  analysis1 is a technique to investigate the structure and properties of networks, and one of the important 
tasks is to calculate the centrality of a node in the  network2–4, which measures how connected or influential a 
node is within the network. Common centrality measures are degree  centrality5, betweenness  centrality6, close-
ness  centrality7, etc. The betweenness centrality of a node has many applications in various domains, such as 
identifying critical nodes in transportation  networks8, detecting essential proteins in protein  networks9, and 
improving  clustering10 and community detection  algorithms11.

Betweenness centrality (BC) measures the importance of a vertex or an edge based on the shortest paths in 
a graph (i.e., a vertex or an edge with higher BC appears more frequently on the shortest paths in the graph). 
Several exact algorithms for computing Betweenness centrality have been  proposed12–16, among which Brandes’ 
 algorithm12 is a representative one that uses the single source shortest paths (SSSP) idea to optimize the com-
putation process. The time complexity of this algorithm is O(nm+ n2logn) for weighted graphs and O(nm) for 
unweighted graphs, where n and m are the numbers of vertices and edges in the graph, respectively.

However, exact algorithms are infeasible for large-scale  networks17 due to their increasing size, and research 
emphasizes the ordering of nodes over exact values. Hence, some sampling-based approximation algorithms 
have  emerged18–30, which can generate a betweenness centrality approximation with a high probability (1− δ) 
and a bounded maximum deviation, satisfying ε − approximation31. However, this category of approximation 
algorithms faces some challenges, such as determining the sample size that can represent the global distribution 
of parameters with the least samples; selecting samples that can better estimate the parameter distribution; and 
adapting to changes in network dynamics. Currently, some researchers have proposed many attempts to address 
these problems. For example,  Brandes29 proposed a bp algorithm based on Hoeffding’s inequality and union 
bound, but this algorithm relies too much on the number of nodes n, resulting in excessive running overhead; 
then Matteo et al22 proposed an rk algorithm based on Vapnik-Chervonenkis (VC) dimension theory, using VC 
dimension theory to limit the sample size so that the sample no longer depends on the number of nodes in the 
graph but on the diameter of the graph (i.e., the number of nodes with the largest shortest path in the graph). 
Nonetheless, the VC dimension does not yield the best ε − approximation for a given number of δ ; therefore, 
Matteo et al20 proposed another ab algorithm based on the Rademacher  averages32 and progressive  sampling33 
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to estimate the betweenness centrality of the nodes. Rademacher averages with probability  bounds34–36 and VC 
dimensions are also often used in pattern  mining37–39. Bergamini et al40 proposed a new fully dynamic adaptive 
sampling update algorithm based on Matteo’s shortest paths sampling.

At the same time, the network is dynamic, with the addition or deletion of nodes and edges at any time. It 
would be costly to recalculate the betweenness centrality for each dynamic change. Therefore, many dynamic 
updating algorithms have been  proposed41–49. These algorithms store the nodes or edges that change by using data 
structures to avoid re-computing the betweenness centrality from scratch.  Hayashi41 proposed a fully dynamic 
algorithm and a new technique called Two-ball-index and Special-Purpose Reachability Index on the hyper-
sketch sketch of  Yoshida26, which improved the dynamic update by several orders of magnitude compared to 
 Berigamini48. Berigamini extensively updated the number of pairwise distances and shortest paths and proposed 
a faster algorithm to update  dependencies40. This algorithm decreased the number of operations performed by 
dynamic betweenness centrality algorithms, but they have the same worst-case running time as recalculations.

Although the above methods propose many improvement strategies for estimating the betweenness centrality, 
they do not improve the sampling method and consider network characteristics. To address the above problems, 
we present an efficient approximation algorithm CBCA (Centroids-based Betweenness Centrality Approxima-
tion) based on progressive sampling and shortest paths approximation. The algorithm firstly approximates the 
shortest paths by using the adjacency information entropy of nodes to generate the network centroid; then con-
structs Monte Carlo Empirical Rademacher averages based estimator to determine the sample size and achieve 
a balance between accuracy and efficiency; finally, we propose a new centroid updating strategy according to 
the network density and clustering coefficients, which effectively reduces the cost of updating the shortest paths 
in dynamic networks.

The main contributions and innovations in this paper are as follows:

• We present a novel error estimator based on Monte Carlo Empirical Rademacher Averages (MCERA) and 
progressive sampling methods, which can balance the trade-off between sample size and accuracy. By using 
MCERA and adjusting the sample size according to the accuracy requirement, our estimator can effectively 
guarantee that the upper probability bound of the approximation error of the CBCA algorithm is within a 
predefined range. Experimental results demonstrate that the CBCA algorithm with our estimator is faster 
and requires smaller samples than existing methods under the same probability condition.

• We propose a strategy to update the centroid in dynamic networks with frequent BC changes. Our strategy 
uses a dynamic detection mechanism that monitors the network density and clustering coefficients, which 
are important features of the network graph. The mechanism updates the centroid when these features exceed 
a set threshold, without adding or deleting nodes and edges at any time. This reduces the time to reselect 
high-quality centroids in dynamic networks.

• We propose an improved shortest paths approximation method based on network centroids for sampling. 
Our method can be applied to both undirected and directed graphs. To select the number of centroids, we 
use different calculation methods of diameter and reduce the computation of dynamic network shortest 
paths update by distinguishing between undirected and directed graphs. We use the adjacency information 
 entropy50 to select high quality centroids. The experimental results show that our method can cover more 
than 80% of the shortest paths in networks with scale-free51 and small-world  characteristics52.

Preliminaries
We will describe the definitions and basic ideas in this section.

Graphs and betweenness centrality
Let G = (V ,E) be a graph, either undirected or directed, and where each edge must have a non-negative weight. 
We denote n = |V | in the graph, and n is the number of all nodes. For any distinct node pair (u, v) in the graph, 
where u  = v . Let σuv denote the number of all shortest paths between node u and node v, and let σuv(w) be the 
number of shortest paths between node u and node v for all shortest paths passing through w. For convenience, 
we write the shortest paths as SPs.

Given a graph G = (V ,E) , the normalized betweenness centrality b(w) of a node w ∈ V  is defined as:

Rademacher averages
Rademacher  averages36 are an essential core of statistical learning  theory53 and allow measuring the convergence 
speed of sample means concerning their expectations. More detailed information on the Rademacher averages 
can be found  in35,36.

Define a finite field P and a uniform distribution µ over the elements from P. Let F be a family of functions 
from P to [0,1], and let S = {S1, ..., Sm} be the set of m independent identically distributed samples of P with 
probability uniform distribution µ . The average value and its expectation for each function f, which is defined 
over the samples S, are as followed, respectively:

(1)b(w) =
1

n(n− 1)

∑

(u,v)∈V×V ,u �=v

σuv(w)

σuv
.
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i.e., ρs(f ) is an unbiased estimator of ρµ(f ).
Now, for a given S, we focus on the upper bound of the supremum deviation S(F , S) of ρs(f ) from ρµ(f ) 

among all f ∈ F , the quantity is:

The S(F , S) is the vital notion in the study of empirical processes. The Empirical Rademacher Averages (ERA) 
R̃(F , S) of F on S is the indicator that can effectively determine the sample-dependent upper bound of the 
supremum deviation S(F , S) , which can take into account the data distribution relationship. Let � = (�1, ..., �m) 
is the collection of m independent identically distributed (i.e., i.i.d) Rademacher random variables that takes the 
values {−1, 1} with the same probability 1

2
 of taking -1 or 1, respectively. This quantity is:

However, R̃(F , S) is difficult and costly to compute. Monte Carlo  estimation35 gives an efficient way to get the 
apparent sharply probability bound for ERA. For any k ≥ 1 , let � ∈ {−1,+1}k×m be a matrix of k ×m that is 
independently identically distributed for the Rademacher random variables. The k-Trials Monto-Carlo Empirical 
Rademacher Averages (i.e., k-MCERA) R̃k

m(F , S, �) of F on S using � is:

The Empirical Rademacher Averages R̃(F , S) is the expectation of k-Trials Monto-Carlo Empirical Rademacher 
Averages R̃k

m(F , S, �) of F on S, which controls the probability bound of S(F , S) . It is not efficient to use the 
Rademacher averages to obtain clear probability bounds, but rather to use k-MCERA to make a better balance 
between sample size and accuracy. That is because k-MCERA can directly estimate the highest deviation of the 
function set by data dependence. For each f ∈ F , We define the empirical wimpy variance as α , defined as:

Before stating Theorem 2.2, we need to know the upper bound of the wimpy variance (i.e., Theorem 2.1). Then, 
Theorem 2.2 shows how to use the k-MCERA to compute the upper bound of the maximum deviation S(F , S) , 
using only sample-dependent quantities.

Theorem 2.1 For any f ∈ F is a family of functions in the domain P up to [0,1] and µ is a uniform distribution 
of probabilities over the elements of P:

Proof We have given in Online Appendix A.1, which leverages the properties of the betweenness centrality under 
large-scale networks and the basic variance formula.

Theorem 2.2 For k,m ≥ 1 and the function f ∈ F , where F is a family of functions from P to [0,1]. Let 
� ∈ {−1,+1}k×m be a k ×m matrix of Rademacher random variables, such that independently and with equal 
probability 1

2
 . Let S be a sample size of m drawn i.i.d. from P, and take a distribution µ . For each f ∈ F , δ ∈ (0, 1) , 

define:

(2)
ρs(f ) =

1

m

m
∑

i=1

f (si)

ρµ(f ) = E[ρs(f )] ,

(3)S(F , S) = sup
f ∈F

|ρs(f )− ρµ(f )| ,

(4)R̃(F , S) = E�

[

sup
f ∈F

1

m

m
∑

i=1

�i f (si)

]

.

(5)R̃k
m(F , S, �) =

1

k

k
∑

j=1

sup
f ∈F

1

m

m
∑

i=1

�j,i f (si) ,

(6)α = sup
f ∈F

1

m

m
∑

i=1

(f (si))
2
.

(7)var = sup
f ∈F

Eµ[f
2].
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With the probability at least 1− δ over the choice of S and � , it holds:

The proof of Theorem 2.2 We put in Online Appendix A.2, using the self-boundary  function54 and the sym-
metry  inequality55, as well as the substitution theorem.

Observing Theorem 2.2, we can see that α is the largest factor affecting the whole equation and controls the 
supremum deviation S(F , S) . Thus, we can achieve a better balance between sample size and accuracy, obtaining 
a uniform variance for most families of functions. This is the reason why k-MCERA outperforms rk and bp. The 
rk algorithm uses VC dimensional theory to obtain an upper limit on the sample size, which is data-independent 
and depends on the properties of the graph itself. However, it does not consider the feature of data dependence. 
The bp algorithm uses Hoeffding’s inequality and union bound, which results in an excessive sample. These two 
methods lead to a large number of samples to guarantee a high quality approximation, so they are character-
ized by a sample size that is suboptimal, while k-MCERA can capture the relationship between sample size and 
accuracy very well.

Network density and clustering coefficient
In this section, we focus on the dynamic changes of complex networks.

We know that dynamic networks change by adding or deleting nodes and edges, but this requires updating 
and maintenance. However, not all nodes or edges addition and deletion have a significant impact on the net-
work, and we can ignore some minor changes while pursuing approximate estimates. According  to56–58, network 
density and clustering coefficient are closely related to the power law property and small world property of com-
plex networks, which are the key assumptions of our algorithm. Therefore, we choose the network density and 
clustering coefficient, which are two parameters that can reflect the features of the network. And the network is 
considered to have been changed measurably when their changes exceed a certain threshold value. The centroid 
is a critical factor that affects the efficiency of the whole algorithm.

We present a strategy to update the network centroid based on the network density and clustering coefficients 
to detect the dynamic changes, thus avoiding a large amount of updating time.

Network  density59: it can be used to characterize the density of interconnected edges of nodes in a network, 
which is defined as the ratio of the number of variables present in the network with the upper limit of the num-
ber of edges that can be accommodated. It is commonly used to measure the intensity of social relationships 
and the evolutionary trend in online social networks. For G = (V ,E) with n nodes and m edges, the network 
density is defined as:

Clustering  coefficient60,61: it quantifies how densely nodes form cliques in a graph. There is  evidence62 that nodes 
tend to create tightly bound groups in most real-world networks, especially social networks. This is divided into 
a global clustering coefficient and a local clustering coefficient. We choose the local clustering coefficient as one 
of the parameters to reflect the features of the network, because it can capture the local structural changes of 
nodes and their neighbors in dynamic networks.

For G = (V ,E) , where V = (v1, v2, ..., vn) denotes the collection of vertices and E = {eij : (i, j) ∈ U ⊂ [1, ..., n]2} 
denotes the collection of edges ( eij denotes the edge connecting vertices vi and vj ). Denote by L(i) the collection 
of edges connected to the vertex vi : L(i) = {vj : eij ∈ E ∧ eji ∈ E}, zi is the degree of node i. The local clustering 
coefficient of vertex vi in an undirected graph is:

The local clustering coefficient of vertex vi in a directed graph is:

(8)

V(f )
.
= α +

ln 3
δ

m
+

√

√

√

√

(

ln 3
δ

m

)2

+
2αln 3

δ

m

R̃(F , S)
.
= R̃k

m(F , S, �)+
2ln 3

δ

km
+

√

√

√

√

(

2ln 3
δ

km

)2

+
4(R̃k

m(F , S, �)+ α)ln 3
δ

km

R(F ,m)
.
= R̃(F , S)+

ln 3
δ

m
+

√

√

√

√

(

ln 3
δ

m

)2

+
2R̃(F , S)ln 3

δ

m

ε
.
= 2R(F ,m)+

ln 3
δ

3m
+

√

√

√

√

(

ln 3
δ

3m

)2

+
2R(F ,m)ln 3

δ

m
,

(9)S(F , S) ≤ ε.

(10)dG =
2m

n(n− 1)
.

(11)C(i) =
2|{ejk : vj , vk ∈ L(i), ejk ∈ E}|

zi(zi − 1)
.

(12)C(i) =
|{ejk : vj , vk ∈ L(i), ejk ∈ E}|

zi(zi − 1)
.
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The average clustering coefficient can be obtained as:

To facilitate the reader’s understanding of the article, we provide the explanations of the main parameters in 
Table 1.

Methods
This section shows our proposed CBCA algorithm, which is an efficient approximation algorithm based on 
progressive sampling and shortest paths approximation.

Progressive sampling is a technique that gradually increases the sample size until a desired accuracy is 
achieved. It allows us to avoid over-sampling or under-sampling the network, and adapts to the dynamic changes 
of the network. Shortest paths approximation is a technique that uses the network centroids to estimate the 
shortest paths between nodes. It allows us to reduce the computational complexity and memory requirement 
of the algorithm.

We firstly introduce the basic process and related results for approximating the shortest paths based on the 
network centroids, which can efficiently compute the betweenness centrality values after approximating the 
shortest paths in section “Shortest paths approximation based on network centroids”, and we have provided the 
data-dependent bounds for these results in Theorem 2.2. Then, we describe the specific steps and parameters of 
the CBCA algorithm in Section 3.2, which uses this improved bound to obtain high-quality betweenness cen-
trality approximations with high probability and ensures that the betweenness centrality values of all nodes are 
within the additive error ε by progressive sampling. The detailed theoretical and experimental results regarding 
the initial sample size, the selection of the sample schedule, and the sections on updating the network centroids 
are given in the introduction section of Experiment 4 and Experiment 4.5, respectively.

Shortest paths approximation based on network centroids
The common shortest paths algorithms do not exploit the properties of complex networks (i.e., scale-free network 
characteristic (power-law property) and small-world property). We leverage these two properties to improve 
a shortest paths approximation method based on the network centroids. The small-world network has two 
important properties: high clustering coefficient and short average shortest paths length. The scale-free network 
characteristic means that few nodes have a high degree and most nodes have a low degree. Then we can naturally 
select some nodes with high degree or high adjacency information entropy as the centroids, and divide the nodes 
near or adjacent to the centroids into subgroups. From these subgroups, we use the shortest paths algorithm to 
calculate the distance between each node and the centroids. This can reduce the search space and time. And it 
can improve the approximation accuracy. Therefore, the number and quality of the centroids are crucial.

Centroids screening strategy
We use the VC dimension theory to calculate the number of t centroids in statistical learning, and we refer the 
reader  to32 for more details on the VC dimension theory:

(13)C =
1

n

n
∑

i=1

C(i).

(14)

D = max|SPs|

t = c

(

⌊log2(D − 2)⌋ + 1+ ln
1

δ

)

,

Table 1.  Main Parameters.

Symbols Definition

G = (V ,E) Networks

V Vertexes

E Edges

t Centroids

m Number of samples

b(w) Betweenness centrality

ε Absolute error

n n = |V | , number of nodes

k k-Monto-Carlo-Rademacher trials

d(u, v) = d(u, t1)+ d(t1, t2)+ d(t2, v) Shortest path approximation

b̃(w) ε-approximation of betweenness centrality

δ P(ε − approximationofb(w)) ≥ 1− δ

σuv The number of all SPs between node u and node v.

σuv(w) The number of SPs between node u and node v for all SPs via w.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17110  | https://doi.org/10.1038/s41598-023-44392-0

www.nature.com/scientificreports/

where t is the number of centroids with c taking the value 1
3
 , D is the diameter of the graph, and δ ∈ (0, 1).

The equation is derived from  Matteo22, but c is not the meaning of the coefficients among them in this paper, 
and they are irrelevant. The reason for employing this equation is that with the data independence of the VC 
dimension, where the number of centroids does not depend on the number of nodes, but only on the diam-
eter in the graph (i.e., the maximum length of the shortest path). It reduces the number of t and speeds up the 
approximation time. At the same time, the value of c can affect that of t. We need to trade-off between the number 
of centroids and the ratio T1T0 ( T1 is the shortest paths after approximation and T0 is the shortest paths without 
approximation) to get an acceptable value. According to experiments, we found that the quality of the centroids is 
best when c = 1

3
 and t = 2or3 . This range of values facilitates the calculation of the shortest paths approximation.

Furthermore, in this Eq. (14), we need to know the diameter of the graph D. One way to compute the exact 
value of D is by solving the shortest paths problem between all pairs of nodes. However, this exact calculation 
of the diameter D is not desirable, because it requires a time complexity of O(n3) , which is against our experi-
mental purpose. Given the short average path length of complex networks and the data independent property 
of VC dimension, we can reason that the error of diameter has little or even negligible effect on the result. Thus, 
we adopt different approximate diameter calculation methods for directed and undirected graphs respectively, 
in this paper.

Approximate diameter methods:

1. Let G = (V ,E) be an undirected graph with all edges having equal weights. Choosing a vertex u ∈ V  uni-
formly and randomly from the graph and computing the shortest paths from u as the source to all other 
nodes. We can calculate the diameter D equal to the sum of the two shortest paths from u to two other dif-
ferent nodes w, v.

2. For a directed graph with weights, we note that D is not necessarily equal to the longest path among the 
shortest paths between all pairs of nodes, because the edge weights may affect the distance sums. This makes 
the calculation of the approximate diameter more complicated. We can use the maximum weakly connected 
component, as an upper bound on the diameter D.

Centroids quality screening strategy
We use the adjacency information entropy formula to effectively filter out high-quality centroids based on the 
small-world feature and the scale-free characteristic of complex network. Commonly used information entropy 
formulas  are50,63,64. In this paper, we choose a more popular adjacency information entropy  formula50 and give 
a reasonable explanation.

Definition 1 For a given G(V, E), where V(v1, v2, ..., vn−1, vn) refers to all nodes and E(e1, e2, ..., el−1, el) refers 
to all edges.

The undirected unweighted graph G(V, E): The node degree of the undirected unweighted graph can be 

obtained by hi =
l
∑

1

oij , where l is the number of node i and j is the neighbor of node i. oij is equal to 1 if an edge 

exists between node i and node j, otherwise it is 0.
The undirected weighted graph G(V, E): The node degree of the undirected unweighted graph can be obtained 

by hi =
l
∑

1

wij , where l is the number of node i, j is the neighbor of node i, and wij represents the weight magnitude 

between node i and node j.
The degrees in the directed graph are divided into in degrees and out degrees, which are divided into two 

cases, directed with weights and directed without weights, as follows.
Directed unweighted graph G(V, E):

Directed weighted graph G(V, E):

Where ξi is the set of the neighbors of node i.
When discussing the influence of graphs, we need to distinguish between directed and undirected graphs. In a 

directed graph, each node has an incoming degree and an outgoing degree, which indicates the number of edges 
pointing to and from that node, respectively. In an undirected graph, each node has a degree, which indicates 
the number of edges connected to that node. Thus, we introduce an influence factor ζ to measure the influence 

(15)

hini =
∑

j∈ξi

oji

houti =
∑

j∈ξi

oij ,

(16)

hini =
∑

j∈ξi

wji

houti =
∑

j∈ξi

wij ,
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of a node. It is a constant between 0 and 1 to regulate the contribution of incoming and outgoing degrees to 
influence. Usually, ζ taken as 0.7 is a reasonable choice. In an unweighted graph, the calculation of influence is 
relatively simple by multiplying the in degree of nodes by ζ and adding the out degree by 1− ζ . In the weighted 
graph, the calculation of influence is more complicated, which requires considering the weights and directions 
of the edges, as follows:

Directed unweighted graph G(V, E):

Directed weighted graph G(V, E):

Definition 2 Adjacency Ai:

we can easily obtain that Ai =
∑

j∈ξi

kj , if the graph is undirected.

Definition 3 Probability Pij , we define the selection probability of node i in the network by considering the 
probability of node i being selected by its neighbor j with the following probability:

Definition 4 Information entropy formula, the important technical formula is used to carry out how to fil-
ter t network centroids to achieve the properties of complex networks in this paper, which compound our 
assumptions:

by the above way, we can reasonably screen out the high-quality centroids by the adjacency information entropy.

Subgraphs construction for the shortest paths approximation
In this section, we describe in detail how to generate subgraphs and how centroids of prime nodes are gener-
ated. As an example of an undirected unweighted graph, the same method is used for the other types of graphs.

Step 1
We use the adjacency list to represent the graph structure, so one Breadth-First Search (BFS) traversal gives 

us the degrees and weights of all nodes. As shown in Fig. 1a.
Step 2
When performing the BFS traversal, we get the diameter by the approximate diameter calculation method 

in section "Centroids screening strategy", (i.e., D = 10.) In addition, we use the method of screening the num-
ber and quality of centroids mentioned in sections "Centroids screening strategy" and "Centroids quality 
screening strategy". The method of screening the number of centroids is based on the diameter of the graph 
and a given confidence parameter δ to determine the number of centroids to be selected as t. The formula is 
t = c(⌊log2(D − 2)⌋ + 1+ ln 1

δ
) , where c = 1

3
, δ = 0.1 . We get t = 2.1 , so there are two centroids. Then we utilize 

the adjacency information entropy formula to easily get the two high-quality centroid nodes, as shown in Fig. 1b).
Step 3
The nodes surrounding the centroids can be easily obtained by traversing the neighboring nodes one at a 

time, as in Fig. 2a. Then continue to traverse the neighboring nodes and finally a complete subgraph can be 
obtained as shown in Fig. 2b.

Eventually, we get the complete graph with two centroids by the above method.
We explain in detail how to perform the shortest paths approximation. According to section “Shortest paths 

approximation based on network centroids”, we can reasonably infer that most of the shortest paths pass through 
the centroids of the network. Eqs. (22) and (23) can effectively reduce the influence of paths that do not pass 
through the centroids on sampling and estimation of the betweenness centrality. The experimental section “Dif-
ferent types of networks” verifies our theoretical hypothesis.

As shown in Fig. 2c, the shortest paths after approximation becomes d(u, v) .
= d(u, t1)+ d(t1, t2)+ d(t2, v).

Let the relationship of node pairs be written as δuv(w) = σuv(w)
σuv

:

(17)h
unweighted
i = ζhini + (1− ζ )houti = ζ

l
∑

j=1

oji + (1− ζ )

l
∑

j=1

oij ,

(18)h
weighted
i = ζhini + (1− ζ )houti = ζ

l
∑

j=1

wji + (1− ζ )

l
∑

j=1

wij .

(19)Ai = ζ
∑

j∈ξi

kjin + (1− ζ )
∑

j∈ξi

kjout ,

(20)Pij =
ki

Aj
, (j ∈ ξi).

(21)

Ei = −
∑

j∈ξi

(Pij log2Pij ) if the graph is undirected

Ei =
∑

j∈ξi

| − Pij log2Pij | if the graph is directed ,
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Then we can have:

CBCA algorithm description and analysis
In this section, we present the CBCA algorithm, which is based on the contributions of section “Shortest paths 
approximation based on network centroids”, for computing a strict approximation of the betweenness central-
ity of all nodes in the graph. We firstly describe the effective estimators that can satisfy the ε − approximation , 
which is an important component of the CBCA algorithm, for estimating the betweenness centrality in section 
“Effective estimator description and analysis”. Then we describe the CBCA algorithm in section “Our CBCA 
algorithm flow”.

Effective estimator description and analysis
Our CBCA algorithm takes as input a graph G = (V ,E) , which can be directed or undirected and can have non-
negative weights on the edges and includes two parameters ε, δ ∈ (0, 1) . It can output a set B̃ = {b̃(w),w ∈ V} 
(i.e., with probability at least 1− δ , betweenness centrality B = {b(w),w ∈ Vof εapproximation} ). Let 
P = {(u, v) ∈ V × V , u �= v} be the collection of all different node pairs. For each node w ∈ V  , let fw : the func-
tion of P mapping to [0,1].

To improve the computational efficiency, we use:

(22)
σuv = σut1 × σt1t2 × σt2v

σuv(w) = σut1(w)× σt1t2 × σt2v + σut1 × σt1t2(w)× σt2v + σut1 × σt1t2 × σt2v(w).

(23)

b(w) =
1

n(n− 1)

∑

(u,v)∈V×V ,u �=v

σuv(w)

σuv

=
1

n(n− 1)

∑

(u,v)∈V×V ,u �=v

(δut1(w)+ δt1t2(w)+ δt2v(w)).

(a) (b)

Figure 1.  (a) Initial input graph. (b) The required number of centroids calculated from the diameter and the 
adjacency information entropy is used to screen the high-quality centroids.

(a) (b) (c)

Figure 2.  (a) First traversal of the nearby neighboring node. (b) Complete all subgraphs division states. (c) 
Shortest paths approximation between the centroids and node pairs in the subgraphs state.
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let the set S = {(ui , vi) = (ui , ti)+ (ti , tj)+ (tj , vi), 1 ≤ i ≤ m} , where ti , tj refer to the centroids in ui , uj , respec-
tively, from the set of independent and uniformly sampled node pairs (u, v) from P. We define:

Thus, we have that

Our CBCA algorithm flow
Our CBCA algorithm is a method based on a progressive algorithm. A progressive algorithm is an algorithm 
that checks whether a certain stopping condition is satisfied after each iteration. If it is satisfied, the final result 
is output; if not, the iteration continues. The goal of the CBCA algorithm is to estimate an approximation to 
the betweenness centrality b(w) of each node w in the graph and output an approximate set B̃ = {b̃(w),w ∈ v} . 
To improve efficiency, the CBCA algorithm does not iterate through all possible node pairs, but samples node 
pairs from the set Si , which is used to estimate b(w). Here mi = |Si| denotes the size of the set Si . Therefore, it is 
important to choose a suitable stopping condition, which affects the accuracy and speed of the CBCA algorithm. 
Especially for large graphs, the computational cost of each sample is high.

We now present the CBCA algorithm and next show how to obtain the set of B = {b(v), v ∈ V} for 
ε − approximation.

The input parameters of the CBCA algorithm: a graph, a failure probability δ ∈ (0, 1) , the number of k for the 
k-MCERA, a user-specified error ε̄ , sample schedule, and a suitable sample size m 0 . The output is a pair (B̃, ε) , 
where B̃ is a set of pairs (v, b̃(v)) for each v ∈ V  , where b̃(v) is the estimate of b(v), and ε ∈ (0, 1) is the accuracy 
that is probabilistically guaranteed in the following Theorem 3.1.

Theorem 3.1 With probability at least 1− δ for the CBCA algorithm, the output (B̃, ε) such that |b(v)− b̃(v)| ≤ ε.

This is presented in Online Appendix A.3, using the converse method.
Our CBCA algorithm computes an ε − approximation of B = {b(v), v ∈ V} by using the technique introduced 

in section “Rademacher averages”. CBCA can be divided into two phases. In the first phase, the CBCA algorithm 

(24)
fw(u, v) = δuv(w) = δuti (w)+ δti tj (w)+ δtjv(w)

= fw(u, ti)+ fw(ti , tj)+ fw(tj , v) ,

(25)b̃(w) = ρs(fw) = ρs(fw(ui , vi)) =
1

m

m
∑

i=1

fw(ui , vi) =
1

m

m
∑

i=1

σuivi (w)

σuivi
.

(26)ρµ(f ) = E(ρs(f )) =
1

n(n− 1)

∑

(u,v)∈V×V ,u �=v

σuv(w)

σuv
= b(w).

Algorithm 1.  CBCA
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generates the required number of high-quality centroids (lines 1–3). In the second phase, it describes the main 
procedure of how the algorithm approximates the betweenness centrality (lines 4–18).

We start with the description of the first phase.

• In line 1, the diameter of the graph is determined by using the procedure getDiameter(G) with the diameter 
method described in section “Centroids screening strategy”.

• In line 2, the number of required t centroids are obtained by following the formula (13) for calculating the 
centroids described in section “Centroids screening strategy”.

• In line 3, the CBCA algorithm obtains the high-quality network centroids based on the adjacency informa-
tion entropy of section “Centroids quality screening strategy”, for which the shortest paths approximation 
described in section “Subgraphs construction for the shortest paths approximation” is used to determine the 
t subgraphs divisions and completes the approximation using the procedure getZone(t).

We now proceed to the second phase of the algorithm.

• In line 4 and line 5, the initial value is assigned to enable that Si , which stores the sample size, is the empty 
set and i is the index iteration, while mi can guarantee the size of the sample Si considered at the ith iteration. 
Here mi ≥ m1 , which can guarantee that with probability 1− δ

2
 to satisfy the ε − approximation . Then � is 

initialized as the null matrix by the CBCA algorithm, and the main task is to calculate the k-MCERA for 
each iteration (see section “Rademacher averages”).

• In each iteration of the for loop, our CBCA algorithm performs the following operations: First of all, in line 
6, the desired pairs of sample nodes, obeying a uniform distribution, can be easily obtained by using the 
program getUniformSample(P) through the domain P.

• In line 7, At the ith iteration, it generates new samples mi −mi−1 and adds them to Si−1 to obtain the new 
sample set Si.

• In line 8, an upper bound on the number of samples required for approximation is calculated with the func-
tion effectiveSampleSchedule (Si) , which is used to ensure that any sample S has sufficient sample size to 
satisfy the ε − approximation with at least 1− δ probability. Although any schedule can be used, we give a 
suitable sample schedule to satisfy the ε − approximation in subsequent experiments.

• In line 9, we use the procedure updateValues (si) to obtain the sample set Q. The set Q helps to compute the vari-
ance and Rademacher values needed in the subsequent procedure. Q = {(w, fw(si))foreachw ∈ Vs.t.fw(si) �= 0} . 
Then we extend to � to add mi −mi−1 columns, each column consists of k rows, so � ∈ {0, 1}k×mi to facilitate 
the computation of samples of size S.

• In line 10, the k ×mi matrices are sampled by the getSampleRademacher procedure, where each matrix is a 
Rademacher r.v. (see section “Rademacher averages”).

• In line 11, the procedure getUpdate(mi , �, fw(si)) is used, which updates the value of the computed k-MCERA 
(see section “Rademacher averages”). And it can estimate B̃ (in line 12), where B̃ is a set of pairs (v, b̃(v)) for 
each v ∈ V  , where b̃(v) is the estimate of b(v). The value of ε is computed (in line 13), and the computed value 
of ε is large than the user-specified value of ε̄ . If the value of ε is over the size of the user-specified value of ε̄ , 
then the iteration is finally stopped and (B̃, ε) is output (in lines 14-18).

Experiments and analysis of results
In this section, we successfully implemented the CBCA algorithm and gave experimental evaluation results. 
We performed the experimental analysis in five aspects: sample size, running time, accuracy, different network 
characteristics, and dynamic centroids updating. We compared the sample size and running time of the CBCA 
algorithm with those of the algorithms Silvan and rk; and the accuracy rate with those of bp and rk. This is 
because Silvan is the newest algorithm and consistently outperforms other algorithms in terms of sample size 
and running time, while the bp algorithm has the highest accuracy rate among the known algorithms. We also 
tested five artificially generated random networks and networks with power-law property and Small-world 
property for network feature comparison. Finally, we gave the theoretical analysis and experimental results of 
dynamic centroids updating. All the above algorithms are guaranteed to satisfy ε − approximation with 1− δ 
probability for all nodes.

Implementation and environment. This part of the experiment is built on a Linux system, using Ubuntu 18.04 
as the main operating system of the experiment platform, with hardware specifications: Intel(R) Core (TM) 
i9-9900K CPU@3.6GHz processor with 16GB of physical memory. It also has an NVIDIA GeForce RTX 2080Ti 
graphics processor with 11GB video memory capacity. Software drivers: The 2080Ti graphics processor comes 
with a 470.103.01 driver with CUDA 11.4 acceleration platform. All code is compiled via GCC 8.

Dataset and parameters. We used the publicly available real dataset SNAP from Stanford University. All 
features of the graphs are given in Table 2. Regarding the choice of multiple parameters, we first considered 
ε ∈ {0.01, 0.006, 0.0015, 0.008, 0.003} for each graph. For δ , we set its value to a fixed 0.1, and we tested different 
values of it separately in our experiments. We found that it has very little effect on the results due to the use 
of probabilistic tail bound perception leading to exponential dependence, which differs very little from that 
described by rk. We set the initial sample size m1 to the case R(F ,m) = 0 , because this is the upper limit of the 
initial sample size that can be guaranteed with a high-quality approximation. The progressive sampling used was 
set to mi = 1.5mi−1 in the CBCA algorithm concerning the sample schedule. For the parameter k-Monte Carlo 
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trials, referring to Bavarian [18] and MCRapper [44]. It was fixed to 25, which shows that clear bounds can be 
obtained even using a small number of Monte Carlo trials, but of course, we also experimented with k = 50, 100 , 
and 200 and found that it is not better than the case of k = 25 . We ran all the algorithms 5 times and reported 
Avg ± stddev , which is representative of the standard deviation of a single measurement.

Sample size
We first show a comparison figure of the required sample sizes on different datasets in Fig. 3.

Figure 3a illustrates the ratio of sample size required by Silvan and CBCA to achieve high-quality approxima-
tion. First, for the large graphs Wiki_Talk and Wiki_topcats, CBCA requires at least 10.3% and at most 19.7% 
less sample size than Silvan, respectively. Although both Silvan and CBCA algorithms employ the k-MCERA 
technique, CBCA adopts the shortest paths approximation, which can effectively reduce the time to compute the 
shortest paths and thus decrease the sample size. In some small graphs, such as ca-GrQc, Silvan’s sample size is 
smaller than CBCA’s, which is due to CBCA’s consideration of the graph diameter, while Silvan uses an empiri-
cal peeling technique to reduce the required sample size. Finally, the CBCA algorithm performs better on large 
graphs, which is consistent with our experimental objective.

As shown in Fig. 3b, the CBCA algorithm requires much smaller sample sizes than the rk algorithm. The 
difference is up to an order of magnitude lower; and at least several times smaller. This is closely related to the 
different methods they use to reduce the sample sizes. The rk algorithm relies on the VC dimension, which 
can guarantee a high-quality approximation, but it only considers the diameter of the graph and ignores other 
features. This leads to an overly conservative estimation of the sample size. However, our CBCA algorithm 
employs the state-of-the-art k-Monto Carlo trials technique to obtain the maximum correlation index between 
the nodes with sharp variance-aware probability tail bounds. This can effectively reduce the sample size and 
provide better guarantees.

In conclusion, the CBCA algorithm can better obtain the minimum number of samples required to satisfy the 
high-quality approximation, which illustrates the importance of our shortest paths approximation and k-Monto 
Carlo trials techniques.

Table 2.  9 graphs, where D is the diameter of the graph (the longest one shortest path); t represents the 
number of prime centers; type A indicates a directed graph and B indicates an undirected graph.

G V E Type D t

Wiki_Talk 2,394,385 5,021,410 A 9 2

p2p_Gnutella31 62,586 147,892 A 11 2

Ca-GrQc 5,242 14,496 B 17 3

Com-youtube 1,134,890 2,987,624 B 20 3

cit-HepPh 34,546 421,578 A 12 2

cit-HepTh 27,770 352,807 A 13 3

ca-AstroPh 18,772 198,110 B 14 3

Wiki_topcats 1,791,489 28,511,807 A 9 2

Soc-Epinions1 75,879 508,837 A 14 3

(a) (b)

Figure 3.  The ratio of the number of samples that can satisfy the high quality ε − approximation . (a) the ratio 
of the number of samples between Silvan and CBCA. (b) The ratio of the number of samples between rk and 
CBCA.
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Running time
we report the running time, sample size, and ε of the CBCA algorithm on different datasets in Fig. 4. And we 
show a comparison of the required run times on different datasets in Fig. 5.

In Fig. 4, we can observe that the running time increases linearly with the sample size, because the main time-
consuming step of the algorithm is sampling, which accounts for more than 90% of the running time. Similarly, 
from Fig. 4b,c, both the number of samples and the running time decrease as the error ε increases, because a 
larger error ε reduces the number of samples required to obtain a more accurate value. This also demonstrates 
that our algorithm does not waste time on calculating the centroids, but focuses on the useful work.

We can see the ratio of time required to achieve approximation in Fig. 5a. For the large graph Wiki_Talk 
and Wiki_topcats, CBCA performs better than Silvan in different errors ε , saving 7.1% to 15.2% of time. This is 
because the algorithm spends more than 90% of the time on sampling. Our CBCA algorithm uses the shortest 
path approximation, which can speed up the sampling time, while Silvan uses bidirectional BFS traversal, which 
leads to an increase in sampling time. When the graph is small, such as ca-GrQc, Silvan’s sampling speed is faster 
than CBCA’s. The results show that CBCA’s running time is faster in large graphs.

As shown in Fig. 5b, the CBCA algorithm can be two to three orders of magnitude faster than rk in large 
graphs and one order of magnitude faster even in small graphs. This is attributed to the improvement of CBCA 
based on the shortest paths approximation, reducing the running time, as well as the sharply wimpy variance 
technique for satisfying approximations of high quality, reducing the number of samples.

Accuracy
we show a comparison of the absolute errors on the four datasets in Fig. 6.

In this section, we discuss the accuracy of the algorithm that we introduced in section “Preliminaries” of this 
paper. As shown in Fig. 6a–d, the CBCA algorithm can always guarantee that all nodes satisfy ε − approximation 
with probability 1− δ . Moreover, the absolute error computed is smaller than ε , even by an order of magnitude. 
This indicates that the algorithm can perform better than the theoretical guarantee. This is due to the use of the 

(a) (b) (c)

Figure 4.  (a) Running time versus sample size. (b) Running time of CBCA versus ε . (c) Number of samples for 
CBCA versus ε.

(a) (b)

Figure 5.  (a) The ratio of time between rk and CBCA. (b) The ratio of time between Silvan and CBCA.
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technique of the k-Monto-Carlo trial, which can capture the probability tail bound with sharply wimpy variance, 
making a better balance between sample size and accuracy.

Compared with CBCA, the errors of both bp and rk algorithms are smaller. This is because the VC dimen-
sional theory used by rk only considers the diameter of the graph without a more detailed understanding of the 
other structural underlying distributions of the graph. This results in too many samples, making it better in terms 
of accuracy guarantees. Moreover, the error of bp is minimal because the algorithm uses Hoeffding’s inequality 
and union bound. Although both algorithms can satisfy ε − approximation with a low error and a probability of 
1− δ , they consume a lot of time in respect of running time. Increasing the sample size of the number of samples 
to improve the accuracy sacrifices the running time.

Different types of networks
We generate ER random  networks65, WS small-world networks, and BA scale-free networks with 3000, 6000, 
9000, 12000, and 15000 nodes (i.e., five graphs with random network properties and five graphs with the small-
world property as well as power-law property, respectively).

Our Shortest Paths Approximation theory is based on two properties of complex networks: the small-world 
property and the power-law property. To verify this theory, we apply the shortest paths approximation to a ran-
dom network. The clustering coefficient of random networks is small, while the clustering coefficient of small-
world networks is large. Random networks do not have power-law distributions, while scale-free networks have 
a few high degree nodes and a large number of low degree nodes. These differences affect the effectiveness of 
the shortest paths approximation.

(a) (b)

(c) (d)

Figure 6.  The absolute error of our CBCA algorithm in 4 real graphs. (a) ca_AstroPh. (b) cit_HepPh. (c) com_
youtube. (d) p2p_Gnutella31.
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Figure 7a shows that the approximation time of the random network is at least 5.4 times longer than that of 
the small-world and scale-free network when the shortest paths approximation is used for all networks.

Figure 7b compares the ratio of shortest paths that pass through the selected centroids in the two types of 
networks. The figure shows that the shortest paths that pass through the centroids account for more than 81.3% 
of all shortest paths in the network with small-world and scale-free features, while in the random network, this 
ratio is only up to 52.1%.

This demonstrates the superiority of the CBCA algorithm’s shortest paths approximation in networks with 
small-world property and power-law property.

Updating centroids in dynamic networks
According to section “Network Density and Clustering Coefficient”, we choose the network density and cluster-
ing coefficient to measure the dynamic changes of the network. Then, we establish a formula to represent the 
dynamic change before it occurs:

for φ−value picking 0, 1
4
, 1
3
, 1
2
, 2
3
, 3
4
, and 1, respectively. 7 plans are selected.

We conduct comparative experiments on different methods or parameters, and based on the evaluation 
criteria of accuracy and efficiency, we choose:

Therefore, by setting different thresholds in the networks with small-world and power-law characteristics gener-
ated in section “Different types of networks”, and recalculating the centroids. It is judged that the recalculation 
of the centroid nodes should be performed in the case of exceeding a certain threshold.

The initial state network is characterized by fea1 =
1
3
C̄1 +

2
3
dG1 , and after the dynamic updating, it is 

fea2 =
1
3
C̄2 +

2
3
dG2.

Threshold qualifier:

(27)fea = φC̄ + (1− φ)dG ,

(28)fea =
1

3
C̄ +

2

3
dG .

(a) (b)

Figure 7.  (a) The ratio of shortest paths approximation times for ER random networks to WS small-world 
networks and BA scale-free networks. (b) The ratio of shortest paths through the centroids to all shortest paths 
in ER random networks to WS small-world networks and BA scale-free networks.

Table 3.  The centroids are to be updated at different thresholds. U means the centroids do not need to be 
updated, and N means it needs to be updated.

Graph t 0.2 0.3 0.4 0.5 0.6

3000 3 U U U U U

6000 3 U U U U U

9000 2 U U U N N

12000 3 U U N N N

15000 2 U N N N N
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we proceed to set the resulting THV for the threshold qualifier to 0.2, 0.3, 0.4, 0.5, and 0.6.
It can be seen from Table 3 that the original centroids need to be updated when the threshold THV exceeds 

0.5. This shows that our CBCA algorithm updates the centroids only if the THV is set to a value greater than 
0.5, saving a lot of time.

Conclusion
In this paper, we present a novel betweenness centrality approximation algorithm based on progressive sampling 
and shortest paths approximation. The algorithm firstly uses the adjacency information entropy to generate net-
work centroids and constructs an efficient shortest paths approximation strategy; then, it uses the k-Monto Carlo 
trials technique to trade off the sample size and error to obtain a high-quality approximation of the betweenness 
centrality of all nodes. The algorithm can also handle dynamic networks with frequent BC changes by using a 
centroid updating strategy based on network density and clustering coefficients.

Our experimental results show that our algorithm outperforms the baseline algorithm for the same probability 
in various networks. Our algorithm can efficiently output high-quality approximations of the node betweenness 
centrality in large-scale complex networks. Our algorithm can also be applied to network analysis and applica-
tions, such as identifying the most influential or central nodes in a network, which can help us understand the 
network structure and function, as well as optimize its performance or resilience. However, our algorithm also has 
some limitations and challenges, such as relying on the quality of the network centroids, which may not always 
be optimal or representative. Therefore, we intend to extend our algorithm to address these issues in future work, 
such as exploring different methods or criteria to select or update network centroids, applying our algorithm to 
different types of networks, and applying our algorithm to other network analysis tasks.

Moreover, the network centroids and shortest paths approximation methods proposed in this paper can also 
be tried for other centrality measures, such as degree centrality, closeness centrality, etc. These centrality meas-
ures can also reflect the importance or influence of network nodes in different aspects, and have many practical 
applications. We believe that our methods can provide an effective and flexible approximation strategy for other 
centrality measures, and can adapt to different scales and characteristics of networks. We also believe that the 
methods proposed in this paper can be used to improve the speed and quality of data analysis and mining, such 
as finding similar or different points or groups in data faster, evaluating important or abnormal points or edges 
in data more accurately, etc. These are very important and valuable problems in the field of data science, and 
have many practical applications.

Data availability
The data generated and analysed during the current study are available in the OSFHOME repository: https:// osf. 
io/ xhs2q/? view_ only= eed9b b3e28 ac48f 4acd5 27117 e2037 f4.
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