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Novel Alzheimer’s disease genes 
and epistasis identified using 
machine learning GWAS platform
Mischa Lundberg 1,2,3,10*, Letitia M. F. Sng 1,10, Piotr Szul 4, Rob Dunne 5, Arash Bayat 6, 
Samantha C. Burnham 7, Denis C. Bauer 1,8,9,11 & Natalie A. Twine 1,9,11*

Alzheimer’s disease (AD) is a complex genetic disease, and variants identified through genome-wide 
association studies (GWAS) explain only part of its heritability. Epistasis has been proposed as a major 
contributor to this ‘missing heritability’, however, many current methods are limited to only modelling 
additive effects. We use VariantSpark, a machine learning approach to GWAS, and BitEpi, a tool 
for epistasis detection, to identify AD associated variants and interactions across two independent 
cohorts, ADNI and UK Biobank. By incorporating significant epistatic interactions, we captured 
10.41% more phenotypic variance than logistic regression (LR). We validate the well-established 
AD loci, APOE, and identify two novel genome-wide significant AD associated loci in both cohorts, 
SH3BP4 and SASH1, which are also in significant epistatic interactions with APOE. We show that the 
SH3BP4 SNP has a modulating effect on the known pathogenic APOE SNP, demonstrating a possible 
protective mechanism against AD. SASH1 is involved in a triplet interaction with pathogenic APOE 
SNP and ACOT11, where the SASH1 SNP lowered the pathogenic interaction effect between ACOT11 
and APOE. Finally, we demonstrate that VariantSpark detects disease associations with 80% fewer 
controls than LR, unlocking discoveries in well annotated but smaller cohorts.

Alzheimer’s disease (AD) is the most common form of dementia and predominantly affects individuals over  651. 
The vast majority (99%) of AD cases are late onset (LOAD) and are driven by multiple genetic and environmental 
influences, with genetics accounting for between 53 and 80% of total phenotypic  variance2–4. The heritability 
of LOAD is predominantly carried by the APOE locus, which explains about 25% of the total heritability of the 
 disease5. In addition to APOE, large-scale genome-wide association study (GWAS) meta-analyses identified 
 406 and 75 additional risk  loci7, but more than 30% of genetic variability remains  unknown3. Recent  studies8,9  
predict that there are 100 to 1000 causal variants with modest effects associated with LOAD, of which only a 
small proportion have been identified.

Part of the missing heritability in LOAD might be explained by non-additive  interactions10, which are ignored 
by GWAS studies. Indeed, a genome-wide replicated scan has found epistasis to be a ubiquitous phenomenon 
across multiple  phenotypes11. Epistatic interactions have long been implicated in complex genetic disease, 
including neurological  diseases12 and LOAD  itself13. However, due to the computational complexity of finding 
genome-wide gene–gene interactions, the search were limited to candidate gene  approaches13–17, or genome-wide 
approaches exploring interactions between APOE and other risk  loci18.

Using the ML platform  VariantSpark19, we overcome the shortcomings of traditional statistical GWAS 
approaches and computationally limited epistatis discovery tools to identify genome-wide variants associated 
with LOAD and AD in both the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort (512 cases, 272 
controls)20 and the UK Biobank (UKBB) cohort (704 cases, up to 6869 controls)21. Using a novel false discovery 
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rate (FDR)  method22, we are able to use VariantSpark’s random-forest-based feature selection approach to nar-
row down the genome-wide search space to the subset of variants enriched with epistatic interactions. We then 
apply  BitEpi23 to perform an exhaustive search of this subset to annotate pairwise and higher-order, statistically 
significant interactions between the variants. We also explore the proportion of phenotypic variance captured by 
VariantSpark versus the traditional logistic regression (LR) methods. Finally, we demonstrate that VariantSpark 
has improved sensitivity to detect signal with fewer control samples compared with LR approaches.

Results
VariantSpark identifies known AD loci across two independent cohorts
Using the ML genomics platform  VariantSpark19, and a novel RFlocalfdr  approach22, we identified genetic vari-
ants that are both marginally and interactively associated in two independent AD cohorts, UKBB and ADNI 
(7,573 and 784 samples of 4.5M SNPs each). Because of these two types of associations, we expect to find more 
significant variants than a LR approach at < 5% FDR.

We identified 104 SNPs (53 independent) to be significantly associated with AD in the UKBB cohort (Table 1, 
Fig. 1, Supplementary Table S1) and 207 significantly associated SNPs (124 independent) in the ADNI cohort 
(Fig. 1, Supplementary Table S2). When we compared these associations with those associated with AD in the 
GWAS Catalog (trait ID ‘MONDO_0004975, accessed 16/05/22)24 using locus bins, we observed a 70% overlap 
with the significant SNPs identified in both the UKBB (72/104) and ADNI cohort (145/207), with 31 out of the 
53 independent UKBB SNPs (58.49%) and 82/124 (66.13%) of the independent ADNI SNPs (Table 1 and Sup-
plementary Table 2).

As expected, the APOE loci was identified in both ADNI and UKBB cohorts (Supplementary Tables 1 and 
2). To evaluate the functional context of the other significantly associated independent variants, we performed 
functional enrichment analysis using MAGMA. Gene-set analysis (Supplementary Table S4) identified 9 (ADNI) 
and 3 (UKBB) gene sets significantly associated (after Bonferroni correction). Many of the significant gene sets 
and those with suggestive significance levels (P < 0.05) fell into the categories of transmembrane and metal 
ion transport proteins (known to be key in neuronal signalling in the brain). Tissue expression analysis using 
MAGMA and GTEX (Supplementary Table S5, Supplementary Table S6) revealed brain tissues to be the most 
highly ranked, although they did not pass Bonferroni correction.

VariantSpark identifies novel loci associated with AD
We next investigated which loci replicated between the two independent cohorts. Despite the phenotypic hetero-
geneity across the two cohorts, we replicated three independent, significantly associated genes, APOE (rs429358), 
SASH1, and SH3BP4 (Table 1 and Supplementary Table S2). It is important to note that the significance threshold 
for the RFlocalfdr is 0.05 compared to the traditional genome-wide significance threshold of P < 5 ×  10–8, which 
needs to correct for multiple tests. Both thresholds, RFlocalfdr for VariantSpark and P < 5 ×  10–8 for logistic 
regression, control for Type 1 error and correct for the multiple testing burden. For further information, see 
Methods section.

Both SASH1 and SH3BP4 were novel to our study and were not yet present in the GWAS Catalog SNPs, 
although there is a marginally associated SNP (rs9390537, χ2-p = 8.17 ×  10–6) mapping to an intergenic region 
91,233 bp upstream of SASH1 associated with  AD25 and another marginally associated SNP (rs66501349, χ2-
p = 2 ×  10–6) intergenic to SH3BP4 and CEP19P1 associated with poorer cognitive  function26. The corresponding 
rsIDs from the UKBB cohort are rs117160741 (Chr 6:148512131) for SASH1 and rs114656810 (Chr 2:235751287) 
for SH3BP4 (Supplementary Table S1). Both are intergenic and located upstream of the genes. Similarly, the rsIDs 
from the ADNI cohort are rs9918382 (Chr 6:148265029), an intergenic variant located upstream of SASH1, while 
rs6711272 (Chr 2:235131361) is an intergenic variant located downstream of SH3BP4 (Supplementary Table S2).

SASH1 (SAM and SH3 domain-containing 1) encodes a scaffold protein, which is ubiquitously expressed, 
including in brain tissues and is also a positive regulator of the NF-kB signalling pathway through the activa-
tion of TLR427. SH3BP4 (SH3 domain binding protein 4) encodes a protein involved in the amino acid-induced 
TOR signalling  pathway28. Both SASH1 and SH3BP4 are membrane bound phosphoproteins with SH3 domains.

BitEpi identifies novel interactions between known and novel AD genes
BitEpi was used to identify epistatic interactions between significantly associated variants in both cohorts. The β 
and α metrics, reflecting association power and interaction effect respectively, were used to select interactions that 
were strongly associated to the AD phenotype due to an epistatic effect. We identified 37 interactions with signifi-
cant β and α values in the UKBB cohort, of which 17 were 2-SNP, 16 were 3-SNP, and 4 were 4-SNP interactions 
(Fig. 2, Supplementary Table S7). Using the ADNI cohort, we identified 58 interactions with significant β and 
α values, 39 were 2-SNP, 17 were 3-SNP and 2 were 4-SNP interactions (Fig. 3, Supplementary Table S8). Inter-
estingly, the two replicating AD associated genes, SASH1 and SH3BP4, were involved in epistatic interactions.

In the UKBB cohort, the SNP (rs114656810) mapping to SH3BP4 was found to interact with rs429358, which 
is a reported pathogenic APOE SNP in  ClinVar29, where the alternate ‘C’ allele plays a part in the high AD-risk 
APOE-ε4 isoform. This pairwise interaction was interrogated to identify the genotype combinations associated 
with AD (Supplementary Table S9). Due to the low number of samples with the homozygous alternate genotype 
(AA) of SH3BP4 SNP, we reduced the genotypes to two classes; presence or absence of the alternate ‘A’ allele. In 
the absence of the alternate SH3BP4 SNP allele, there was no absolute difference in control rates between the 
SH3BP4xAPOE interaction and the APOE SNP alone (Fig. 4A). This indicates a limited effect of the homozygous 
reference genotype of rs114656810 on AD. However, with the presence of the alternate allele of the SH3BP4 SNP, 
the pathogenic effect of the APOE C allele is modulated (Fig. 4A), suggesting that SH3BP4 may have a protective 
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mechanism against AD for carriers of the APOE ’CC’ genotype. In the ADNI cohort, this pairwise interaction 
between SH3BP4 and APOE was marginally significant but did not pass Bonferroni correction.

In the ADNI cohort, the SNP rs9918382 mapping to SASH1 was involved in a triplet interaction with the same 
pathogenic APOE SNP, rs429358. The other SNP, rs7552961, in the triplet maps to ACOT11, has been shown 
to be associated to mild cognitive  decline30. This triplet interaction was also examined further (Supplementary 
Table S10). Again, due to the low numbers of samples with the homozygous alternate genotype of rs9918382 

Table 1.  Annotated statistically significant independent SNPs identified using VariantSpark and the UKBB 
cohort. Replication status to ADNI validation cohort and GWAS Catalog included.

Chr Pos Alt RSID P value Gene ADNI GWAS catalog

1 174049377 C rs72711440 4.36E+09 RABGAP1L-DT FALSE FALSE

1 193137934 C rs139963893 2.50E+09 CDC73 FALSE TRUE

1 244007787 A rs75965920 5.16E+09 AKT3 FALSE FALSE

2 38520113 A rs56302953 3.05E+09 ATL2 FALSE TRUE

2 205966824 G rs116192932 1.64E+09 PARD3B FALSE TRUE

2 215673948 C rs71579843 1.70E+09 BARD1 FALSE FALSE

2 235751287 G rs114656810 2.29E+09 SH3BP4 TRUE FALSE

3 76534878 C rs74801337 4.85E+09 ROBO2 FALSE FALSE

3 154755590 C rs9829241 1.39E+09 MME FALSE FALSE

4 116269757 A rs147896092 6.36E+05 NDST4 FALSE FALSE

4 178201067 G rs76175875 2.34E+08 NEIL3 FALSE TRUE

5 36648950 C rs115172522 1.07E+09 SLC1A3 FALSE TRUE

5 93761812 G rs112217406 2.73E+09 KIAA0825 FALSE FALSE

5 153560523 G rs71585927 3.90E+09 GALNT10 FALSE TRUE

5 168782459 C rs78269616 1.07E+07 SLIT3 FALSE FALSE

6 46454250 G rs114866534 1.49E+09 RCAN2 FALSE TRUE

6 81120137 G rs117103821 1.75E+07 BCKDHB FALSE TRUE

6 133182939 NA rs57823471 5.59E+09 NA TRUE TRUE

6 148512131 C rs117160741 5.15E+07 SASH1 TRUE TRUE

6 150085133 A rs117243801 2.84E+08 PCMT1 FALSE TRUE

7 101930310 C rs11552019 5.76E+09 SH2B2 FALSE TRUE

8 52718273 T rs112585504 3.10E+09 PXDNL FALSE FALSE

8 65042594 T rs78789176 5.43E+08 LINC01414 FALSE TRUE

9 25640336 A rs77057081 1.16E+09 TUSC1 FALSE TRUE

9 108857477 C rs117992330 3.40E+09 TMEM38B FALSE TRUE

9 136144593 G rs66697526 3.65E+08 ABO FALSE TRUE

10 66463703 C rs189699806 4.56E+07 ANXA2P3 FALSE FALSE

10 70366297 C rs61868095 3.59E+08 TET1 FALSE TRUE

10 122310126 C rs79486209 5.24E+09 PLPP4 FALSE FALSE

11 12566857 C rs76154502 7.12E+08 PARVA FALSE TRUE

11 44909137 C rs78150932 2.09E+07 TSPAN18 FALSE TRUE

11 118613605 A rs139648410 1.08E+09 DDX6 FALSE FALSE

12 65040623 G rs79774071 1.12E+09 RASSF3 FALSE TRUE

12 107592329 G rs75378184 9.57E+08 CRY1 FALSE TRUE

13 22104766 T rs116942699 4.31E+09 MICU2 FALSE FALSE

13 55121441 G rs117658626 5.37E+07 MIR1297 FALSE FALSE

14 62969759 G rs79473324 1.39E+09 KCNH5 FALSE FALSE

14 99261321 C rs142983586 4.35E+07 C14orf177 FALSE TRUE

16 53388460 A rs2908783 2.29E+09 LOC643802 FALSE FALSE

17 2761430 C rs74252350 2.63E+09 RAP1GAP2 FALSE FALSE

17 54490063 C rs147441895 4.16E+08 ANKFN1 FALSE FALSE

18 22582278 T rs79110874 3.25E+09 LINC01894 FALSE FALSE

18 77685936 G rs113702893 4.25E+09 SLC66A2 FALSE FALSE

19 17262529 C rs117951200 1.12E+09 MYO9B FALSE TRUE

19 45411941 T rs429358 0.00E+00 APOE TRUE TRUE

19 55511927 G rs1560714 2.98E+09 NLRP2 FALSE TRUE

21 36714721 A rs2834914 1.22E+09 LOC100506403 FALSE FALSE
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(n = 15), the genotype was reduced to two classes; presence or absence of the alternate ‘G’ allele. Figure 4B shows 
that the alternate ‘G’ allele of the SASH1 SNP has a protective effect, reversing the pathogenic interaction effect 
of the rs7552961 (ACOT11) TT genotype and rs429358 (APOE) TC genotype increasing the relative control 
rate from –0.139 to 0.028 (Supplementary Table S10). However, when the alternate ACOT11 allele (G) is present 
with the APOE CC genotype, the SASH1 SNP has no effect. In fact, none of the possible pairwise interactions 
between these three genotypes passed significance for the α metric, which suggests that the association to AD 
was carried by the interaction of all three SNPs. This highlights the complexity and difficulty of detecting epistatic 
interactions, where exacerbating or protective properties are exerted through specific combinations of genotypes.

VariantSpark can detect more disease associated signal than logistic regression
Next, we compared VariantSpark with the more traditional GWAS approach implemented in PLINK’s logistic 
regression (LR) to estimate the power to detect disease associated signal with limited control samples. To do this, 
in addition to using the ADNI cohort, we subset two datasets from the UKBB cohort: the first contained a ratio 
of 10 controls to 1 case (UKBB10to1) and the second with 2 controls to 1 case (UKBB2to1).

Using LR, we did identify multiple variants at suggestive significance levels using the ADNI cohort 
(ranging from χ2-p = 8.34 ×  10–8 to χ2-p = 2.63 ×  10–6), all falling into the APOE locus (Chr19:45,326,217 to 
Chr19:45,445,517). Based on the UKBB cohort, we identified three significantly independent associated SNPs 
in UKBB10to1 (127 in total) (Supplementary Table S3) and one significantly independent associated SNP 
in UKBB2to1 (74 in total) (Supplementary Table S11). All SNPs found using LR fell within the APOE locus 
(Chr19:45,326,217 to Chr19:45,445,517).

In contrast, VariantSpark identified associations outside of the APOE region such as rs79486209 on chromo-
some 10 which mapped to PLPP4, a gene previously associated with  AD31. VariantSpark identified 53 significantly 
associated independent SNPs (104 in total) in UKBB10to1 (Table 1) and 20 significantly associated independent 
SNPs (69 in total) in UKBB2to1 (Supplementary Table S12).

This demonstrates we have 15% (1/3 vs. 20/53) more power to detect disease associated variants with 80% 
fewer (2 vs. 10) controls using VariantSpark compared with a LR approach.

VariantSpark captures more phenotypic variance in AD than Logistic Regression
A key goal of this study was to explore whether epistasis can explain some of the missing heritability that is well 
documented in  AD2–4. To this end, we measured the proportion of phenotypic variance captured by genetic 
variants identified in the UKBB cohort using Nagelkerke’s pseudo-R2 and fitting three LR models with: Firstly, 
significant and independent SNPs identified by LR (n = 3). Secondly, significant and independent SNPs identified 
by VariantSpark (n = 53). Thirdly, significant and independent SNPs identified by VariantSpark with significant 
interactions identified by BitEpi (n = 122).

Within the UKBB cohort, the VariantSpark-BitEpi model (model (3)) captured the highest variance explained 
at 23.18% compared to model (2) without the BitEpi interactions at 17.12% and model (1) the LR SNPs at 12.77% 
(Supplementary Fig. S2). To test whether the performance increase of the VariantSpark-BitEpi model was driven 
by its additional variables, we calculated an empirical P value. We fitted 1000 models containing the 3 LR SNPs 

Figure 1.  Miami plot showing significant SNPs identified by VariantSpark in UK Biobank (10 controls to 1 
case) (top) and ADNI (bottom) cohorts. Red asterisks mark those variants that have been replicated by position 
(only independent variants) between the two cohorts. Annotation (black) represents gene annotations that are 
novel and replicated between the two cohorts. Annotations in grey represent previously identified variants.
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as well as 50 randomly selected SNPs and 69 interactions to emulate the degrees of freedom of the VariantSpark-
BitEpi model (3). As shown in Supplemental Fig. S2, these models achieved an average pseudo-R2 of 19.33%, 
outperforming the models with fewer predictors (models (1) and (2)). In contrast, VariantSpark-BitEpi’s model 
had a small but significant (p = 0.006) performance improvement over the random models (23.18% vs 19.33%), 
confirming that additional signal was captured. We make a similar observation for these models when tested on 
the independent ADNI cohort. LR (model 1) captured 7.09% while the random models captured 25% on average 
and VariantSpark-BitEpi (model 3) achieved 27.20%. The increase in variance explained on the ADNI set is likely 
due to an easier signal, which is predominantly driven by APOE (as observed in Section C).

These findings indicate that VariantSpark-identified SNPs and BitEpi-identified epistatic interactions together 
explain up to 10.41% more phenotypic variance in AD than traditional LR approaches that focus only on mar-
ginal effects. This also aligns with previous studies where the addition of 87 marginal effect SNPs (without 
APOE) explained only 2.1% more  variance32 and 2,042,105 SNPs (without known AD SNPs) accounted for 25.3% 
 variance3. Taken together, these results suggest that epistatic interactions across the genome play a part in AD 
aetiology and should be accounted for when developing therapeutics and genetic risk scores.

Figure 2.  Network diagram of significant BitEpi interactions from UK Biobank cohort. Nodes in green are 
known AD associations, in red is the novel gene replicated in this study, and in blue are variants which are novel 
but unreplicated. All 2-SNP, 3-SNP, and 4-SNP interactions are included. Size of nodes are representative of 
node degree calculated from the NetworkAnalyzer plug-in in Cytoscape.
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Transcriptome-wide association (TWAS) lookup of SASH1 and SH3BP4
Finally, we looked at transcriptomic level information of the mapped genes SASH1 and SH3BP4 as in previous 
 studies33, 34 have shown that this can add confidence that GWAS-identified genes are capturing actual disease-
related signal. Using the TWAS-hub35, SASH1 showed strong evidence (ENET-P = 7.5 ×  10–9) of involvement 
in the prefrontal cortex tissue and a strong association with “Alzheimer’s Disease (in father)” (Supplementary 
Table S13). In contrast, SH3BP4 showed an association with nerve tibial tissue at non-suggestive levels for Alz-
heimer’s Disease (Supplementary Table S14). Another resource used were the gene expression tests built into 
 FUMA36 using GTEx  v837 data. In this analysis, both SASH1 and SH3BP4 showed increased expression levels in 
brain tissue (Supplementary Fig S3).

Figure 3.  Network diagram of significant BitEpi interactions from ADNI cohort. Nodes in green are known 
AD associations, in red is the novel gene replicated in this study, and in blue are variants which are novel but 
unreplicated. All 2-SNP, 3-SNP, and 4-SNP interactions are included. Size of nodes are representative of node 
degree calculated from the NetworkAnalyzer plug-in in Cytoscape.
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Figure 4.  Relative control rates of the interactions (A) rs119656810 (SH3BP4) and rs429358 (APOE) in the UK 
Biobank cohort, and (B) rs7552961 (ACOT11), rs9918382 (SASH1), and rs429358 (APOE) in the ADNI cohort. 
Relative control rates were calculated as the difference between control rates of each genotype combination and 
the control rate of the entire cohort. Due to sample size restrictions, the rs119656810 SNP and the rs9918382 
SNP was reduced to two categories; presence or absence of its alternate allele. There is evidence of a modulating 
effect of the alternate allele of rs119656810 on the APOE-e4 (rs429358 CC) genotype as seen from the increase 
in relative control rates in the top middle and top right cells in (A). There is evidence of a protective effect of 
alternate allele of rs9918382 on the ACOT11 × APOE genotypes as seen from the increase in relative control 
rates in the top middle cell and the bottom right cell in (B). However, there is no evidence of the same effect for 
the APOE-e4 (rs429358 CC) genotype in an interaction with the ACOT11 alternate allele (rs7552961).
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Discussion
Using VariantSpark, a ML approach to GWAS, we have identified two novel genes, SASH1 and SH3BP4, to be 
associated with AD reaching genome-wide significance.

SASH1 is a known tumour suppressor protein that has been shown to be differentially expressed between AD 
and control  samples38, 39. Furthermore, a previous study found SNP rs9390537 (located 91,233 bp upstream of 
SASH1) to be nominally associated to LOAD (χ2-p = 8.17 ×  10–6)25. Indeed, it is a nominated AD drug target in the 
Agora database, a database curated by AD researchers from the accelerating medicine partnership-Alzheimer’s 
disease consortium and other research teams.

SH3BP4 or transferrin trafficking protein (TTP) interacts with endocytic proteins including clathrin, 
dynamin, and the transferrin  receptor40 and is involved in the aminal acid-Rag GTPase-mTORC1 signalling 
pathway. It is a central link between Akt signalling and cell–matrix adhesion  regulation28. Although SH3BP4 has 
no established link to AD, a SNP (rs66501349, intergenic to SH3BP4 and CEP19P1) has been marginally associ-
ated to poorer cognitive function (χ2-p = 2 ×  10–6)26 and its interactor dynamin has strong evidence of a role in 
AD  pathophysiology41, 42. In particular, the expression of gene DNM2 was significantly decreased in AD patients, 
and neuronal cell lines transfected with dominant negative DNM genes were observed to have an accumulation 
of APP and increased Aβ  secretion43.

The key contribution of our work is adding the lens of epistasis to association. We identified a total of 95 
epistatic interactions, including 2-SNP, 3-SNP and 4-SNP interactions associated with AD, in two independent 
cohorts. This elevated the previously only nominally associated SASH125 to pass FDR significance when its inter-
action with ACOT11 and APOE is accounted for. Specifically, our epistasis analysis revealed that the alternate ‘G’ 
allele of SASH1 SNP rs9918382 appears to have a protective effect against AD as it reverses the pathogenic effect 
of ACTO11 rs7552961 ‘TT’ and APOE rs429358 ‘TC’ genotype combination (Supplementary Fig. S3). However, 
this modulating effect was not found in the presence of two copies of the pathogenic APOE ‘C’ allele (rs429358, 
Supplementary Fig. S3). This result is consistent with co-expression patterns found between AD and control 
 brains44 and the high expression levels of SASH1 in pre-frontal cortex tissue in the TWAS-hub. Taken together, 
it is likely that SASH1 plays a role in AD pathophysiology and warrants further investigations.

Although, most of our identified epistasis is concentrated between APOE and a small number of other loci, 
our methodology can explore genome-wide epistasis in an unbiased manner, unlike previous  studies45, 46. Addi-
tionally, a genome-wide search allows for the identification of epistasis in non-coding regions of the genome 
which have empirically demonstrated to effect gene  expression47.

For example, our epistasis analysis revealed a modulating effect of the alternate allele of SNP rs119656810 
(SH3BP4) on the APOE locus. A possible explanation for this effect is that SH3BP4 has the  ability to regulate 
the activity of  dynamin40, whereby it enables the processing of amyloid β protein precursors resulting in lower 
levels of Aβ depositions and AD pathology. Together, SH3BP4 is a novel gene that may play a role in AD patho-
physiology through its pathway mechanisms and in combination with APOE.

While VariantSpark identified SH3BP4 and SASH1 in both cohorts due to their cumulative additive and 
epistatic effects on AD, the exact epistatic interactions they are involved in were not replicated, although SH3BP4-
APOE showed marginal significance. This is likely due to the varying number of individuals who might have 
this exact modulating disease physiology and genotype combinations across the two cohorts. This illustrates 
the benefits of using VariantSpark instead of traditional LR models on binary traits with potential polygenic 
interactions, like Alzheimer’s disease.

Using VariantSpark, we were also able to detect disease genes with fewer controls than traditional approaches. 
This is relevant as a recent study calculates 10,000,000 cases would be needed for a traditional GWAS to find 
significant SNPs explaining 50% of Alzheimer’s disease  heritability48. Even for large initiatives such as FinnGen 
or 23andMe, such numbers are hard to achieve. Our method offers an alternative and enables discoveries in 
smaller but well annotated cohorts for AD and other genetic studies.

The limitations to our study are as follows: Firstly, ADNI used whole genome sequencing mapped to the 
GRCh38 reference genome, while the UKBB used array technology mapped to the GRCh37 reference genome 
resulting in the final set of 4.5 million common SNPs which was around 50% of the total number of SNPs for 
both cohorts. Secondly, the ADNI and UKBB cohorts are both different ascertainments. Particularly, UKBB is a 
relatively healthy volunteer cohort and contained a mix of AD phenotypes while ADNI recruited patients based 
on their health status and included samples with mild cognitive impairment to maximise sample size but is only 
an AD-proxy phenotype. Lastly, the ADNI cohort was substantially smaller than the UKBB cohort, with 784 
samples, compared to 7582 samples. These three factors in combination limit our power to discover and replicate 
disease variants and epistatic interactions across cohorts. Furthermore, we restricted our samples in both cohorts 
to those of European descent as is  commonplace49. However, it has been shown that ethnicity plays a crucial role 
in AD  aetiology50, 51 and more diverse genomic datasets are needed to gain better unbiased  insights52.

In conclusion, we have established a ML approach for detecting genetic signals associated with disease, which 
goes some way to explain the missing heritability observed in previous literature.

Methods
Sample selection
Data for AD was obtained from two sources; ADNI and UKBB. The ADNI aimed at testing combinations of imag-
ing and biological markers to measure progression of AD and mild cognitive impairment (MCI). For this study, 
cases were samples labelled as early and late MCI and AD (Supplementary Note 1). The UKBB contains pheno-
typic and biological information from 500,000 participants; see their previous publication for more  details21. For 
this study, ICD10 codes from hospital inpatient records and participant responses were used to identify cases of 
AD. See supplementary for specific codes, question, and responses used. Additionally, individuals with indication 
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of early onset AD and/or family history of AD were excluded. Based on the UK Biobank two subsets were gener-
ated to identify differences in detection power for novel variants. One contained a ratio of 1 case to 2 controls 
(labelled UKBB2to1) and the other a ratio of 1 case to 10 controls (labelled UKBB10to1). The UKBB10to1 cohort 
was used for all result sections, unless specified. Counts of individuals included in the analyses are shown in 
Supplementary Note 1. This research was approved by the UK Biobank’s governing Research Ethics Committee.

Quality control
Quality control (QC) included exclusion of variants with minor allele frequency (MAF) < 0.01, imputation 
quality < 0.9, genotype missingness > 0.1 and those deviating from Hardy–Weinberg equilibrium (P < 1 ×  10–6). 
Furthermore, individuals with a discrepancy between their genetic and reported sex were excluded and if their 
genotype-derived principal components 1 and 2 were further than 6 standard deviations away from those of 1000 
Genomes European population. After QC, we had 11.7 M variants in UKBB, and 9.5 M variants in ADNI, with 
4.6 M in common between the two cohorts. Notably, the ADNI cohort was mapped to the GRCh38 reference 
while the UKBiobank was mapped to the GRCh37 reference.

Genome-wide association study using logistic regression
Association testing between AD and genetic variants was conducted using whole genome LR model imple-
mented in  PLINK53 (v1.90beta). Sex, age and the top 20 principal components were used as covariates for the 
association analysis.

Genome-wide association study using VariantSpark
VariantSpark19, a distributed implementation of the random forest (RF) algorithm, was used for association test-
ing on Amazon Web Services. The same QC’d input files from LR analyses were used in the VariantSpark analyses. 
Optimisation of four hyperparameters; mTry, minNodeSize, MaxDepth, and nTree was run on all cohorts The 
optimised settings for all three cohorts were the same for mTry (0.1), MaxDepth (10), and nTree (20,000) except 
for minNodeSize where UKBB10to1 = 758, UKBB2to1 = 211, and ADNI = 78.

We determined the reliability of VariantSpark on real datasets by comparing Gini importance score of three 
runs on the UKBB10to1 and ADNI cohorts as Pearson’s correlations (Supplementary Figs. S1). Further, we 
tested the effect of covariates (as used in LR) in a RF model by comparing the out-of-bag error metric between 
a  Ranger54 run with covariates and a VariantSpark run without covariates. We did not observe any difference 
between the models; thus, covariates were not included in the final VariantSpark analysis.

Compute resources
LR analyses were conducted on a machine with 16 Cores and 48 GiB memory. VariantSpark analyses were con-
ducted using AWS Elastic Map Reduce with a total sum of 64 vCores and 488 GiB of memory.

Post-GWAS analyses
P value calculation
The primary measure of association from VariantSpark is the importance score derived from Gini-Index55. 
While this score can rank variants by importance, it is unable to determine significantly associated variants. To 
determine significance from importance scores, we used a recently developed  method22. Briefly, this approach 
is based on the empirical Bayes  method56 which uses RF tree information as a threshold to fit a skew normal 
distribution and correct for multiple testing akin to Efron’s local false discovery rate approach.

Identification of independent variants, functional mapping and annotation
Variants identified in the GWAS were annotated using  SNPTracker57 and clumped using PLINK v.1.90b3.3153 
within a window of 1000 kb and  r2 of 0.01. Significantly associated variants were functionally mapped and 
annotated using ANNOVAR (v.7 2020-06-08)58. Furthermore, all significantly associated variants were mapped 
into locus bins where each locus bin was created based on a two million base-pair sliding window around the 
variants. This allowed known associations from the GWAS Catalog to be mapped to our results by identifying 
bins that are shared between the GWAS Catalog and our study’s associations.

General quality assurance of the UKBB (discovery) and ADNI (replication) cohort
PLINK LR results were used to identify potential population stratification using LDSC. No evidence for inflated 
statistics due to hidden population stratification was detected (LDSC intercept estimate was 1.03 ± 0.01 and 
1.03 ± 0.01 for UKBB10to1 and ADNI, respectively).

Epistasis calculation using BitEpi
To identify 2-SNP, 3-SNP, and 4-SNP interactions, BitEpi was applied to the significant VariantSpark associations 
in the UKBB and ADNI cohorts separately. The methods behind BitEpi have already been discussed  elsewhere59 
but briefly, BitEpi calculates two entropy metrics, α and β. The β metric reflects the combined association power 
of all the SNPs involved in the interaction while the α metric represents the gain in association power due to 
the epistatic effect of all interactive SNPs. Therefore, an interaction with a large α and β has a strong association 
with the phenotype caused by an epistatic effect between all of the SNPs in the interaction. Quantiles for each 
order (2-SNP, 3-SNP or 4-SNP interactions) were used to filter out interactions with higher α and β values before 
P-values were computed through a permutation procedure. Bonferroni-corrected significance thresholds were 
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calculated based on all possible combinations, with < 0.05 denoting significance. SNPs involved in significant 
interactions were annotated with their independent SNP to remove any redundant interactions.

Using an in-house Python script, we generated contingency tables for some of the significant interactions 
found by BitEpi (Fig. 4, Supplementary Table S9). The control rate is the number of controls over the number 
of samples for each genotype combination or for the overall cohort. The relative control rate is then the overall 
control rate minus the genotype combination control rate. A genotype combination with a negative relative 
control ratio can be considered to be deleterious and vice versa.

Variance explained calculation
The significant associations from the VariantSpark, PLINK LR, and BitEpi analyses using the UKBB cohort were 
used to calculate the variance explained calculated as Nagelkerke’s pseudo-R260 within the UKBB and ADNI 
cohort with the following as predictors in logistic models run using R v4.1.361; (1) significant and independent 
VariantSpark SNPs (n = 53), (2) significant and independent PLINK LR SNPs (n = 3), (3) significant and inde-
pendent VariantSpark SNPs and all significant BitEpi interactions as interacting variables (n = 122). For all three 
models, the response was the AD case/control status. An empirical P-value was calculated from 1000 ‘random 
noise’ models which were built to mimic the structure of model 3 by including the known APOE SNPs found by 
VariantSpark but also SNPs with no association with AD.

Data availability
The data that support the findings of this study are available from ADNI database (https:// adni. loni. usc. edu/ 
data- sampl es/ access- data/) and through the UK Biobank Data Showcase (http:// www. ukbio bank. ac. uk/).
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