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Pupil response patterns distinguish 
true from false memories
Alex Kafkas *, Travorn Brown , Nifemi Olusola  & Chaodong Guo 

Memory is reconstructive and error-prone, which make memory illusions very common in everyday 
life. However, studying memory illusions can provide valuable insights into how memory works. Pupil 
response has emerged, in recent years, as an indicator of memory encoding and retrieval, however 
its validity as a measure of memory success is debated. In this study, we explored whether pupil 
response patterns can differentiate true from false memories and whether variations in the temporal 
dynamics of pupil response can elucidate the mechanisms underlying false memory creation. The 
Deese-Roediger-McDermott (DRM) paradigm was employed to generate false memories in two 
separate experiments involving visual and auditory stimuli. Pupil responses effectively differentiated 
true from false memories based on variations in pupil amplitude at different temporal components. 
This discrimination remained consistent across both experiments, with slightly stronger effects in 
the auditory condition, aligning with the more pronounced false memory effects in this condition. 
Notably, differential pupil responses between true and false memories varied based on the type of 
memory involved at recognition. These findings provide valuable insights into the cognitive processes 
underlying memory distortions, with implications for theoretical frameworks and real-world contexts.

Memory distortions and illusions are extremely common in everyday life, signifying the malleability of memory 
retrieval. These may include false memories for events that have never been encountered before, or they may 
involve distorted memory content for truly encountered  material1. In either case, false memories can feel as real 
and strong as truly experienced events, which testifies to the reconstructive nature of  memory2. The implica-
tions of the imperfectness of the memory system are immense and encompass multiple facets of human life, 
including legal, interpersonal, clinical practice and social  settings3. At the same time, memory distortions allow 
scientists to gain a better understanding of memory function and mechanisms, the same way visual illusions 
provide insights about visual perception  mechanisms4. In the present study, we sought to explore whether pupil 
response, which has emerged as a measure of memory formation, memory strength and retrieval  quality5–8, 
discriminates true from false memories.

Pupil response and long-term memory
Changes in pupil amplitude have been shown to predict the strength and the type of subsequent  memory6,8–11. 
The pupil response also discriminates between the types of encoding mechanisms engaged when different types 
of novelty are  detected8. At retrieval, different memory outcomes result in different pupil patterns, with accurately 
recognised old items associated with greater pupil dilation than accurately discriminated new stimuli – i.e., the 
pupil old/new  effect5,7,12. The pupil response also discriminates between the different kinds of memory that 
support recognition memory  decisions5,13. Specifically, according to a prevalent theory of recognition memory, 
familiarity denotes recognition of the item itself as a previously presented occurrence, while recollection involves 
bringing to mind associative details from the encoding  episode5,14–17. Consistent with the pupil old/new effect, 
new responses have been found to elicit the smallest degree of pupil dilation, familiarity responses to elicit 
intermediate levels of dilation, while recollections involved the highest level of pupil  dilation5. This means that 
pupil response does not simply reflect memory strength, but more importantly it indicates successful retrieval 
of associative elements from an  episode18.These previous findings highlight the sensitivity of the pupil response 
in reflecting memory formation and retrieval. However, whether it has the capacity to discriminate between true 
and false memories is still to a great extent understudied and debated e.g.,12,19.

Preliminary evidence comes from studies using the recognition memory paradigm, in which accurate (i.e., 
hits and correct rejections) and inaccurate (i.e., misses and false alarms) old/new responses can be discriminated. 
For example, increased pupil dilation for false alarms (new stimuli classified as old) than correct rejections 
(new stimuli accurately classified as new) has been  reported13,20, which indicates pupil sensitivity to subjective 
recognition of stimuli as old or new. On the other hand, pupillary effects have previously been reported in the 
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case of amnesic  patients21, who showed a pupil old/new effect in a recognition memory task despite their poor 
behavioural performance. More recently, Kafkas and  Montaldi12 found that pupil timeseries (pupil responses 
across time) discriminated true from false old/new decisions, with earlier pupil amplitudes reflecting the true, 
old or new, status of stimuli and later pupil amplitudes reflecting the subjectively reported old or new status, 
which in the case of misses and false alarms was erroneous. Contrary to these findings, other studies, also 
employing recognition memory paradigms, have failed to provide evidence for the capacity of pupil response 
to discriminate veridical from false  memories19,22. Considering the sensitivity of the pupil response to various 
perceptual, visual and cognitive factors, methodological differences between these studies may well explain the 
disparity. However, to date no study has explored this question using paradigms specifically designed to separate 
true from false memories.

Taken together, despite the reconciliation shown in Kafkas and Montaldi  study12, in relation to the sensitivity 
of pupil response to accurate and inaccurate old/new responses at different timepoints of recognition processing, 
it remains more or less unresolved whether the pupil response, as a measure of episodic memory, can discrimi-
nate veridical from false memories. To determine whether the pupil response is a reliable indicator of long-term 
memory retrieval and not just the output of other factors – e.g., working memory load, arousal or response 
 preparation23–26, it is relevant to examine how well it can distinguish true from false memories in paradigms 
designed to target and generate false memories.

False memory and the DRM paradigm
One of the most widely studied paradigms for inducing memory distortions is the Deese-Roediger-McDermott 
(DRM)  paradigm27,28. In this paradigm, participants study lists of words that are semantically related to a non-
presented critical lure word. For example, participants may study words such as apple, vegetable, orange, citrus 
etc., which are all related to the critical lure fruit. Later on, participants are asked to recall or recognise the studied 
words and the critical lures. Typically, participants show high rates of false recall and recognition for the critical 
lures that were never presented but were highly associated with the studied  words29–31. This phenomenon dem-
onstrates how memory retrieval can be influenced by prior knowledge, top-down processing and expectations 
based on semantic associations.

Various theoretical models have been proposed to account for false memories in the DRM paradigm, which 
can be summarised within two broad frameworks, the activation-monitoring framework e.g.,4,32 and the fuzzy-
trace theory e.g.,33–35. Briefly, according to the activation-monitoring framework, false memories in the DRM 
paradigm are generated due to the activation of associated or similar items which are organised closer together in 
pre-existing semantic representations. When a word is encountered, either at encoding or at retrieval associative 
activation spreads to semantically similar concepts, making them more likely to be falsely retrieved at  test36–39. 
A source-monitoring attributional  component40may, nevertheless, diminish the effect of spreading activation 
and therefore can reduce the generation of false memories. In contrast, according to the fuzzy-trace theoretical 
model, false memories in the DRM paradigm stem from two types of memory traces produced when exposed 
to an event or stimulus. The verbatim trace reflects detailed or surface-related memory of a previously encoun-
tered stimulus and may allow rejecting a false memory. On the other hand, the gist trace comprises semantic 
relations and meaning and is responsible for false memories generated at  test33. The extraction of gist elements 
from a study episode makes memory illusions more likely, especially when the verbatim traces are not detailed. 
In contrast, recalling verbatim elements allows false memory  rejection41.

These theories differ in their emphasis on the roles of encoding processes (e.g., gist extraction vs. item-specific 
processing), retrieval processes (e.g., activation vs. monitoring and/or decision-making), and memory representa-
tions (e.g., verbatim vs. gist traces vs. feature vectors) in explaining memory distortions. However, they also share 
important commonalities, such as the influence of semantic associations (or gist coherence) and contextual cues 
on memory performance. These mechanisms are relevant to consider when interpreting systematic variations 
in measures associated with false memory.

The present study
In the present study, we systematically explored whether the pupil response can discriminate true from false 
memories using a well-established false memory paradigm. The DRM paradigm was utilised in two forms, one 
visual (printed words) and one auditory (spoken words), to explore the degree to which the pupillary response 
at test can discriminate true from false memories. This investigation will provide valuable evidence as to whether 
the pupil response is a valid measure of memory retrieval. Secondly, the temporal dynamics of the pupil effects, 
during memory processing, may allow a consideration of the mechanisms involved in the generation of false 
memories, especially when different types of memory experience are involved.

At least three hypothetical scenarios can be described in relation to the ability of the pupil response to 
discriminate true from false memories. The first possibility is that the pupil response only reflects subjective 
memory decisions and therefore the old/new effect would accompany hits but also falsely recognised stimuli 
without discriminating between the two. i = In this case, irrespective of the actual old/new status of the stimuli 
an old response (to either truly old or new stimuli) will result in increased pupil amplitude. Another possibility 
is that the pupil response exclusively reflects the old/new status of the stimuli irrespective of subjective memory 
response. In this case, the pupil response will be predominantly driven by true, but not false memories. The final 
possibility is that a combination of both objective and subjective elements of memory are reflected on the pupil 
responses and therefore the pupil amplitude at retrieval will be modulated by both true and false memories.

The present study also investigated whether the pupil response patterns that may separate true from false 
memories, vary depending on whether the memories are based on familiarity or recollection. To this end, the 
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kind of memory was also taken into account in a recognition memory task by employing a modified remember/
know procedure to probe memory experience on a trial-by-trial  basis16,42–44.

Methods
Participants
In total, data from 80 participants are reported here across two experiments (40 in each experiment). Forty-five 
participants in Experiment 1 and a different group of 44 participants in Experiment 2, gave informed consent and 
participated in the studies in exchange for course credits. Data collection was in accordance with the University 
of Manchester regulations for studies with human participants and the experiments were approved by the Uni-
versity of Manchester Research Ethics Committees. Data from 5 participants in Experiment 1 and 4 participants 
in Experiment 2 were excluded due to incomplete or noisy eye tracking recordings (see Data Analyses section for 
criteria). The remaining 40 participants (35 female) in Experiment 1 had a mean age of 19.8 years (SD = 1.20), 
while the 40 participants in Experiment 2 had a mean age of 19.3 years (SD = 1.11). The sample size in the two 
experiments was consistent with previous memory and pupillometry  studies8,12, while a power analysis using the 
GPower  tool45 (parameters: eta-squared = 0.11, effect size f = 0.35; power = 0.99) indicated that 40 participants 
strongly replicates the previously reported pupil old/new effect from Kafkas and  Montaldi12. All participants were 
native English speakers, with normal or corrected-to-normal (with contact lenses) vision and self-reported no 
history of psychiatric or neurological disorders. They were asked to abstain from caffeine and alcohol consump-
tion 24 h before participating in the study. No participant reported altered energy or concertation due to caffeine 
withdrawal at the end of the experiment.

Materials and design
The two experiments used similar design and procedures with the main difference being the delivery of visually 
presented words in Experiment 1 and auditorily presented words in Experiment 2. In both experiments, the 24 
lists of words reported in Roediger &  McDermott28 were used. Each list consists of a list of 15 words, which are 
all semantically associated with one critical lure or target word. For example, the words thread, pin, eye, sewing, 
sharp, point, prick, thimble, haystack, thorn, hurt, injection, syringe, cloth and knitting are semantic associates, of 
progressive association strength, to the critical word needle. Within each experiment, a within-subject design was 
implemented including an encoding, a filled interval, and a recognition memory task. As in the original DRM 
paradigm (Experiment 2 in Roediger and McDermott, 1995), the 24-word lists were divided into 3 groups of 8 
lists each for counterbalancing purposes. Participants encoded 16 lists, randomly selected from the 3 groups of 
lists, and words from the remaining 8 lists were used as new foils in the recognition memory task. The filler task 
included an unrelated verbal and an arithmetic task with a total duration of 10 min. In the recognition block, 
a total of 96 words were presented, consisted of 48 studied at encoding and 48 new items. The 48 studied items 
comprised 3 items selected from each of the 16 studied lists. Following Roediger &  McDermott28, from each list, 
items in the serial position 1, 8 and 10 were selected to be shown again at recognition. The 48 unstudied items 
comprised 24 words derived from the 8 unstudied lists (again from serial positions 1, 8 and 10), 16 critical lures 
from the studied lists and 8 critical lures from the unstudied lists.

Procedure
Each experimental session started with the encoding task, followed by the filled interval and then the recognition 
memory task during which the eye tracking data were recorded. At encoding participants were presented with 
16 lists of 15-words each, giving a total of 240 trials (see Fig. 1). In Experiment 1, each word was presented for 
2 s after a fixation point (1 s) and participants were asked to read each word aloud. In Experiment 2, each trial 
was delivered auditorily within a 2-s window, during which each word was played twice. Prior piloting showed 
that playing each word twice at encoding resulted in comparable memory performance as when visual presenta-
tion was used. Within each word list the words were presented sequentially and their order was held constant 
across participants, as standard in the DRM  paradigm28. After each list of 15 words participants were given 
the chance to take a short self-paced break before proceeding to the next list. The average break duration was 
1992 ms (SD = 875) in Experiment 1 and 2022 ms (SD = 883) in Experiment 2. A practice block of three words, 
not presented anywhere else in the main study, were used before the encoding task. A filed interval of 10 min 
(constant across participants) followed the encoding block during which participants were asked to perform 
unrelated verbal and arithmetic tasks.

After the filler task, participants were trained on the recognition memory instructions. They were instructed 
that studied and unstudied words will be presented and that they will be given the options to report studied 
words as familiar or recollected, whilst unstudied words could be reported as new. A familiar response meant that 
the word could be recognised as previously presented one, without bringing to mind any additional contextual 
details from the time of encoding. On the other hand, a recollection response meant that a word was recognised 
as previously studied on the basis of retrieved contextual detail from encoding (e.g., a thought generated at 
encoding related to the specific stimulus). Participants were instructed not to use the familiar/recollected options 
as indicators of confidence, but rather as indicating whether cued recall of additional details from the encoding 
episode was present (recollection) or not (familiarity)8,42,46. Prior commencing the recognition task, participants 
had the chance to ask questions, they explained the response options to the experimenter to ensure understand-
ing and they practiced the response options on 5 words (3 from encoding practice).

Before starting this task, each participant’s head was stabilised using a chinrest and a nine-point calibration 
of the eye tracker was performed. Eye tracking data were collected from this block, in both experiments, while 
participants engaged in recognition memory decisions for the 96 words. A standard computer keyboard was 
used for collecting behavioural responses. In Experiment 1, each word appeared after a fixation cross (2 s) and 
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a baseline period (1 s) which presented a sequence of 8 ampersand symbols (&&&&&&&&&&). Pupil data 
recorded during this period were used as the trial-specific baseline traces (see below). Each word was presented 
for a maximum of 3 s during which a recognition decision was required (R, F, N) while the stimulus was on 
the screen (see Fig. 1b). In Experiment 2, each word was delivered auditorily during a 2-s window, while a grey 
blank screen was presented, followed by a response screen (3 s) during which participants were asked to provide 
a recognition memory response (R, F, N). Each word was played after a fixation cross (2 s) and a baseline period 
(1 s), during which a blank grey screen was visible—the same as during word delivery. In both experiments, 
participants were told that their eye movements would be recorded, while they process (read or hear, respectively 
for Experiment 1 and 2) word stimuli with no reference to false memories or pupillometry. Participants were 
debriefed at the end of the experiment in relation to the aims of the study.

Apparatus, eye tracking, pre-processing and data analysis
A quiet and moderately lit (at 250 lx) testing room was used for participant testing. A computer with a 19-inch 
monitor (1280 × 1024 resolution) and a standard keyboard were used in both experiments. In Experiment 2, noise 
cancelling headphones were used to deliver the auditory stimuli at maximum volume. Participants retained a 
distance of about 70 cm from the computer screen (and the eye tracking camera) throughout the experiment and 
a chinrest was used to stabilise participants’ head during the eye tracking recording period (recognition block).

Pupil diameter from participants’ left eye was recorded with an ASL (Applied Science Laboratories, Model 
Eye-Trac 6000; 60 Hz) infrared eye tracking system. A standard nine-point calibration was performed just before 
each participant started the recognition memory task. Pupil diameter data recordings were synchronised to 
start at the beginning of the trial-specific baseline and lasted throughout the presentation of each stimulus (i.e., 
− 1000 ms to 3000 ms from stimulus onset in Experiment 1 and -1000 ms to 2000 ms from stimulus onset in 
Experiment 2). These trial-specific eye tracking data were stored for later off-line analysis.

Raw pupil dimeter data were analysed using established pupillometry protocols see e.g.,8,12. Specifically, blinks 
and partial closures of the eyelid were automatically identified during recording and were discarded. To identify 
residual artefacts in the recordings the grand mean of pupil recordings within each trial was calculated and those 
pupil recordings diverging by more than three standard deviations from the grand mean were discarded. These 
pupil traces are residual artefacts normally preceding or following partial eyelid closures and blinks. Trials with 
more than 50% discarded pupil traces were excluded from the analyses, while participants with 40% or more 
excluded trials were excluded from the final sample. In total, across the two experiments, 9 participants were 
excluded from the analysis due to incomplete pupil data. Discarded pupil recordings in the final sample were 
less than 6% of the total recorded traces (across both experiments) and therefore linear interpolation was not 
used to replace missing recordings.

Pupil timeseries were analysed and are reported in the present study. In Experiment 1, pupil size in each trial 
was recorded for the period of stimulus presentation up to the point of behavioural response (variable duration) 
as well as during the preceding baseline period (constant duration of 1 s). In Experiment 2, pupil size in each trial 

Figure 1.  Design of Experiments 1 (visual) and 2 (auditory) and behavioural response proportions in the two 
experiments. (a) At encoding, participants studied 16 lists of words (15 words per list) by reading each word 
aloud (Experiment 1) or by listening to each word twice in each trial (Experiment 2); (b) In the recognition 
task, studied (old), unstudied (new) and critical lures (CL) were presented and participants were asked to take 
recognition memory decisions using N = new, F = familiar, R = recollected response options; (c) Proportion of 
N, F, R responses across the three types of stimuli in Experiment 1 (c) and Experiment 2 (d). Standard errors 
show ± 1 standard error of the mean.
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was recorded for the entire 2-s stimulus presentation window as well as during the preceding baseline period 
(1 s). Each pupil recording was subtracted from the average trial-specific baseline pupil size and therefore was 
expressed as deviation from a zero-point baseline. Baseline-corrected pupil responses were standardised to a 
length of 10 time-points, from stimulus onset to the point of behavioural response (Experiment 1) or until the 
end of the 2-s period (Experiment 2).

Linear mixed effects analyses with maximum likelihood estimation were conducted to explore the effect of 
the fixed factors, stimulus type (old, new, critical lure) and memory type (familiar, recollected, new), on the 
behavioural (proportions and RTs) and pupil response measures (see Table S2 in Supplementary Tables for 
model equations and model fit parameters) . Proportions represent the proportion of each response type (F, R, 
N) divided by the maximum number of old (48), new (32) or CL (16) stimuli in the recognition block. As calcu-
lating proportions requires averaging across multiple trials, this analysis contained 9 scores for each participant 
corresponding to all combinations of reported memory type (N, F, R) and stimulus type (old, new, CL). This 
analysis allowed to determine the probability of each response type (F, R, N) across the three types of stimuli. 
Especially for the CL stimuli, these outcomes indicate how likely were these stimuli to generate false memories as 
compared to new and old stimuli. Furthermore, memory performance was also calculated as the hit rate – false 
alarm rate to identify whether overall discrimination of old and new stimuli was above chance.

Analyses of RTs are reported for Experiment 1, but not for Experiment 2, as recognition memory responses in 
the latter experiment were required after the auditory delivery of the stimuli, which renders them less informa-
tive. Time at recognition (with 10 timebins) was specified as a fixed factor in the mixed model analysing pupil 
response patterns. Pupil data were not averaged across trials in this model and therefore each trial was specified 
in the model and contained pupil responses across 10 timebins. Participants were specified as a random effect 
(random intercept) in all the models reported here. A model including words/trials as a random effect, to control 
for any differential effect of word items on the pupil response, did not change the patterns of results and therefore 
the simpler model is reported here. This indicates that the differential pupil patterns were mainly driven by the 
fixed factors of interest, while variation across words played minimal role. Type III Wald F tests are reported in all 
analyses, with Satterthwaite’s method for degrees of freedom  approximation47,48. A standard alpha (p < 0.05) was 
adopted for all analyses while Bonferroni-Holm corrected ps49 are reported for post-hoc pairwise comparisons.

Results
Behavioural effects
Mean proportions of familiar, recollected and new responses and their RTs across the three types of stimuli at 
recognition (old, new, CL) are presented in Fig. 1c,d and in Table S1 (Supplementary Tables; RTs for Experiment 
1 also presented in the table). Overall, recognition memory performance was significantly different from chance 
in both experiments, collapsed (Experiment 1: M = 0.28, SD = 0.39, t39 = 4.66, p < 0.001; Experiment 2: M = 0.37, 
SD = 0.27, t39 = 8.69, p < 0.001) and separately for F (Experiment 1: M = 0.10, SD = 0.22; t39 = 2.87, p = 0.007; Experi-
ment 2: M = 0.15, SD = 0.18; t39 = 5.17, p < 0.001) and R responses (Experiment 1: M = 0.18, SD = 0.25; t39 = 4.71, 
p < 0.001; Experiment 2: M = 0.22, SD = 0.18; t39 = 7.75, p < 0.001), while R performance was slightly higher than 
F performance (Experiment 1: t39 = 1.96, p = 0.058; Experiment 2: t39 = 1.93, p = 0.061). These findings indicate 
that despite the false memory manipulation, the participants were able to successfully discriminate truly old 
from new stimuli.

To explore the distribution of F, R and N responses across the three types of stimuli, a linear mixed model with 
stimulus type (old, new, CL) and memory type (F, R, N) was conducted on the response proportion rates. Propor-
tions were equally distributed across the three types of stimuli (Experiment 1: F2, 360 = 1.86, p = 0.16; Experiment 
2: F2, 360 < 1), but they differed across the memory outcomes (Experiment 1: F2, 360 = 71.75, p < 0.001; Experiment 
2: F2, 360 = 101.1, p < 0.001), with higher proportion of N vs F vs R (N > F > R; all ps < 0.001). The significant inter-
actions indicated differential proportion of F, R and N responses across the three types of stimuli (Experiment 
1: F4, 360 = 15.61, p < 0.001; Experiment 2: F4, 360 = 92.4, p < 0.001). Specifically, in Experiment 1 (Fig. 1c), post-hoc 
tests revealed that familiarity responses were equally likely for CL and old stimuli (t360 < 1), while new responses 
were disproportionally more for new stimuli relative to either CL or old stimuli (all ps < 0.001). Finally, recollec-
tions were more likely for old than either new or CL stimuli (all ps < 0.001). In Experiment 2 (Fig. 1d), familiarity 
responses were more likely for CL and old stimuli relative to new ones (all ps < 0.001), while new responses were 
significantly higher in the case of new stimuli relative to either CL or old stimuli (all ps < 0.001). Finally, recol-
lections were higher for CL and old stimuli than new stimuli (all ps < 0.001), while they did not differ between 
CL and old stimuli (t360 < 1). These findings confirm that CL stimuli were more likely to generate false memories 
than unrelated new foils. False memories tended to rely more on familiarity than recollections in Experiment 1 
(visual task), while in Experiment 2 (auditory task) false memories to CL stimuli resulted in increased familiarity 
and recollection responses.

The analysis on RTs from Experiment 1 indicated matched RTs across old, new and CL stimuli  (F2, 290 = 1.17, 
p = 0.31). However, RTs significantly differed across the three memory types (F2, 290 = 22.84, p < 0.001) with faster 
RTs for new and R responses relative to F ones (all ps < 0.001). Finally, the significant stimulus type by memory 
type interaction (F2, 290 = 3.74, p = 0.006) indicated faster N responses to new than to old or CL stimuli (all 
ps < 0.01), while faster R responses were the case for CL and old than new stimuli (all ps < 0.01). These effects 
suggest sufficient false memory generation for CL stimuli.

Pupil effects
Experiment 1
In Experiment 1, the analysis was conducted on a total of 3815 trials across participants, separated as 838 rec-
ollections, 1149 familiarity and 1828 new responses across old, new and CL stimuli. The linear mixed effects 
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analysis on pupil response was conducted with fixed factors: stimulus type (old, new, CL), reported memory 
type (F, R, N) and time (10 time-bins) and the random effect of participants (intercept). This analysis showed 
significant differences in pupil response across the different stimulus types (F2, 29940 = 5.53, p = 0.004), with higher 
pupil response to old (z = 3.23, β = 0.02, pholm-bonferroni = 0.004) and CL (z = 2.37, β = 0.01, pholm-bonferroni = 0.036) 
stimuli than new ones but no difference between old and CL stimuli (z < 1; Fig. 2a). This difference did not vary 
across the recognition period as revealed by the non-significant stimulus type by time interaction (F18, 29926 = 1.06, 
p = 0.39). The main effect of time was also significant (F9, 29926 = 51.48, p < 0.001) simply showing a significant 
linear increase in pupil response across time (βlinear = 0.11, SE = 0.005, p < 0.001). There was also a significant 
difference in pupil response across memory type (F2, 29951 = 24.02, p < 0.001; Fig. 2b), and a significant memory 
type by time interaction (F18, 29926 = 10.08, p < 0.001; see Fig. 3a–c) indicating differential pupil response during 
the recognition period (time) for the different memory outcomes, accompanied by a significant linear increase 
in pupil response across N, F, R (i.e., N < F < R; βlinear = 0.02, SE = 0.003, p < 0.001).

Importantly, the stimulus type × memory type (F4, 29948 = 3.83, p = 0.004) and the stimulus type × memory 
type × time (F36, 29926 = 1.81, p = 0.002) interactions were also significant indicating differential pupil response 
during the recognition period for F, R, N responses across old, new and CL stimuli. For new responses, as shown 
in Fig. 3a, similar pupil amplitudes were recorded at recognition across old, CL and new stimuli (all ps > 0.05). 
Familiar responses were accompanied by increased pupil amplitude for CL relative to old (β = -0.05) and new 
stimuli (CL > old > new; all β > 0.05; all p < 0.05) for timepoints 3, 5 and 6 (Fig. 3b). Finally, recollected CL and 
new stimuli produced similar pupil responses that significantly differed from old recollected stimuli earlier on 
(from timepoints 3 to 5; all β > 0.05 and all p < 0.05; Fig. 3c). After the 5th timepoint an increase in the pupil 
amplitude for CL stimuli was observed resulting in a significant linear effect with CL > old > new from the 8th 
to the 10th timebin (8th: βlinear = 0.05, SE = 0.02, p = 0.02; 9th: βlinear = 0.07, SE = 0.02, p = 0.003; 10th: βlinear = 0.10, 
SE = 0.02, p < 0.001). Taken together, these findings indicate sensitivity of the pupil response to true and false 
memories, either based on familiarity or recollection, but at different timepoints during the recognition period.

Experiment 2
In Experiment 2, the analysis was conducted on a total of 3840 trials across participants, separated as 841 recollec-
tions, 1222 familiarity and 1774 new responses across old, new and CL stimuli. The linear mixed effects analysis 
on pupil response with fixed factors, stimulus type (old, new, CL), reported memory type (F, R, N) and time (10 
time-bins) and the random effect of participants (intercept), showed differential pupil responses across stimulus 
types (F2, 35526 = 73.85, p < 0.001). This stemmed from a linear increase of pupil response across new < old < CL 

Figure 2.  Pupil response across the different stimulus types (new, old and CL; a) and across reported memory 
outcomes (N = new, F = familiar, R = recollected; b and c) in Experiment 1. Error bars (a, b) and shaded areas (c) 
show the standard error of the mean. * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure 3.  Pupil response timeseries during recognition for the different stimuli (old, new, CL) and reported 
memory – (a) new; (b) familiar (c) recollected in Experiment 1. Shaded areas on the timeseries show the 
standard error of the mean. Lines indicate significant effects at p < 0.05.
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stimuli (βlinear = 0.04, SE = 0.01, p < 0.001; Fig. 4a). This difference did not vary across the recognition period as 
revealed by the non-significant stimulus type by time interaction (F18, 35522 = 1.59, p = 0.054). The main effect of 
time was also significant (F9, 35522 = 82.45, p < 0.001) simply showing a significant linear increase in pupil response 
across time (βlinear = 0.13, SE = 0.005, p < 0.001). There was also a significant difference in pupil response across 
memory types (F2, 35348 = 41.07, p < 0.001), and a significant memory type by time interaction (F18, 35522 = 11.83, 
p < 0.001) indicating differential pupil response across memory types with a significant linear increase in pupil 
response across N, F, R (i.e., N < F < R; βlinear = 0.02, SE = 0.003, p < 0.001; Fig. 4).

Importantly, the stimulus type × memory type (F4, 35015 = 16.68, p < 0.001) and the stimulus type × memory 
type × time (F36, 35522 = 3.70, p < 0.001) interactions were also significant indicating differential pupil response dur-
ing the recognition period for F, R, N responses across old, new and CL stimuli. Specifically, for new responses 
(Fig. 5a) an increase in pupil amplitude for CL relative to new stimuli was found early on in the recognition 
period, from the  3rd to the 5th timepoint (all βs > 0.042 and all ps < 0.022). For familiarity responses (Fig. 5b), 
pupil amplitude significantly increased for CL relative to old stimuli from  3rd to the 7th timepoint (all βs > 0.04 
and all ps < 0.007) and relative to new stimuli from the  3rd timepoint to the end of the recognition period 
(all βs > 0.05 and all ps < 0.01). Also, for familiarity responses, the pupil amplitude for old stimuli significantly 
increased relative to new stimuli half-way through the recognition period (5th timepoint) until the end (all 
βs > 0.04 and all ps < 0.009). Finally, for recollected stimuli (Fig. 5c), after the 7th timepoint a rapid increase in the 
pupil amplitude for CL stimuli was observed accompanied by significant linear effect with CL > old > new (7th: 
βlinear = 0.046, SE = 0.021, p = 0.027; 8th: βlinear = 0.08, SE = 0.021, p < 0.001; 9th: βlinear = 0.10, SE = 0.021, p < 0.001; 
10th: βlinear = 0.12, SE = 0.021, p < 0.001). Taken together, the findings from Experiment 2 are comparable to those 
from Experiment 1, indicating differential sensitivity of the pupil response to true and false memories, but dis-
criminating, at the same time, the type of memory involved (familiarity versus recollection).

Discussion
Summary of findings
Pupil response has emerged as an important measure of cognitive processing and long-term memory 
 retrieval5–8,12. In the present experiment we set out to investigate whether pupil response discriminates true 
from false memories. We reasoned that the capacity of the pupil response to discriminate true from false memo-
ries, will provide insights as to whether changes in pupil response constitute reflections of successful memory 
retrieval. The main findings can be summarised as follows: Firstly, the findings indicate that the pupil timeseries 
can discriminate true from false memories in terms of differential amplitude at different timepoints during the 

Figure 4.  Pupil response across the different stimulus types (new, old and CL; a) and across reported memory 
outcomes (N = new, F = familiar, R = recollected; b and c) in Experiment 2. Error bars (a, b) and shaded areas (c) 
show the standard error of the mean. *** p < 0.001.

Figure 5.  Pupil response timeseries at recognition for the different stimuli (old, new, CL) and reported memory 
– (a) new; (b) familiar (c) recollected in Experiment 2. Shaded areas show the standard error of the mean. Lines 
indicate significant effects at p < 0.05.
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recognition period (temporal components). Secondly, the pattern of discrimination between true and false 
memories appears to be similar between visually and auditory presented stimuli, although the discrimination 
appears to be slightly more robust in the auditory condition, which coincides with more robust false memory 
effects in the same condition. Finally, the basis of recognition, either familiarity- or recollection-based, appears 
to result in different pupil dilation patterns not only for true memories, but more importantly for the purpose 
of the present study, for false memories too. Specifically, familiarity-based false memories were characterised by 
increased pupil responses, as compared to familiarity-based true memories, at an earlier temporal component 
during the recognition period. In contrast, recollection-based false memories were characterised by increased 
pupil amplitude as compared to recollection-based true memories at a later temporal component, closer to 
the end of the recognition period. The findings and their implications for pupillometry, memory theories and 
potential mechanisms involved in the generation of false memories are further discussed below.

Pupil patterns discriminate true from false memories
Taking into account the sensitivity of the pupil response in memory formation and  retrieval5–8,12,13, and previ-
ous indirect evidence for its capacity to discriminate veridical memories from false  alarms12, we proposed three 
hypotheses related to the ability of the pupil response to discriminate true from false memories (see Introduc-
tion). The results from Experiments 1 and 2, consistently agree with the proposal that the pupil response at 
retrieval is modulated by both objective and subjective elements of memory retrieval and therefore both true 
and false memories were reflected on the pupil amplitude.

Specifically, it was found that the pupil response during the recognition period discriminated new, familiar 
and recollected stimuli. The general shape of this effect resembles what has been previously reported in the 
 literature5,13, with a linear increase in pupil dilation from new to familiar and recollected stimuli (new < famil-
iar < recollected). The observed differences in pupil response between familiar and recollected stimuli demon-
strates the deployment of different processing strategies and cognitive  mechanisms5,6. For example, a previous 
fMRI  study5 suggested, the involvement of distinct brain networks for familiarity and recollection, whilst eye 
tracking data with the same paradigm demonstrated distinct pupil responses. The involvement of distinct neural 
pathways in familiarity and recollection have been consistently replicated in subsequent studies e.g.,42,43. It is 
therefore very likely that the mechanisms involved in the generation of false memories for familiar and recol-
lected stimuli are partly distinguishable, as implied by the pupil response patterns found here.

Importantly, in the present study this old/new effect, was modulated by the veridical memory status of stimuli, 
critically discriminating between truly old from CL stimuli (see Figs. 2 and 4). For the stimuli reported as familiar, 
this took the form of an early pupil dilation increase for CL stimuli relative to old and new stimuli. On the other 
hand, for recollected stimuli, both experiments showed a consistent pattern of increased pupil dilation for CL 
stimuli, relative to old and new ones, at a later temporal component. Therefore, these findings indicate the pupil 
response can discriminate true from false memories, but the pupil patterns, and especially the timing of their 
differential amplitude, vary depending on the memory type that enables recognition.

As reported in the Introduction, only indirect evidence is currently available regarding the ability of pupil 
response to distinguish true from false memories. Studies using recognition memory paradigms without a 
false memory manipulation have provided mixed findings in relation to this  question12,19,22. At the same time, 
the capacity of the pupil response to reflect memory encoding and retrieval is debated, with some researchers 
linking the pupil output to other factors, such as working memory load, arousal or response  preparation23–26. 
While other accounts link encoding- or retrieval-related changes in pupil response directly to the engagement of 
memory networks and their differential neurotransmission under different memory  conditions8,18,50 see  also51. 
The present findings provide direct evidence for the ability of the pupil response to discriminate true from false 
memories making it a reliable indicator of retrieval success. Furthermore, examining the dynamic change in 
pupil response across time suggests that the mechanisms involved in familiarity-based and recollection-based 
false memories are dissociable. The nature of these mechanisms cannot be uncovered based on the pupil signal 
alone. However, below we present a proposal based on the temporal differences of the pupil signal identified in 
this study, known mechanisms critical for familiarity and recollection, and previously proposed mechanisms 
involved in false memory generation.

Possible implications for false memory mechanisms
What can the differential temporal components identified in the present study tell us about the mechanisms 
involved in false memory generation? As noted above, pupil response patterns do not allow a direct answer to 
this question, but proposals can be formulated taking into account the timing of the pupil effects and the type 
of memory involved in each case. In general, fluency is considered a critical process contributing to feelings of 
 familiarity52–55. We speculate here that increased pupil dilation related to false familiarity, at earlier stages of pro-
cessing, reflects enhanced fluency due to spreading activation to critical lures at encoding or gist-consistency with 
encoded events. This proposal is consistent with the way spreading  activation4,32 and fuzzy-trace  prespectives33 
explain the generation of false memories. Specifically, within a list of words at encoding, each word activates a 
unique trace, but it also spreads the activation to semantic associates, in most cases the CL word. Similarly, from 
a fuzzy-trace theory perspective, gist extraction from each word at study, makes it more likely for the respective 
CL word to be processed as an encoded event. According to these perspectives, CL words are fluent due to the 
summative activation during each word in a list. The enhanced fluency due to multiple instances of activation 
and gist enhancement, may lead to elevated pupil dilation relative to truly familiar stimuli. This fluency is more 
likely to be attributed to familiarity in the context of a recognition memory  task56. The timing of this effect is also 
consistent with the well-documented fast and automatic nature of familiarity  memory57.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17244  | https://doi.org/10.1038/s41598-023-44362-6

www.nature.com/scientificreports/

On the other hand, source attribution and monitoring processes are key stages of recollection-related process-
ing. Recovery of source and contextual associates and monitoring the validity of source attribution are critical 
for  successful58,59 and  unsuccessful29,60recall and recollection. Therefore, we propose here that in the case of 
recollection-based false memories the failing mechanism relates more to the later stages of processing, which 
may indicate erroneous source attribution and monitoring processes. These processes are computationally more 
intensive in the case of false recollections as presumably the ensuing memory search and source monitoring 
involve coming up with reasonable associative details, which may drive the elevated pupil dilation for false rela-
tive to true recollection.

The effect of modality of presentation on false memory generation
Modality of presentation emerged as an important factor related to the rate of false memory at retrieval. Indeed 
previous studies have shown that visual presentation at encoding reduces false memory reports in recall and 
recognition tasks relative to auditory  presentation61–65. One explanation previously proposed for this effect is 
that visual distinctiveness assists in discriminating studied items from critical lures, as the former have richer 
visual detail than non-presented similar items. Nevertheless, this heuristic cannot be easily applied in the case 
of auditorily studied stimuli, making them more prone to false memory generation at  retrieval66.

Consentient with these previous observations, in the present study, false memory effects to CL items were 
more pronounced in Experiment 2 (auditory) relative to Experiment 1 (visual). The identified pupil response pat-
terns were similar in the two experiments with two notable exemptions. Firstly, in Experiment 2, new responses 
to CL stimuli were accompanied by increased pupil dilation relative to correct rejections (new responses to new 
stimuli) at an early temporal component. Secondly, the amplitude differences between true and false memories 
were enhanced in Experiment 2. These findings support the previously proposed stronger false memory effects 
for auditory stimuli and are generally consistent with the visual distinctiveness explanation presented above. One 
difference between the two experiments was that recognition in Experiment 1 (visual) was self-paced, while in 
Experiment 2 (auditory) each trial lasted for 2 s. It is not known whether this difference, due to the requirement 
of delivering visual versus auditory stimuli, may have affected the behavioural and/or pupillary effects. Despite 
this difference, both experiments generated false memories and produced similar pupillary response patterns.

Conclusion
Overall, this study shows that the pupil response can reliably discriminate between true and false memories. 
The temporal patterns of the pupil components suggest that the mechanisms involved in the generation of false 
memories differ depending on the type of memory supporting recognition decisions. We proposed that the 
pupil patterns reflect the different roles of fluency and source attribution and monitoring processes in generating 
familiarity-based versus recollection-based false memories. This proposal is consistent with the type and timing 
of pupil dilation effects and the nature of the established processes that drive different memory experiences, but 
warrants further investigation. Finally, replication using autobiographical memory paradigms could provide 
important insights into the generalisability of these findings.

Data availability
Data/material and analyses outputs are available on: https:// osf. io/ sy8tj/? view_ only= b1bfd c1a6c 744c0 49993 
5bd2c 1ef39 cd.
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