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Uncovering the environmental 
conditions required for Phyllachora 
maydis infection and tar spot 
development on corn in the United 
States for use as predictive models 
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Alison E. Robertson 9, Tiffanna J. Ross 10, Clarice Schmidt 9, Roger Schmidt 11, Teryl Schmidt 2, 
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Phyllachora maydis is a fungal pathogen causing tar spot of corn (Zea mays L.), a new and emerging, 
yield-limiting disease in the United States. Since being first reported in Illinois and Indiana in 2015, P. 
maydis can now be found across much of the corn growing regions of the United States. Knowledge 
of the epidemiology of P. maydis is limited but could be useful in developing tar spot prediction 
tools. The research presented here aims to elucidate the environmental conditions necessary for the 
development of tar spot in the field and the creation of predictive models to anticipate future tar 
spot epidemics. Extended periods (30-day windowpanes) of moderate mean ambient temperature 
(18–23 °C) were most significant for explaining the development of tar spot. Shorter periods (14- to 
21-day windowpanes) of moisture (relative humidity, dew point, number of hours with predicted leaf 
wetness) were negatively correlated with tar spot development. These weather variables were used to 
develop multiple logistic regression models, an ensembled model, and two machine learning models 
for the prediction of tar spot development. This work has improved the understanding of P. maydis 
epidemiology and provided the foundation for the development of a predictive tool for anticipating 
future tar spot epidemics.

Tar spot, caused by Phyllachora maydis, is an emergent disease on corn (Zea mays L.) that can lead to significant 
yield losses in the United States1,2. First recorded infecting corn in Mexico as early as 19043, P. maydis has since 
been reported throughout much of Latin America4. Phyllachora maydis had never been documented in the United 
States until 2015 when tar spot was observed in multiple fields in northern Indiana and Illinois5. Since its arrival 
in the United States, P. maydis has rapidly spread throughout the midwestern corn belt of the United States (U.S.). 
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It has also been found in Florida, and Ontario, Canada6, along with confirmations in Georgia and Virginia7,8. 
Under ideal environmental conditions, tar spot can cause severe epidemics. In 2018 alone, tar spot caused 
estimated yield losses of close to 5 million metric tons, equating to over 680 million USD of economic losses2.

Despite P. maydis being recognized as a pathogen of corn for over 100 years, there is still little understanding 
of its biology and epidemiology. Phyllachora maydis overwinters in the U.S. corn production regions, indicat-
ing the pathogen can survive on corn residue, and consequently serves as the inoculum source for at least the 
next season’s crop9,10. Monthly temperatures of 17–22 °C, relative humidity greater than 75%, leaf wetness of 7 h 
per night and 10–20 foggy days per month were reported as the optimal conditions for tar spot development11. 
Under controlled environments and optimal conditions, inoculation assays demonstrated a latent period of only 
15 days, and sporulation occurring approximately 20 days post-inoculation12.

As P. maydis continues to establish itself across several states in the U.S., an integrated management 
approach to mitigate the yield losses is needed. Partial genetic resistance for tar spot has been identified in corn 
germplasm13,14, but many current commercial corn hybrids are considered highly susceptible. Fungicides are 
currently the most effective method for reducing tar spot development and yield losses, especially when two or 
three fungicide classes are used15.

Predictive modeling has been an effective tool for guiding the optimal timing of fungicide applications. Pre-
dictive models have been developed for a number of varying pathosystems including Fusarium head blight of 
wheat primarily caused by Fusarium graminearum in the U.S.16–19, late blight of potato caused by Phytophthora 
infestans20, Sclerotinia stem rot of soybean caused by Sclerotinia sclerotiorum21,22, and fire blight of apple and 
pear caused by Erwinia amylovora23,24. Many of these models have been integrated into decision support systems, 
allowing farmers access to the predictive abilities of these models. One successful example is Sporecaster (https://​
ipcm.​wisc.​edu/​apps/​spore​caster/), a decision support system for the prediction of Sclerotinia stem rot of soybean 
which is publicly available to farmers on smartphones22.

Historically, many predictive models have been developed using either linear or logistic regression 
models19–22,24,25, but more recently predictive model development has shifted towards machine learning based 
analyses26,27. One commonly used machine learning algorithm is a random forest (RF), which is an ensemble 
learning method for regressions28. The RF framework utilizes an aggregation of many decision trees allowing 
improved precision by reducing the amount of variance relative to single decision trees. However, RFs are 
not capable of being easily interpreted and overfitting can often occur. Another common machine learning 
algorithm is an artificial neural network29 (ANN), which resembles the interconnectedness and signaling of 
biological neurons. ANNs are made up of an input layer, consisting of either a single or multiple hidden layers, 
and an output layer. Within this network there are multiple nodes which are connected to many additional 
nodes, each of which carries their own associated weight and threshold. If the output from a single node meets 
a designated threshold, the node is triggered and sends data to the next layer of nodes. If a node does not meet 
the designated threshold, the node does not send data to the next layer. The downsides to using ANNs are the 
high level of complexity making it difficult to interpret the models, the considerable amount of computational 
power required to run these models, and the potential for overfitting. However, machine learning algorithms 
have been demonstrated to be highly effective at improving predictive capabilities due to their ability to model 
very complex and non-linear relationships27,30.

The surge of new and/or re-emerging plant diseases represents one of the biggest challenges to food produc-
tion in modern agriculture. As global climate change leads to instability of temperatures and changing precipita-
tion patterns, the need to create greater resilience in our crop production systems has become crucial31. There 
are several knowledge gaps regarding tar spot development on corn. The tar spot cycle is not fully understood, 
specifically, the incubation and latent periods have not been clearly established for P. maydis in production 
settings, and information on pathogen dispersal is limited. Knowledge of these processes is critical in under-
standing the polycyclic nature of tar spot epidemics. Therefore, the goals of the current study were to discern 
the environmental variables that are most important for the development of tar spot, and to develop statistical 
models for the prediction of future tar spot epidemics in the U.S. that would maximize the precision of in-season 
management decisions.

Results
Development of training and testing datasets
From this study, a dataset was compiled with 588 observations across the Midwest region of the U.S. including 
a binary response variable for the increase in P. maydis stroma between two consecutive rating dates. Of these 
588 observations, 179 observations were taken from small-plot research trials between 2018 and 2022, and the 
additional 409 observations were taken from production fields between 2020 and 2022 (Fig. 1). From the com-
bined 588 observations, designated training and testing data sets were created using a 70:30 split by randomly 
sampling from the full data set (small-plot and commercial fields combined) with replacement in which 70% 
of the observations were placed in the training data set and 30% of the observations were placed in the testing 
data set. The training data set included 96 observations where P. maydis developed or increased in severity and 
310 observations in which P. maydis did not develop or increase in severity from the previous date. The testing 
data set included 36 observations in which P. maydis did increase in severity and 146 observations in which P. 
maydis did not develop or increase in severity. After the development of these two datasets, the training dataset 
was used for assessment of weather parameters and model development, while the testing data set was used for 
validation of the developed models from the training data set.

https://ipcm.wisc.edu/apps/sporecaster/
https://ipcm.wisc.edu/apps/sporecaster/
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Assessment of weather parameters
Multiple weather variables from the IBM historical weather data service were examined in this study across three 
levels of moving averages (windowpanes), 30-day (Fig. 2A), 21-day (Fig. 2B), and 14-day (Fig. 2C). By evaluating 
Pearson correlation coefficients of these moving averages in relation to the delta response variable, the strongest 
correlations were detected for the 30-day moving averages of the daily minimum ambient temperature and the 
daily mean ambient temperature with coefficients of − 0.39 and − 0.38, respectively (Fig. 2A, Suppl. Table 1). 
Within the 21-day moving averages, the two variables with the strongest correlations to P. maydis development or 
increase were the daily minimum dew point and the daily minimum temperature with coefficients of − 0.36 and 
− 0.35, respectively (Fig. 2B, Suppl. Table 1). Overall, there were eight 30-day moving average variables, fifteen 
21-day moving average variables, and sixteen 14-day moving average variables significantly correlated with P. 
maydis development or increase in severity (Fig. 2, Suppl. Table 1).

Hock et al.11 previously proposed that relative humidity (RH) levels are extremely important in explaining 
P. maydis presence or increase in severity, especially at mean RH levels of 75% or greater. To investigate the 
impact of RH on P. maydis, we evaluated multiple 30-day moving averages of daily total hours of RH levels that 
ranged from 60 to 95% at 5% increments. Daily total hours of RH greater than 90% was significantly negatively 
correlated with P. maydis development or severity increase for all three levels of moving averages (Fig. 2, Suppl. 
Table 1). Furthermore, daily total hours of RH greater than 85% was also significantly negatively correlated with 
P. maydis development or severity increase for the 21-day and 14-day moving averages. Since these results sug-
gested the importance of the 90% RH threshold, we also investigated the correlation of nighttime total hours of 
RH greater than 90% between 8 pm and 6 am. Nighttime total hours of RH greater than 90% was more highly 
negatively correlated in all three levels of moving averages than the originally assessed values (Suppl. Table 1). 
However, the majority of correlations for the discussed RH variables were negatively correlated with P. maydis 
development or severity increase (Fig. 2, Suppl. Table 1). Additionally, a daily total wetness hour parameter was 
assessed serving as a proxy for the presence of leaf wetness. Similar to RH greater than 90% at night, the wetness 
hour parameter was evaluated as two distinct parameters for the total daily hours with predicted wetness and the 
total nighttime hours with predicted wetness. Both wetness hour parameters were not significantly correlated 
with P. maydis development or severity increase in the 30-day moving averages but were significant for both the 
21-day and 14-day moving averages. The total nighttime wetness hours parameter was most highly correlated at 
the 14-day moving average with a correlation coefficient of − 0.17 (P = 0.001, Fig. 2, Suppl. Table 1).

Figure 1.   Map of all field locations where data were recorded and included in this study. The figure was created 
using the R statistical software40 (v. 4.3.1) and the ggplot2 package48.
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All assessed weather variables were used to create single variable logistic regression (LR) models for explaining 
P. maydis development and severity increase. These models were then evaluated by comparing Akaike infor-
mation criterion (AIC) values, C-statistic values, and Hosmer–Lemeshow goodness-of-fit test P-values. From 
these evaluations, the two best fitting models were the models using 30-day moving averages of either the daily 
minimum temperature or the daily mean temperature (Fig. 3, Suppl. Table 2). When these two parameters were 
examined on the predicted risk probability, the inflection points observed for the daily minimum temperature 
was 15.4 °C and the daily mean temperature was 20.5 °C (Fig. 3).

Many of the moisture related parameters were best fitting when using either the 14-day or 21-day moving 
averages, compared to the 30-day moving average. For example, the daily minimum DP was observed to be 
best fitting when using the 21-day moving averages compared to the 14- and 30-day moving averages (Suppl. 
Table 2). From predicted risk probabilities as a result of the 21-day moving average of the daily minimum DP, an 
inflection point of 13.1 °C (Fig. 3). In addition, the nighttime total hours of RH greater than 90% and the total 
night time hours with predicted wetness parameters were best fitting when using the 14-day moving averages. 
This suggests the importance of lower moisture in the 14 to 21 days prior to P. maydis development or increase 
in severity (Suppl. Table 2).

Development of predictive models
With many single variable models developed, multi-variable models were then developed using the results of 
the previous assessments. Since the 30-day moving average of the daily minimum temperature and the daily 
mean temperature were the two most influential variables (Fig. 2, Suppl. Tables 1 and 2), these two variables 
were examined more closely. Daily mean temperature was consistently more influential than the daily minimum 
temperature, and thus this variable was included in all subsequent models, which included many moisture vari-
ables. Eight models were chosen based on their input variables and favorable statistics reported above. Four of 
these models used the 30-day moving averages and included the combination of the daily mean temperature with 
either the daily total hours of RH greater than 90%, daily total wetness hours, daily minimum dew point depres-
sion (DPD), or the daily maximum RH (Suppl. Table 2). After these models were developed, the combination of 
different moving averages of weather parameters were explored due to the difference in influence as presented 
by the correlation coefficients and the single variable LRs (Suppl. Table 1 and 2). Four models were identified 
which all included the 30-day moving average of the daily mean temperature in addition to the 21- and 14-day 
moving averages of either the daily total hours with RH greater than 90%, the daily total nighttime hours with 
RH greater than 90%, the daily total wetness hours, or the daily total of nighttime wetness hours.

Figure 2.   Pearson correlation matrix of the binary delta variable and 30-day moving averages, 21-day moving 
averages, and 14-day moving averages. Heatmaps were created using the R statistical software40 (v. 4.3.1) and the 
plotly package49. Hyperlink can be used to view the interactive figure. https://​chart-​studio.​plotly.​com/​~richa​rd.​
webst​er/​1/#​plot.

https://chart-studio.plotly.com/~richard.webster/1/#plot
https://chart-studio.plotly.com/~richard.webster/1/#plot
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The corresponding eight LR models (LR1–LR8) were selected to be validated using the previously established 
testing dataset. The linearized logistic models for these eight LRs are defined as:

(1)
LogitLR1 = 21.92522− 0.97199

(

30− day moving average mean temperature
)

− 0.25014
(

30− day moving average of daily total of hours with RH > 90
)

(2)
LogitLR2 = 22.6108− 0.9880

(

30− day moving average mean temperature
)

− 6.0357
(

30− day moving average of daily mean wetness hours
)

(3)
LogitLR3 = 17.7869− 0.8964

(

30− day moving average mean temperature
)

+ 0.8157
(

30− day moving average of daily minimum dew point depression
)

(4)
LogitLR4 = 32.06987− 0.89471

(

30− day moving average mean temperature
)

− 0.14373
(

30− day moving average of daily maximum relative humidity
)

(5)
LogitLR5 = 21.21170− 0.94178

(

30− day moving average mean temperature
)

− 0.23661(21− day moving average of daily total of hours with RH > 90)

(6)
LogitLR6 = 20.35950− 0.91093

(

30− day moving average mean temperature
)

− 0.29240
(

14− day moving average of daily total nighttime hours with RH > 90
)

(7)
LogitLR7 = 22.18844− 0.96662

(

30− day moving average mean temperature
)

− 0.25134
(

21− day moving average of daily total of wetness hours
)

Figure 3.   Logistic regression models developed for predicting the development of tar spot caused by 
Phyllachora maydis. These models predict the risk probability (%) of tar spot developing in relationship with (A) 
30-day moving average of daily minimum ambient temperature (°C), (B) 30-day moving average of daily mean 
ambient temperature (°C), or (C) 21-day moving average of daily minimum dew point (°C).
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The eight models were then assessed based on multiple model quality characteristics including accuracy 
(%), kappa value, type I error (%), type II error (%), precision (%), and recall (%) when using a 35% risk prob-
ability threshold for the prediction of P. maydis development or severity increase. From these evaluations, LR6 
had the greatest accuracy (86.8%), greatest kappa value (0.59), greatest recall (69.4%), and the lowest type II 
error rate (30.6%, Table 1). Furthermore, LR4 had some of the best values for accuracy (86.3%), kappa (0.56), 
type I error rate (8.2%), and precision (65.7%, Table 1). From these results, a multi-model ensemble was created 
using LR4 and LR6 (Fig. 4) to more robustly predict the development of P. maydis or increase in its severity. The 

(8)
LogitLR8 = 21.66220− 0.94504

(

30− day moving average mean temperature
)

− 0.34001
(

14− day moving average of daily total nighttime wetness hours
)

.

Table 1.   Model evaluation metrics for eight logistic regression models (LR1-LR8), a multi-model ensemble, 
a random forest model (RF), and an artificial neural network model (ANN) for predicting the development of 
tar spot (tar spot) on corn between 2018 and 2022 (n = 182). a Cohen’s kappa coefficient compares the observed 
model accuracy with the expected accuracy. As proposed by Landis and Koch47, kappa values of 0.00–0.20 
as slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as substantial 
agreement, and 0.81–1.00 as almost perfect agreement. b Type I error rate is the percentage of false positives 
predicted by the model. c Type II error is the percentage of false negatives predicted by the model. d Precision is 
defined as the ratios of true positives to all predicted positives. e Recall is the true positive rate, which is defined 
as the ratio of true positives to all observed positives. f Multimodel ensemble was created by ensembling risk 
probabilities from LR4 and LR6. g Random Forest model was developed using 500 trees. h Artificial neural 
network model was developed using nine hidden layers. Risk probability threshold of 35% was used to evaluate 
the presence of tar spot development.

Model Accuracy (%) Kappaa Type I error (%)b Type II error (%)c Precision (%)d Recall (%)e

LR1 85.2 0.55 10.3 33.3 61.5 66.7

LR2 85.2 0.55 10.3 33.3 61.5 66.7

LR3 86.3 0.55 7.5 38.9 66.7 61.1

LR4 86.3 0.56 8.2 36.1 65.7 63.9

LR5 84.1 0.53 12.3 30.6 58.1 69.4

LR6 86.8 0.59 8.9 30.6 65.8 69.4

LR7 83.52 0.52 13.0 30.6 56.8 69.4

LR8 83.52 0.49 11.0 38.9 57.9 61.1

Multi-model ensemblef 87.4 0.61 8.2 30.6 67.6 69.4

RFg 90.1 0.64 2.1 41.7 87.5 58.3

ANNh 85.7 0.54 8.2 38.9 64.7 61.1

Figure 4.   Two dimensional surfaces of logistic regression models developed for predicting the development 
of tar spot caused by Phyllachora maydis. (A) Logistic regression 4: Risk probability (%) of tar spot with 30-day 
moving average of daily mean ambient temperature (°C) and either 30-day moving average of daily maximum 
relative humidity or (B) Logistic regression 6: 14-day moving average of total nighttime hours with relative 
humidity > 90%.
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corresponding multi-model ensemble improved the accuracy (87.4%), kappa value (0.61), and precision (67.6%) 
while maintaining low type I error rate (8.2%), low type II error rate (30.6%), and high recall (69.4%, Table 1).

Furthermore, two machine learning algorithms were developed for the prediction of P. maydis development 
and increase in severity including a RF model using 500 trees and an ANN model using nine hidden layers. These 
two machine learning algorithms were assessed similarly to the previous LRs and the multi-model ensemble. 
The RF consistently outperformed all other models for every metric except for recall, in which it had the lowest 
observed value (58.3%, Table 1). The corresponding RF had an observed accuracy of 90.1%. The ANN resulted 
in a model accuracy of (85.7%), relatively high type II error rate (38.9%), and all other metrics were unremark-
able (Table 1).

Discussion
Through this study, a deeper epidemiological understanding of P. maydis has been uncovered. The corresponding 
research suggests the development and increase in P. maydis stroma under field conditions is primarily driven 
by extended periods of moderate mean ambient temperature (18–23 °C) but tar spot is discouraged by extended 
periods of high relative humidity (> 90%). Additionally, the development of multiple statistical models offers a 
tool in production systems to guide fungicide applications to help farmers maximize their return on investment.

From our findings, the weather parameters with the strongest correlations to P. maydis development and 
severity increase included the 30-day moving averages of either daily minimum temperature or the daily mean 
temperature (Suppl. Table 1). These two weather parameters were also correlated with P. maydis development and 
severity increase from the 21-day and 14-day moving averages but were not as highly correlated as the 30-day 
moving averages (Suppl. Table 1). Specifically, moderately warm air temperatures appear to drive P. maydis 
development or severity increase, while excessively warm conditions, mean temperatures greater than 23 °C, 
considerably decreased the probability of P. maydis progression (Fig. 2B). This demonstrates there is a long-term 
influence of moderate ambient temperature that drives epidemiological processes within the tar spot cycle. These 
results confirm previous reports by Hock et al.11 that moderate temperatures (17–22 °C) were one of the primary 
determinants of tar spot progress and severity. Hock et al.11 also reported that during warm seasons with mean 
ambient temperatures greater than 22 °C, tar spot development was minimal. Moderate mean temperatures 
could be influencing multiple epidemiological processes within the disease cycle such as germination of initial 
inoculum, infection of the host, mycelial colonization within host tissue, or the development of the ascomata. 
Temperature has been well characterized to play an important role in all of these processes in many other fungal 
organisms21. Additional investigations on the effects of temperature on the development of P. maydis on corn 
are still needed to further elucidate this relationship.

In addition to temperature, moisture weather variables were consistently observed to influence tar spot 
development, although to a lesser degree than temperature. Specifically, the 21-day moving average of the daily 
minimum dew point (DP) had the third greatest overall correlation with P. maydis development or severity 
increase, but this was actually a negative correlation (Fig. 2, Suppl. Table 1). Many additional moisture parameters 
were significantly correlated with P. maydis development or severity increase across all three levels of moving 
averages, such as the RH90 and the nighttime RH90 variables as has been previously reported (Fig. 2). Interest-
ingly these moisture variables are negatively correlated with increasing TS severity. Breunig et al.12 point out that 
in controlled-environment inoculations frequent misting was only required in the first 5 days after inoculation. 
After 5 days, misting had to be withheld to produce stroma in these controlled environments. Perhaps leaf wet-
ness is required by the fungus for spore germination and leaf penetration, while excessive moisture later in the 
infection process can lead to conditions unfavorable for the progression of infection. Regardless, these moisture 
variables are clearly playing a role in the biological processes driving the development of P. maydis. Variables 
such as DP and RH are still dependent on temperature. Thus, the relationships presented here demonstrate 
the complexity that exists between the roles of ambient temperature and moisture on P. maydis development 
in the physical environment. As Hock et al.11 reported, RH levels greater than 75% were important for tar spot 
development. We examined the effect of different RH thresholds ranging from 60 up to 95%, and we consistently 
determined the 90% RH threshold was the most influential of the eight examined RH thresholds for explaining 
the development and increase in severity of P. maydis, with RH90 being significantly negatively correlated with 
P. maydis stroma development in all three levels of moving averages (Suppl. Table 1) and resulting in the best 
fitting models across all RH thresholds (Suppl. Table 2). Our data are like those of Hock et al.11, in that RH was 
very important in predicting P. maydis development, however, the work presented here suggests that extended 
periods of high RH are antagonistic to the development of tar spot. These findings seem consistent with Breunig 
et al.12 that only intermittent periods or wetness are neded to support the development of tar spot. Thus, the 
results presented here refine our understanding of the role RH plays in the epidemiology of tar spot in the U.S.

Another important objective of this study was to compare LR models to more modern machine learning 
algorithms. From our study, a RF machine learning algorithm resulted in one of the best models and had the 
greatest observed model accuracy of 90.1%. The ANN examined in this study did not result in model accuracy 
as high as several of the LR models developed here. Two LRs, LR4 and LR 6, were highly accurate. Accuracy was 
further improved by ensembling these two LR models, with an accuracy estimate of 87.4% while either improving 
or maintaining all of the additional model assessment characteristics (Table 1). Our analyses demonstrate that 
machine learning algorithms were slightly more accurate in predicting P. maydis development compared to LRs, 
but a multi-model ensemble using two of the LRs was still comparable in predicting P. maydis development while 
balancing all goodness-of-fit statistics. These results confirm previous studies on predicting plant diseases with 
a high degree of accuracy using different machine learning algorithms27,32,33. However, in some studies logistic 
regressions were reported to still be the most accurate at predicting plant diseases34.
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Functionally, LR models may be more useful in actual delivery to farmers and can be easily programmed 
into smartphone application decision support systems (DSS) as has been previously demonstrated22. The models 
presented here have high levels of potential for improving the application timings of fungicides for managing tar 
spot. Tar spot may result in severe yield losses; thus, farmers often rely on multiple fungicide applications during 
the season, which can equate to high economic and environmental costs. The use of these DSS will guide farmers 
in optimizing fungicide application timing to protect the plant from the pathogen when it is most likely to cause 
disease. Furthermore, using these DSS can also eliminate unnecessary applications which benefit the farmers by 
limiting needless economic inputs and decreasing chemical inputs into the environment.

While these identified models are highly accurate at predicting P. maydis development, there is inherit error 
associated with any model. This error could be explained by variability in environmental conditions which 
could not be accounted for, the quantity of initial inoculum, the population structure of the pathogen within 
the field, or resistance levels among site-years. Additionally, there may have been interrater variability associated 
with disease ratings, especially since these data were collected from multi-state projects with numerous raters 
across multiple years. However, we minimized this error with the use of standard area diagrams (CPN) that help 
improve disease severity estimates35.

The current study sheds light on epidemiological processes that are driving the development of a newly 
emerged pathogen of corn capable of causing severe disruptions to agricultural production. Overall, extended 
periods (30 days) of cool temperature appears to be most important for tar spot development, with an apparent 
interaction with shorter periods (14–21 days) of low moisture conditions. The work presented here has also 
paved the way for the development of a DSS for tar spot. Work is underway to incorporate these models into 
the Tarspotter DSS (https://​ipcm.​wisc.​edu/​apps/​tarsp​otter/) to further improve tar spot prediction and better 
inform farmers of risk due to plant disease.

Material and methods
Field trials
Small plot field trials were planted between 2018 and 2022 in the following states: Illinois, Iowa, Indiana, Ken-
tucky, Michigan, Missouri, Ohio, and Wisconsin (Fig. 1). Locally adapted hybrids were used at each location. 
The use of all plant material in this study did not require any specific permissions or licenses. Trials at each 
location followed locally recommended management practices such as seeding rates, nitrogen fertilization, and 
herbicides with a small number of trials overhead irrigated. Field trials in 2018 and 2019 included the use of 
fungicide applications, but only the non-treated plots were considered for this study. All small plot research trials 
were designed as randomized complete block designs. No fungicide applications were made in trials conducted 
between 2020 and 2022. Commercial field sites were also assessed across the Midwest U.S. between 2021 and 
2022, and these included fields under regional grower conditions. These commercial fields were not designed for 
research and served as locations of observing disease development. The conducted field trials were performed 
with permission from local commercial grower collaborators and were compliant with all institutional, national, 
and international guidelines and legislation. Additional field information is provided in Supplementary Table 3.

Data collection
Phyllachora maydis ratings started at the R1 growth stage (silking) and continued until the R5-R6 growth stage 
(dent to full maturity). The number of P. maydis severity ratings during this period ranged from two to seven 
depending on the site-year. In the small plot trials, P. maydis severity was rated by visually assessing the percent-
age of P. maydis-induced stroma on the ear leaf of five to ten plants per plot (sub-samples) using a standardized 
rating scale36, and all ratings were averaged across the entire plot. For each rating date in each site-year, all plot 
severity scores were averaged for a single severity score for that plot. In the commercial fields, five corn plants 
were randomly selected across the field and were evaluated using the same protocol as described for small plot 
trials. For each rating date, disease ratings of the five plants were averaged to calculate a single severity score. The 
compiled database considered for developing the prediction modeling was the average P. maydis severity of the 
ear leaf for each assessment day. The severity data were aggregated into a single file. For each location, all ratings 
were aligned in sequential order by date. A binary delta variable was defined as the increase in severity of P. 
maydis stroma between two sequential rating dates, such that a delta value of 1 was given for any positive increase 
in P. maydis severity between two sequential dates. If no increase in P. maydis severity was observed, a delta 
value of 0 was given. Thus, delta values of 1 define P. maydis increase while delta values of 0 define no increase.

Weather data collection
Site-specific weather data was collected using IBM historical weather services. Hourly average weather data was 
pulled from this service at a resolution of 4 km grids using GPS coordinates for each field location. The collected 
weather data included the hourly averages of ambient air temperature (AT, °C), relative humidity (RH, %), wind 
speed (WS, m/s), dew point (DP, °C), and precipitation (mm/hour). From these hourly weather data, dew point 
depression (DPD, °C) values were calculated for each hour by taking the absolute value of the difference between 
the AT and DP. A binary wetness hour variable (WH) was calculated by defining a ‘1’ if the DPD was less than or 
equal to two, predicting the presence of free water on leaf surfaces, and a ‘0’ was defined if the DPD was greater 
than two37,38. Additionally, a binary nighttime wetness hour variable was calculated similarly to the previously 
described wetness hour variable but could only be considered true between the hours of 8 pm and 6 am. All 
other daytime hours were considered a ‘0’ value. A binary RH variable (RH95) was calculated by defining a ‘1’ 
if the RH was greater than or equal to 95%, and a ‘0’ was defined if the RH level was less than 95%. Additional 
binary RH variables (RH90, RH85, RH80, RH75, RH70, RH65, and RH60) were calculated similarly with RH 
thresholds of either 90%, 85%, 80%, 75%, 70%, 65%, or 60%. A binary nighttime RH90 variable was calculated 
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by defining a ‘1’ if the RH was greater than 90% between the hours of 8 pm and 6 am, and if RH was less than 
90% at night or during daytime hours all hours were defined as a ‘0’.

From these hourly weather values, daily mean, minimum, and maximum values were calculated for each of 
the following variables (AT, RH, WS, DP, and DPD). Daily mean and daily maximum precipitation rates were 
calculated. Daily totals for WH, nighttime WH, RH90, RH90, RH85, RH80, RH75, RH70, RH65, RH60, and 
nighttime RH90 were also calculated for each location. After all daily means, minimums, maximums, and totals 
were calculated, 30-day, 21-day, and 14-day moving averages (window-panes) were calculated for each of the 
weather variables using the rollmean() function from the ‘zoo’ package in R39,40. “Window-paning” has been 
useful in modeling for Fusarium head blight for instance, allowing epidemiologists the ability to find and define 
specific time-frames for weather variables that are influential in plant disease development41. Finally, the previ-
ously established binary delta values were paired with the 30-day, 21-day, or 14-day moving averages of weather 
data for the second rating date.

Correlation analysis and logistic regression model development
First the total dataset was split to create training (n = 406) and testing (n = 182) datasets using bootstrapping with 
replacement. Correlation analyses were performed in R using the rcorr() function from the ‘Hmisc” package42. 
These analyses calculated the Pearson correlation coefficients for the delta values with respect to either 30-day, 
21-day, or 14-day moving averages (windowpanes). Significant correlations were determined by a P-value of less 
than 0.05 (Suppl. Table 1). All LRs were developed with the delta variable as the response variable, as a method 
to predict the increasing development of tar spot. Single variable LRs were created by using each of the 30-day, 
21-day or 14-day moving averages for each of the weather parameters previously described. Additional multi-
variable LRs were developed using a combination of these weather variables. All LRs were evaluated by Akaike 
information criterion (AIC) values, area under the receiver operating characteristics curve (C statistic) using the 
Cstat() function from the ‘DescTools’ package in R43, and tested by the Hosmer–Lemeshow goodness of fit test 
(HL test) using the hltest() function from the ‘glmtoolbox’ package in R44. Favorable models were determined 
as having the lowest AIC values, the highest C statistics, and a HL test P-value of greater than 0.05. From these 
assessments, eight LR models (LR1-LR8) were identified for further evaluation. Additionally, a multi-model 
ensemble was created by taking the daily average risk probability from the LR4 and LR6 models. An exhaustive 
approach was performed to examine all other multi-model ensembles, but the ensemble pursued was determined 
to be the best fitting model.

Evaluation against machine learning algorithms
To evaluate if the developed LR models were adequately predicting the progression of P. maydis on corn plants, 
the eight best-fitting LR models and ensemble model were compared against two different machine learning 
algorithms. These included random forests (RF) and artificial neural networks (ANN). From the training dataset, 
the delta response variable was examined to be explained by all predictor variables using the randomForest() 
function from the ‘randomForest’ package in R45 using a total of 500 trees and all other default hyperparam-
eters were used. The subsequent RF model was then tested on the testing dataset to determine the accuracy of 
predicting the delta response variable. The training set was also used to create an ANN using the neuralnet() 
function from the ‘neuralnet’ package in R46 using nine hidden layers and all other hyperparameters were set to 
their default. This ANN was then used to evaluate the ability to predict the delta response variable from within 
the test dataset. Model fitness metrics compared to the testing data set for the eight LR models, the ensemble 
model, and the two machine learning models were evaluated for their accuracy (%), kappa values, type I error 
(%), type II error (%), precision (%), and recall (%). These metrics were evaluated for each model using the 
confusionMatrix() function from the ‘caret’ package in R47.

Data availability
The datasets generated and/or analysed during the current study are not publicly available to preserve farm-level 
ananonymity but county-level data are available from the corresponding author on reasonable request.
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