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Artificial neural network 
identification of exercise expiratory 
flow‑limitation in adults
Hans Christian Haverkamp 1*, Peter Luu 1, Thomas W. DeCato 2,3 & Gregory Petrics 4

Identification of ventilatory constraint is a key objective of clinical exercise testing. Expiratory flow‑
limitation (EFL) is a well‑known type of ventilatory constraint. However, EFL is difficult to measure, 
and commercial metabolic carts do not readily identify or quantify EFL. Deep machine learning 
might provide a new approach for identifying EFL. The objective of this study was to determine if a 
convolutional neural network (CNN) could accurately identify EFL during exercise in adults in whom 
baseline airway function varied from normal to mildly obstructed. 2931 spontaneous exercise flow‑
volume loops (eFVL) were placed within the baseline maximal expiratory flow‑volume curves (MEFV) 
from 22 adults (15 M, 7 F; age, 32 yrs) in whom lung function varied from normal to mildly obstructed. 
Each eFVL was coded as EFL or non‑EFL, where EFL was defined by eFVLs with expired airflow 
meeting or exceeding the MEFV curve. A CNN with seven hidden layers and a 2‑neuron softmax output 
layer was used to analyze the eFVLs. Three separate analyses were conducted: (1) all subjects (n = 2931 
eFVLs,  [GRALL]), (2) subjects with normal spirometry (n = 1921 eFVLs  [GRNORM]), (3) subjects with mild 
airway obstruction (n = 1010 eFVLs,  [GRLOW]). The final output of the CNN was the probability of EFL or 
non‑EFL in each eFVL, which is considered EFL if the probability exceeds 0.5 or 50%. Baseline forced 
expiratory volume in 1 s/forced vital capacity was 0.77 (94% predicted) in  GRALL, 0.83 (100% predicted) 
in  GRNORM, and 0.69 (83% predicted) in  GRLOW. CNN model accuracy was 90.6, 90.5, and 88.0% in  GRALL, 
 GRNORM and  GRLOW, respectively. Negative predictive value (NPV) was higher than positive predictive 
value (PPV) in  GRNORM (93.5 vs. 78.2% for NPV vs. PPV). In  GRLOW, PPV was slightly higher than NPV 
(89.5 vs. 84.5% for PPV vs. NPV). A CNN performed very well at identifying eFVLs with EFL during 
exercise. These findings suggest that deep machine learning could become a viable tool for identifying 
ventilatory constraint during clinical exercise testing.

Clinical exercise testing is commonly used to identify causes of unexplained or exertional dyspnea and to identify 
the presence of ventilatory limitations during  exercise1. Expiratory flow-limitation (EFL) is one contributor to 
exercise ventilatory constraint that occurs when an increase in pleural pressure is not met with an increase in 
expiratory flow. In pulmonary disease patients with narrowed airways, EFL can develop at light exercise work 
rates and with only modest increases in minute  ventilation2–4. In healthy populations, EFL can occur during 
exercise at high work rates in well-trained  persons5. In patients with obstructive lung disease, it is axiomatic that 
EFL occurs at lower expired airflows than in healthy persons.

In practice, EFL occurs when tidal expiratory airflow meets the maximum possible airflow at any lung vol-
ume, as defined by the maximal expiratory flow-volume curve (MEFV). This method for measuring EFL was 
developed by Hyatt in 1961 and will be referred to as the “Hyatt method”6. Exercise EFL is associated with several 
negative outcomes. EFL can limit exercise ventilation and capacity in both healthy adults and in patients with 
pulmonary  disease7–10. Operational lung volumes are increased consequent to EFL, typified by an increased 
end-expiratory lung volume (EELV)7,11. This is disadvantageous, as it increases ventilatory work and worsens 
dyspnea because of increases in both lung and chest wall elastic work and a shortened diaphragm with reduced 
force generating  capacity12.

OPEN

1Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson 
S. Floyd College of Medicine, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA. 2Department of Medical 
Education and Clinical Sciences, Washington State University-Spokane Health Sciences, Elson S. Floyd College 
of Medicine, Spokane, WA, USA. 3Division of Respiratory & Critical Care Physiology & Medicine, Harbor-UCLA 
Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA. 4Department of 
Mathematics, Vermont State University-Johnson, Johnson, VT, USA. *email: Hans.Haverkamp@wsu.edu

http://orcid.org/0000-0001-8207-318X
http://orcid.org/0000-0002-2129-2343
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44331-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17247  | https://doi.org/10.1038/s41598-023-44331-z

www.nature.com/scientificreports/

Identifying EFL is nuanced, time-consuming, and standard metabolic carts do not readily perform the analy-
ses required for the measurement. There are also several limitations inherent in the Hyatt method for measur-
ing EFL. Both thoracic gas compression during the maximal forced  expiration13 and bronchodilation during 
 exercise14 can lead to erroneous measurements of EFL. Accurate placement of the exercise tidal flow-volume 
loop (eFVL) within the MEFV curve requires precise determination of operational lung volume. Given these 
limitations, new methods for detecting EFL that do not require comparison of the eFVL with the MEFV curve 
would be of great benefit.

Deep machine learning might be a viable new approach for identifying EFL during exercise. Deep learning 
designs artificial neural network (ANN) models. ANNs can be “trained” to predict labels in response to one 
or more input variables. A convolutional neural network (CNN) is a type of ANN that is particularly adept at 
detecting shapes and boundaries in time series data. Given the temporal nature of the eFVL and that it essentially 
consists of a closed, two-dimensional shape with a clear boundary, we reasoned that an appropriately constructed 
CNN would be able to discern differences in overall shape in eFVLs that are flow-limited vs. those that are not. 
The purpose of this study was therefore to develop and implement a CNN to identify EFL in adults exhibiting 
a range of baseline airway function. Specifically, the CNNs were trained to identify eFVLs that met or exceeded 
the expiratory limb of a MEFV curve. Some of the results of these studies have been previously reported in the 
form of an  abstract15.

Methods
Subjects
The data in this manuscript were collected as part of previous and current research conducted between July, 2010 
and February,  20232,16–18. Notwithstanding one abstract with a small number of  subjects15, the CNN data have 
not been published previously. All subjects were non-smokers between the ages of 18–50 years. Subjects were 
fully informed of the procedures, risks, and benefits of the study, and signed an informed consent document. 
All studies were approved by the Institutional Review Board for research involving human subjects at Northern 
Vermont University-Johnson and Washington State University-Spokane Health Sciences. Studies were conducted 
in compliance with the Declaration of Helsinki, except for registration in a database.

All participants had a negative history for chronic illness (excepting asthma), and an absence of respira-
tory infection during the four-weeks prior to participation. The subjects in this report include healthy adults 
with normal spirometry and adults with mild airway obstruction. Although most, but not all, of the subjects 
with mild airflow limitation had a previous asthma diagnosis, they were not categorized as asthmatic in this 
manuscript. Subjects using oral or inhaled corticosteroids were excluded from participation. Collectively, the 
subjects were recreationally active, participating in regular aerobic and/or resistance exercise several days each 
week. All volunteers were instructed to refrain from using short-acting β2-agonist for at least eight hours prior 
to the study and from ingesting products containing caffeine for six hours prior to study. Exercise was avoided 
for eight hours prior to the lab visit.

Spirometry
Spirometry was completed in the seated, upright position according to American Thoracic Society and European 
Respiratory Society standards at the time of  testing19,20. During each measurement, subjects performed forced 
vital capacity maneuvers for determination of peak expiratory flow, forced vital capacity (FVC), forced expiratory 
volume in 1 s  (FEV1), and forced expiratory flow between 25 and 75% of FVC  (FEF25-75%). Reference equations 
are from the Global Lung  Initiative21. Acknowledging the recent changing perspective on population norms for 
 spirometry22, the Caucasian equations were used to determine predicted values for all subjects, regardless of 
race. Twenty out of the 22 subjects identified as White, one identified as Hispanic, and one identified as Asian.

Incremental exercise test
Exercise was performed on a magnetically-braked cycle ergometer. Subjects breathed through a two-way, non-
rebreathing valve (Hans-Rudolph) with nose clips in place. Separate pneumotachographs (Hans-Rudolph) were 
used to measure inspiratory and expiratory airflow. A 16-channel analog-to-digital data acquisition system 
(ADinstruments) interfaced with a laptop computer was used to collect the data. Inspired and expired airflow 
were continuously collected for generation of eFVLs and inspiratory capacity volumes (IC). Initial workrate 
was set at 35 watts in women and 50 watts in men. In 19 subjects, workrate was increased by 35 watts every two 
minutes until the limit of tolerance. In three subjects, workrate was increased by 15 watts each minute until the 
limit of tolerance.

Determination of expiratory flow‑limitation
The presence of EFL was determined using well-characterized methods that continue to be the standard approach 
for identifying EFL during  exercise6,23. Prior to exercise and while seated on the cycle ergometer, subjects per-
formed at least three maximal forced expirations from total lung capacity (i.e. FVC maneuver). A single IC 
maneuver was performed at the end of each exercise workload. A variable number of breaths preceding each IC 
were selected for analysis and sampled at 100 Hz. Breaths were selected up to, but never exceeding, 60 s prior 
to the IC. Breaths with unusual shapes due to cough, sighs, and other anomalies were discarded. The number 
of eFVLs analyzed among subjects was variable. This variability was due to differences among subjects in the 
number of workloads completed, breathing frequency, and the incidence of irregular breaths.

The expiratory portion of all eFVLs were placed within the largest pre-exercise MEFV curve after subtract-
ing the IC volume measured at the end of each workload. Exercise flow-volume curves with any portion that 
met or exceeded the pre-exercise MEFV curve were classified as expiratory flow-limited. Thus, eFVLs that met 
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this criterion were labelled as “EFL” whereas eFVLs that did not meet or exceed the MEFV curve were labelled 
“non-EFL.” The extent of EFL was quantified as the percentage of tidal volume (VT) meeting or exceeding the 
MEFV curve (% EFL).

Artificial neural network
The CNN deep-learning based model was developed using Python version 3.9.7 combined with deep learning 
framework TensorFlow version 2.6.0. Figure 1 depicts the architecture of the CNN. The model is a Sequential 
TensorFlow model with seven layers. Layers one and two of the model are both Conv1D convolutional layers 
with 64 filters of kernel size 3 and rectified linear unit (“relu”) activations. Layer three is a dropout layer set to 
0.4 thereby randomly setting each input to 0 with 40% probability to encourage each node to be independently 
useful with the goal of reducing overfitting. Layer four is a MaxPool1D layer with a pool size set to 2 thereby only 
retaining the most prominent features. When combined with the previous dropout layer, this further decreases 
the risk of overfitting. Layer five is a flattening layer. Layer six is a traditional Dense neuron layer with 100 neu-
rons. Layer seven is the output layer, which is a Dense layer of 2 neurons, one for each class “EFL” and “non-EFL”. 
The architecture was adapted from a model used to diagnose problems in internal combustion engines from 
tailpipe emissions time  series24.

The order of 2931 spirometry records were randomized by a random permutation, and then a random sam-
pling method was used to distribute the records into training and test data sets with a ratio of 2:1. The training 
data was further segmented into training and validation sets with a ratio of 9:1.

The original eFVLs were stored as two-channel series of flow and volume in Microsoft Excel. Before deep 
learning training, all eFVL records were resampled to a standardized 2X500 shape using Forsythe, Malcolm, and 
Molder (“fmm”) splines. The resampling was performed in R with the spline() method from the stats package.

The input shape of the data to the model was therefore 2X500. The training batch size was set to 250. The 
number of training epochs was set to 500. The optimizer was set to adam. The loss was set to sparse_categori-
cal_crossentropy. The metric was set to sparse_categorical_accuracy. The learning rate was set to reduce on 
plateaus of 90 epochs by a factor of 0.5 to prevent overfitting, but the learning rate was not permitted to go below 
0.0001. Other settings were set to default. After the training process, the optimal model was selected according 
to the best sparse_categorical_accuracy.

Analytic approach
A student’s t test was used to compare demographic and pulmonary function variables between two subgroups 
(normal or low spirometry group; see RESULTS). The eFVL results shown in Table 3 were not normally distrib-
uted; a Mann Whitney test was used to compare the variables between the two subgroups. Statistical significance 
was set at α < 0.05. Success of the final CNN algorithm was determined by analyzing five variables that were cal-
culated from the final confusion matrix output: (1) accuracy; (2) true positive rate (sensitivity); (3) true negative 
rate (specificity); (4) positive predictive value (precision); and (5) negative predictive  value25.

Results
Participant characteristics
Results for descriptive characteristics and pulmonary function are shown in Table 1. Participants were placed into 
one of two groups according to their  FEV1/FVC  (GRNORM,  FEV1/FVC > 0.75;  GRLOW,  FEV1/FVC < 0.75). There 
were no differences in anthropometric characteristics between  GRNORM and  GRLOW. Baseline airway function 
ranged from mildly obstructed in  GRLOW to above normal values in  GRNORM. Percent predicted  FEV1,  FEV1/FVC, 
and  FEF25-75% were 22, 20, and 82% higher in  GRNORM than  GRLOW (P < 0.004 for all comparisons).

Figure 1.  Convolutional neural network architecture. The resampled 2X500 eFVL series is passed through two 
hidden convolutional layers, each with 64 kernels of size 3. The convolved output, which represents features 
from the eFVL series, is passed to a random dropout layer, which drops 40% of the learned weights at random 
to prevent overfitting. The reduced set of weights are then passed to a MaxPooling1D layer of pool size 2 to 
select the highest weighted learned feature from every other kernel. This is then flattened and passed to a simple 
neural network of 100 neurons. The final output is the probability of EFL or non-EFL, which is considered EFL 
if the probability exceeds 0.5 or 50%. eFVL exercise tidal flow-volume loop, EFL expiratory flow limitation.
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Convolutional neural network modelling
We performed three separate CNN analyses. In the first analysis, data from all 22 subjects were analyzed col-
lectively. In the second and third analyses, subjects in  GRNORM and  GRLOW were analyzed separately. Table 2 
contains values for accuracy, true positive rate (sensitivity), true negative rate (specificity), positive predictive 
value (precision, [PPV]), and negative predictive value (NPV). The final CNN algorithm performed remarkably 
well at correctly identifying eFVLs with EFL in all subjects and in both  GRNORM and  GRLOW. Values for accuracy 
equaled or exceeded 88% in all three groups. Moreover, values for sensitivity, specificity, PPV and NPV were 
equal to or greater than 75% in all three groups. In the collective analysis and in  GRNORM, the CNN performed 
better at identifying true negatives (higher specificity) than identifying true positives (lower sensitivity). In 
contrast, in  GRLOW, the CNN was more successful at identifying true positives (higher sensitivity) than true 
negatives (lower specificity). In  GRNORM, NPV was 15.3% higher than PPV (93.5 vs. 78.2%). In  GRLOW, PPV was 
5% higher than NPV (89.5 vs. 84.5%).

Expiratory flow‑limitation
Table 3 lists individual subject values for the total number of eFVLs analyzed, number of eFVLs with EFL, mean 
exercise % EFL, and end-exercise % EFL. There were more eFVLs with EFL in  GRLOW than  GRNORM; 71.8% 
(IQR = 0.58) of the eFVLs were EFL in  GRLOW whereas 18.8% (IQR = 0.32) of the eFVLs were EFL in  GRNORM. 
Additionally, both mean and end-exercise % EFL were higher in  GRLOW than  GRNORM (P < 0.0003 for both 
comparisons). In Fig. 2A–C, ensemble-averaged mean exercise and end-exercise eFVLs are plotted within the 
ensemble-averaged MEFV curves in all subjects,  GRNORM and  GRLOW. Note the smaller MEFV curve in  GRLOW 
vs.  GRNORM. In  GRLOW subjects, the smaller boundary provided by the MEFV curve resulted in extensive EFL 
during the exercise, despite similar exercise tidal volumes and expired airflows in  GRLOW and  GRNORM.

Table 1.  Descriptive characteristics and pulmonary function in all subjects,  GRNORM and  GRLow. Percent 
predicted values in parentheses. BMI body mass index, FVC forced vital capacity, FEV1 forced expiratory 
volume 1.0 s, FEF25-75% forced expiratory flow between 25 and 75% FVC, PEF peak expiratory flow, V̇O2peak 
peak oxygen consumption,  GRNORM,  FEV1/FVC > 0.75;  GRLOW,  FEV1/FVC < 0.75. *P = 0.001–0.004 vs.  GRNORM, 
†P < 0.0001 vs.  GRNORM.

Variable All subjects (n = 22) GRNORM (n = 13) GRLOW (n = 9)

Sex 15m/7f. 8m/5f. 7m/2f.

Age, yrs 31.6 ± 9.3 31.4 ± 9.4 31.9 ± 9.6

Height, m 1.73 ± 0.10 1.74 ± 0.10 1.72 ± 0.09

Weight, kg 81.2 ± 16.4 77.1 ± 11.9 87.2 ± 20.8

BMI, kg/m2 27.0 ± 4.3 25.7 ± 4.0 28.9 ± 4.2

FVC, l 5.20 ± 1.30 (110 ± 16) 5.21 ± 1.28 (109 ± 17) 5.09 ± 1.40 (103 ± 15)

FEV1, l 4.00 ± 1.1 (100 ± 19) 4.32 ± 1.06 (109 ± 18) 3.53 ± 0.97 (86 ± 13)*

FEV1/FVC 0.77 ± 0.08 (93 ± 10) 0.83 ± 0.04 (100 ± 5) 0.69 ± 0.04† (83 ± 5)†

FEF25-75%, l·sec–1 3.61 ± 1.55 (87 ± 34) 4.42 ± 1.45 (108 ± 28) 2.43 ± 0.73* (57 ± 10)†

PEF, l·sec–1 9.12 ± 2.41 (100 ± 20) 9.57 ± 2.35 (106 ± 19) 8.47 ± 2.47 (90 ± 19)

V̇O2peak, ml·kg–1·min–1 43.6 ± 9.4 (126 ± 29) 46.2 ± 10.8 (131 ± 30) 40.0 ± 6.3 (120 ± 28)

Table 2.  Confusion matrix derivations for all subjects and subjects in  GRNORM and  GRLOW. GRNORM,  FEV1/
FVC > 0.75;  GRLOW,  FEV1/FVC < 0.75, eFVL spontaneous tidal exercise flow-volume loop, TP true positive, TN 
true negative, FP false positive, FN false negative.

All subjects (n = 22) GRNORM (n = 13) GRLOW (n = 9)

True positive = 302 True positive = 97 True positive = 212

True negative = 575 True negative = 477 True negative = 82

False positive = 38 False positive = 27 False positive = 25

False negative = 53 False negative = 33 False negative = 15

Total number eFVLs = 968 Total number eFVLs = 634 Total number eFVLs = 334

Variable

 Accuracy (TP + TN)/(TP + TN + FP + FN) 90.6% 90.5% 88.0%

 True positive rate (sensitivity) TP/(TP + FN) 85.1% 74.6% 93.4%

 True negative rate (specificity) TN/(TN + FP) 93.8% 94.6% 76.6%

 Positive predictive value (precision) TP/(TP + FP) 88.8% 78.2% 89.5%

 Negative predictive value TN/(TN + FN) 91.6% 93.5% 84.5%
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Discussion
Summary
We sought to develop a convolutional neural network (CNN) that accurately identifies exercise tidal flow-volume 
loops (eFVL) with expired airflow that meets or exceeds the pre-exercise maximum expiratory flow (i.e. EFL). 
Using 2931 eFVLs from 22 adults in whom airway function varied from normal to mildly obstructed, our CNN 

Table 3.  Individual subject values and group mean results for exercise flow-volume loop data in  GRLow and 
 GRNORM. eFVL exercise tidal flow-volume loop, EFL expiratory flow-limitation, IQR interquartile range. 
GRNORM,  FEV1/FVC > 0.75;  GRLOW,  FEV1/FVC < 0.75. na indicates that a subject either did not have any eFVLs 
with EFL (subjects #3, #4, #11, #13), or that all eFVLs with EFL occurred at end exercise (#7, #8, #9, #10). 
*P = 0.016 vs.  GRNORM, †P = 0.0002 vs.  GRNORM, ψP = 0.0003 vs.  GRNORM.

Subject no Total number eFVLs analyzed Number EFL Mean exercise, % EFL ± SD End exercise, % EFL ± SD

Subjects  GRNORM

 1 92 32 42.3 ± 11.7 40.8 ± 10.9

 2 86 23 29.1 ± 13.9 31.1 ± 10.1

 3 136 0 na na

 4 102 0 na na

 5 142 140 54.4 ± 21.1 78.0 ± 5.6

 6 526 173 17.3 ± 10.0 32.6 ± 9.6

 7 269 2 na 7.6 ± 1.7

 8 69 1 na 19.2

 9 86 11 na 47.8 ± 8.6

 10 174 1 na 9.3

 11 218 0 na na

 12 88 34 19.8 ± 10.2 25.9 ± 9.4

 13 48 0 na na

 Median (IQR) 102.0 (110) 2.0 (33.0) 1.5 (7.0) 9.3 (36.3)

Subjects  GRLOW

 14 28 28 83.1 ± 13.4 91.5 ± 7.7

 15 214 173 86.2 ± 13.0 92.6 ± 0.9

 16 40 15 69.3 ± 7.7 73.8 ± 4.4

 17 98 92 54.6 ± 16.5 72.6 ± 5.6

 18 112 77 50.1 ± 18.2 67.3 ± 4.7

 19 117 31 28.7 ± 18.6 41.0 ± 12.3

 20 96 95 54.9 ± 15.7 67.6 ± 6.1

 21 138 134 52.3 ± 22.2 80.9 ± 7.0

 22 173 73 27.7 ± 17.8 53.2 ± 6.7

 Median (IQR) 112.0 (87.5) 77.0 (85)* 46.7 (44.9)† 68.3 (30.6)ψ

All subjects

 Median (IQR) 107.0 (87.3) 29.5 (91.8) 7.6 (46.8) 38.3 (68.6)

Figure 2.  Baseline ensemble-averaged MEFV curves with ensemble-averaged mean and end exercise tidal flow-
volume curves (mean eFVL and End eFVL) in (A) all subjects, (B) subjects with  FEV1/FVC > 0.75  (GRNORM), 
and (C) subjects with  FEV1/FVC < 0.75  (GRLOW). A smaller MEFV curve in  GRLOW resulted in substantial 
expiratory flow-limitation whereas  GRNORM subjects, on average, did not develop significant expiratory flow-
limitation. MEFV maximal expiratory flow-volume curve, FEV1/FVC ratio between forced expiratory volume in 
1 s and forced vital capacity.
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performed very well at discriminating between eFVLs that were, and were not, expiratory flow-limited. Our final 
model achieved an overall accuracy of 90.6%. Subjects were also placed into one of two groups based on their 
baseline  FEV1/FVC  (GRNORM,  FEV1/FVC > 0.75;  GRLOW,  FEV1/FVC < 0.75). The CNN performed equally well 
in both subgroups, achieving an accuracy, respectively, of 90.5 and 88% in  GRNORM and  GRLOW. Our findings 
provide proof-of-principle evidence supporting the potential for deep machine learning to identify ventilatory 
constraints during exercise in adults exhibiting a range of airway function. These encouraging findings thus 
bode well for development of deep learning methods that can automate identification of exercise ventilatory 
constraints in clinical exercise testing.

Our major finding is that a CNN was able to identify if eFVLs were expiratory flow-limited or not with an 
overall accuracy of 90.6%. Fundamentally, artificial neural networks are pattern-recognition systems that can 
learn to discern differences in patterns and shapes of  data26. The high accuracy of our CNN demonstrates that 
the shape of the expiratory portion of eFVLs differs based on whether the expiration is flow-limited or not. 
Figure 3A,B depicts two series of eFVLs plotted within the MEFV curve in one  GRLOW participant. Panel A 
depicts eFVLs that were not flow-limited whereas the eFVLs in panel B did demonstrate EFL. Overall, the eFVLs 
that achieved EFL contain two attributes that are not readily seen in the non-flow-limited eFVLs: (1) a relative 
peak in the vicinity of their meeting the MEFV curve, and (2) a descending curve with a slope that parallels the 
MEFV curve.

In addition to the high accuracy, our CNN demonstrated high sensitivity, specificity and both positive- and 
negative predictive values (Table 2). Although additional studies with a larger number of subjects and data are 
needed to further determine the viability of a CNN for identifying EFL, the findings in this study are promising.

Recently, Welch et al. developed an approach for identifying EFL that is also based on the geometry of the 
 eFVL27. The authors applied a vector-based analysis that compared the contour of eFVLs with the contour of 
the MEFV curve in a group of healthy adults and a group with airway obstruction. In both subject groups, the 
incidence of exercise EFL was similar in the contour-based and Hyatt method. Our CNN is based on the same 
principle that the shape of an eFVL depends on prevailing airway geometry during the breath. Previous studies 
have also shown, from a qualitative standpoint, that the contours of eFVLs and the MEFV curve are similar when 
EFL is  present5,28–30. The success of our CNN at identifying EFL demonstrates that the dynamic interrelationships 
among airway and pleural pressures, airway collapsibility and caliber, and lung volume result in distinct expired 
airflow phenotypes in eFVLs that are, and are not, flow-limited.

In the context of this study, sensitivity and specificity indicate the effectiveness of our CNN at correctly 
classifying eFVLs according to their label (“EFL” or “non-EFL”); the focus is on the screening test, per  se25. In 
contrast, PPV and NPV indicate the probability of having EFL (or not) after the CNN testing results are known; 
the focus is on the patient, per se. Thus, PPV and NPV relate to the utility of the test in  practice25. We performed 
the two subgroup analyses to probe the effectiveness of our CNN at identifying EFL in two populations in whom 
the prevalence of EFL is different. This is an important experiment, because the prevalence of a condition in 
a population has a marked influence on the predictive power of a screening  tool31. Based on accuracy alone, 
the CNN was equally effective at identifying EFL in  GRNORM and in  GRLOW (Table 2). However, in  GRNORM, the 
CNN performed better at correctly predicting eFVLs that were non-flow-limited whereas it performed less well 
at predicting eFVLs with EFL (i.e. NPV higher than PPV). In contrast, in  GRLOW, the CNN was slightly better at 
predicting eFVLs with EFL than eFVLs that were non-flow-limited (PPV higher than NPV). Akobeng conducted 
a quantitative analysis of the effect of disease prevalence on the PPV and NPV of an assessment  test31. Whereas 
PPV progressively increases as the prevalence of a condition increases, NPV decreases as prevalence increases. 
Our findings for PPV and NPV in  GRNORM and  GRLOW are in-line with these effects of prevalence on predictive 
power. Our CNN was thus more effective at ruling-out EFL in persons with normal airway caliber and in whom 
there is a relatively low pre-test likelihood of EFL. In contrast, the CNN was better able to rule-in EFL in persons 
with narrowed airways and a higher pre-test likelihood of EFL.

Figure 3.  (A) individual exercise tidal flow-volume loops (eFVL) plotted within the pre-exercise maximal 
expiratory flow-volume curve (MEFV) in one subject at a moderate exercise workload. (B) individual eFVLs 
plotted within the pre-exercise MEFV curve in the same subject at a heavy exercise workload. The eFVLs were 
not expiratory flow-limited at the moderate workload whereas they were flow-limited at the heavy workload. 
Note that, overall, the second half of the eFVLs that are expiratory flow-limited tend to parallel the MEFV curve. 
VT tidal volume, VE minute ventilation.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17247  | https://doi.org/10.1038/s41598-023-44331-z

www.nature.com/scientificreports/

The potential advantage of our deep learning approach for identifying EFL is that it does not require com-
parison of the eFVL with the MEFV curve, which has the tendency to overestimate EFL for several reasons. 
Firstly, excessive expiratory pressures during a forced expiration can compress thoracic gas such that the true 
limits for maximal airflow are underestimated and EFL will thus be  overestimated13. Secondly, exercise causes 
bronchodilation in both healthy persons and in patients with  asthma2,3,14,32. The unmeasured bronchodilation 
means that actual maximum expiratory flow during exercise might be more than measured by the baseline 
MEFV curve. Finally, accurate quantification of EFL requires precise measurement of operational lung volumes. 
The standard procedure whereby the eFVL is placed based on IC volume requires cooperation, and operational 
lung volumes will be overestimated if total lung capacity is not reached. The ability to automate identification 
of EFL based on the shape of the eFVL would improve efficiency, reduce errors, and be advantageous in clinical 
practice. We note that the negative expiratory pressure technique also does not require placement of an eFVL 
within a MEFV  curve33. Yet, the method is technically demanding and difficult to implement, and has not seen 
widespread adoption by the scientific or clinical communities.

We used the pre-exercise MEFV curve to determine EFL in our subjects. Because of exercise bronchodilation, 
the extent of EFL is likely overestimated in our  subjects2. The bronchodilation is plainly evident in Fig. 2C, where 
exercise expiratory flow exceeded the MEFV curve in  GRLOW. The underestimated exercise maximum airflow 
would presumably increase the rate of false negatives (FN). That is, some of the eFVLs that were labelled as EFL 
were not, in reality, flow-limited during exercise when maximum expiratory flow was higher than measured at 
rest. Surprisingly, only 6.3% of the eFVLs labelled EFL in  GRLOW were misclassified as non-flow-limited (FN/
[FN + TP] = 15/[15 + 212]) = 0.063). That only a small proportion of eFVLs were classified as FN might be related 
to the phenotype of the eFVL changing before it actually overlaps with the MEFV curve. It can be argued that 
dynamic airway narrowing begins before expiratory flow is truly  limited34. Thus, the contour of the expiratory 
portion of the eFVL might begin assuming the flow-limited shape in breaths where expired flow approaches – but 
does not necessarily reach – the MEFV curve. Finally, in cases where tidal exercise airflow substantially exceeds 
the baseline MEFV curve, EFL might be achieved despite exercise bronchodilation.

Clinical applicability
In clinical exercise testing, ventilatory limitation has historically been determined by comparing a patient’s 
exercise ventilation with their maximum voluntary ventilation (i.e. breathing reserve). Reliance on this out-
come is related to its ease of measurement and straight-forward interpretation. However, additional measures 
of ventilatory limitation provide important information beyond the somewhat crude measure of breathing 
reserve. More recently, analysis of operational lung volumes, breathing pattern, and the ventilatory equiva-
lent for  CO2 production have been integrated into identification of exercise ventilatory  limitation1. While EFL 
clearly provides useful information regarding exertional dyspnea and exercise  intolerance1,34, its analysis is not 
a routine component of clinical exercise testing. We think that the difficulty and nuance of measuring EFL is 
the primary reason that it is not a routine outcome in clinical exercise testing. While frank EFL will provide a 
mechanical limit to expiration, approaching EFL has been shown to alter breathing mechanics and ventilatory 
pattern, which then may contribute to dyspnea and exercise  limitation34. Ultimately, an improved technological 
ability to identify and evaluate EFL in large numbers of patients will improve understanding of this physiology 
and thus how to apply it in different clinical contexts. For example, while EFL is historically best described as it 
relates to obstructive lung disease (specifically COPD), EFL is seen in a subset of patients with interstitial lung 
disease (ILD) and is also more prevalent in older  adults35,36. The clinical implications of EFL in relation to ILD 
and aging remain largely undescribed but highlights the ways in which utilizing this information may be useful 
in clinical evaluation beyond obstructive lung disease.

CNN model
Regarding the CNN model, the fact that we used a relatively simple CNN to identify EFL and it performed well 
without substantial fine tuning suggests that flow-volume curves are well-suited for classification by CNNs. Fur-
thermore, by including a dropout layer and reducing the learning rate on plateaus in the loss metric, our model 
had safeguards in place to avoid overfitting. As is common with many deep learning approaches, the CNN model 
achieved good accuracy, but it does not provide “explainability.” In other words, while the model performed well 
at identifying EFL, it is not clear what it actually learned to perform its classifications. Additional investigations 
into the learned weights of the model could offer insights into the specific features of eFVLs the CNN learned 
as signals for the presence of EFL.

The size of the data set in this report (2931 eFVLs from 22 subjects) is smaller than normally recommended 
in neural network research. However, by design, our data set included eFVLs from healthy adults with normal 
spirometry and a slightly smaller number of subjects with mildly reduced spirometry. The data thus represent 
more than one population, and yet the model performed strongly in classifying EFL in all subjects. Importantly, 
a recent study found that increasing the size of a training data set does not lead to meaningful improvements 
in algorithm performance when the data are sufficiently representative of the target  population37. The fact that 
our data includes eFVLs from persons exhibiting a range of baseline airway function leads us to expect that the 
model would perform well at classifying EFL in new subjects with similar ranges of baseline spirometry. Finally, 
it is important to acknowledge that application of deep machine learning in exercise and respiratory research is 
a very recent endeavor. There is much work to do to determine the potential of this technology in the analysis 
of exercise ventilatory constraints.
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Conclusions
We leveraged the power of modern machine learning by developing a CNN designed to identify EFL during 
exercise in a group of adults in whom airway function ranged from normal to mildly obstructed. Our CNN 
performed very well, demonstrating an overall accuracy of 90.6% at correctly identifying eFVLs that were flow-
limited or not. This approach to identify EFL is predicated on analysis of the geometry formed by the relationship 
between expired volume and airflow during spontaneous breathing, streamlining the nuanced and cumbersome 
approach to identify EFL that requires placement of eFVLs within the MEFV curve. Ultimately, this approach 
could result in an objective method for identifying EFL and other exercise ventilatory constraints.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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