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MRI‑based multivariate gray 
matter volumetric distance 
for predicting motor symptom 
progression in Parkinson’s disease
Anupa A. Vijayakumari , Hubert H. Fernandez  & Benjamin L. Walter *

While Parkinson’s disease (PD)-related neurodegeneration is associated with structural changes in the 
brain, conventional magnetic resonance imaging (MRI) has proven less effective for clinical diagnosis 
due to its inability to reliably identify subtle changes early in the disease course. In this study, we 
aimed to develop a structural MRI-based biomarker to predict the rate of progression of motor 
symptoms in the early stages of PD. The study included 88 patients with PD and 120 healthy controls 
from the Parkinson’s Progression Markers Initiative database; MRI at baseline and motor symptom 
scores assessed using the MDS-UPDRS-III at two time points (baseline and 48 months) were selected. 
Group-level volumetric analyses at baseline were not associated with the decline in motor functioning. 
Then, we developed a patient-specific multivariate gray matter volumetric distance and demonstrated 
that it could significantly predict changes in motor symptom scores (P < 0.05). Further, we classified 
patients as relatively slower and faster progressors with 89% accuracy using a support vector machine 
classifier. Thus, we identified a promising structural MRI-based biomarker for predicting the rate of 
progression of motor symptoms and classifying patients based on motor symptom severity.

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease clinically diagnosed by cardinal 
motor symptoms such as bradykinesia, rigidity, tremor, gait and postural disturbances1. One of the important 
foci of current PD research is to identify robust biomarkers to predict the progression of motor symptoms and 
to diagnose PD based on symptom severity in the early stages, that is, when signs are subtle and non-diagnostic. 
Although different approaches to identifying biomarkers in PD have been attempted, 2–6 “gold standard” biomark-
ers that can be recommended for the clinical management of patients are still unavailable.

The hallmark pathophysiology of PD is the degeneration of the dopaminergic neurons in the substantia 
nigra leading to functional and structural alterations in the basal ganglia-thalamocortical circuits7,8 and the pres-
ence of Lewy bodies in several regions of the brain9,10. Atrophy in brain regions can be gauged macroscopically 
using structural magnetic resonance imaging (MRI). Although routine clinical MRI is considered “normal” in 
PD, voxel-based or surface-based morphometric (MRI-based techniques to detect subtle changes in the brain) 
studies have reported gray matter volume (GMV) loss in cortical and subcortical structures11,12, which were 
also correlated to the motor dysfunctions in PD13,14. MRI-based biomarkers could be a compelling option in a 
clinical setting since MRI is widely available, non-invasive, has standardized acquisition parameters, and can be 
seamlessly integrated into their clinical workflow. A recently identified MRI prognostic biomarker, i.e., a PD-
related atrophy score, is promising but has limited accuracy in predicting outcomes in single patients with PD4. 
Therefore, there is an unmet demand to identify a robust imaging biomarker to monitor disease progression.

Previous brain morphometric studies have enhanced our understanding of the structural abnormalities and 
their relationship to motor symptoms in PD11–14. However, firm conclusions cannot be drawn from a clinician’s 
point of view. Clinical relevance can be achieved only when we address the critical involvement of brain region(s) 
with disease in individual patients. This has been very challenging, as the findings from previous studies carry 
information based on group-level analysis (i.e., comparing a group of patients with healthy controls) and are 
not specific to individual patients. Furthermore, heterogeneous cortical atrophy patterns were noted in the early 
stages of PD15,16. In such cases, if different brain regions are involved in the PD pathology in different patients, 
then the conventional group-level results can lead to inconclusive findings. Therefore, developing a method that 
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summarizes the heterogeneity in multiple gray matter regions into a single score in individual patients would be 
beneficial for clinical decision-making.

In this study, we aimed to develop a structural MRI-based biomarker based on a patient-specific summary 
score of GMV heterogeneity of multiple brain regions using Mahalanobis distance (MD) (referred to as multi-
variate gray matter volumetric distance) to predict the long-term changes in motor symptoms. Another promis-
ing approach for biomarker discovery is to make predictions at the individual patient level. Therefore, we also 
made an attempt to classify PD patients based on the severity of motor symptoms using a machine learning 
technique. To do so, initially, we aimed to examine the association of GMV with the changes in motor symptoms 
in PD at a group-level. Then, we created a patient-specific imaging biomarker, a summary score created from 
multiple brain regions, and investigated its ability to predict the rate of progression of motor symptoms. Finally, 
we explored the ability of the imaging biomarker to classify patients based on the severity of motor symptoms 
using machine learning.

Methods
Participants
Data used in this study was downloaded from the Parkinson’s Progression Markers Initiative (PPMI) database 
(https://​www.​ppmi-​info.​org/​access-​data-​speci​mens/​downl​oad-​data), RRID: SCR_006431 through a standard 
application process. For up-to-date information on the study, please visit www.​ppmi-​info.​org. Inclusion criteria 
of the patients were (i) asymmetric resting tremor or asymmetric bradykinesia or two of resting tremor, brad-
ykinesia, and rigidity; (ii) evidence of a positive DaTscan confirming the PD diagnosis; and (iii) patients who 
had not been treated within six months of enrollment. Exclusion criteria for all participants were: (i) a diagnosis 
of dementia or atypical PD syndromes; (ii) significant neurologic or psychiatric conditions; (iii) the presence of 
MRI motion artifacts, field distortions, intensity inhomogeneities, or detectable brain injuries. Motor symptoms 
were assessed using Part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS-III)17. The total as well as the subscores of MDS-UPDRS-III, including rigid-
ity (item 3.3), bradykinesia (items 3.4–3.8), postural instability and gait (items 3.10–3.13), postural-kinetic tremor 
(items 3.15–3.16), and resting tremor (item 3.17), were computed. For this study, we selected MDS-UPDRS-III 
scores at baseline and OFF-medication (to minimize the influence of PD (dopaminergic) medications) scores 
at 48 months (48 M) (due to the high availability of OFF-medication MDS-UPDRS-III data when compared 
to other time points) for predicting the long-term changes in the motor symptoms. Thus, a total of 88 patients 
with PD were selected for the study, and the flowchart of patient selection is illustrated in Supplementary Fig. S1 
online. We also downloaded 130 age- and gender-matched health controls (HC) from the PPMI database. Among 
them, 10 HC were excluded due to MRI-related data quality issues. Thus, the final analysis included a total of 
208 participants (NHC = 120, NPD = 88).

Ethical approval
The PPMI study, which adhered to the Declaration of Helsinki and Good Clinical Practice guidelines18, has 
been registered on ClinicalTrials.gov with the identifier NCT01141023. PPMI participants provided written, 
informed consent to participate after the approval of the local ethics committees of the participating sites. A 
list of participant sites can be found at https://​www.​ppmi-​info.​org/​about-​ppmi/​ppmi-​clini​cal-​sites. One of the 
authors (AAV) obtained permission to use PPMI data for this study, and all MRI as well as clinical data used for 
this study were downloaded in a de-identified format. The PPMI Data and Publications Committee reviewed 
our manuscript for administrative approval in accordance with PPMI policies. Therefore, the analyses presented 
in this article were conducted in accordance with approved PPMI guidelines.

MRI data acquisition and processing
PPMI MRI images were acquired with standardized acquisition parameters on MRI scanners from different 
vendors (Siemens, Philips, and GE). We selected the T1-weighted (T1W) images from the participants scanned 
on a 3.0 T MRI scanner for this study. A description of scanning parameters is shown in Supplementary Table S1 
online.

Pre-processing of the T1W images was carried out using Computational Anatomy Toolbox 12 (CAT12.8 
(r1900); http://​www.​neuro.​uni-​jena.​de/​cat/) within SPM12 (Wellcome Department of Imaging Neuroscience 
Group, London, UK; http://​www.​fil.​ion.​ucl.​ac.​uk/​spm) in MATLAB software (The Mathworks Inc.; MA, USA, 
R2021a). Briefly, after correcting for bias field inhomogeneity, the T1W images were segmented into gray matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF)19. Then, GM images were normalized into the standard 
Montreal Neurological Institute (MNI) space using Diffeomorphic Anatomic Registration Through Exponenti-
ated Lie algebra algorithm (DARTEL)20. Finally, smoothing was applied to the normalized GM images with a 
Gaussian kernel of a full width at half maximum (FWHM) of 8 mm. For all participants, segmented images were 
visually inspected, and image quality ratings (IQR: a combination of measurements of noise and spatial resolu-
tion) were above the “satisfactory” threshold (i.e., 75%). Using the “Estimate mean values inside ROI” function 
in CAT12, GMV was extracted from 40 regions of interest (ROIs) expected to be related to motor functions 
(Supplementary Table S2 online) from the automated anatomical labeling atlas 3 (AAL3)21. The total intracranial 
volume (TIV) for each participant was extracted using the “Estimate TIV” function (TIV = GM + WM + CSF). 
To control for inter-subject variations in head size, we divided GMV by the TIV of each participant to obtain 
normalized GMV (GMVN).

https://www.ppmi-info.org/access-data-specimens/download-data
http://www.ppmi-info.org
https://www.ppmi-info.org/about-ppmi/ppmi-clinical-sites
http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm
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MRI data harmonization
Since the MRI data was acquired on different scanners, the NeuroHarmonize software package22 was applied to 
remove the variability between scanners. NeuroHarmonize is an extension of the ComBat framework23, which 
uses an empirical Bayes approach to correct the effects of sites while preserving the biological variance in the 
data. In the present study, diagnosis, age, and sex were considered biological variables. The GMVN generated 
from the 40 ROIs was harmonized using the publicly available Python package NeuroHarmonize (https://​github.​
com/​rpomp​onio/​neuro​Harmo​nize).

Group‑level gray matter volumetric analyses
In patients with PD, the association of harmonized GMVN of motor-specific ROIs (n = 40) to the changes in 
motor outcome (MDS-UPDRS III: total and its subscores) was computed using partial correlation analysis. This 
analysis was performed while taking into account potential confounding factors such as age, gender, and disease 
duration. We considered a P-value threshold of < 0.001 (0.05 divided by 40) as statistically significant, accounting 
for multiple comparisons using the Bonferroni correction.

Patient‑specific multivariate gray matter volumetric distance
MGMV, multivariate gray matter volumetric distance was computed using MD24

. MD is a generalization of the 
z-score in a multivariate space, which calculates a patient-specific distance from the HC distribution. Age was 
regressed out as a covariate using the fitlm method in MATLAB, and the residuals (GMVN

r) were used to com-
pute MD as follows:

where s represents a vector of GMVN
r observations in each ROI in a single participant, µ is the vector of average 

GMVN
r of each ROI calculated from the HC, and C is the covariance matrix between brain regions (40 ROIs) 

across the HC. To reliably estimate the inverse covariance matrix 
(

C
−1

)

 , 100 HC were randomly selected and 
permuted 1000 times. The MGMV of patients was calculated individually relative to each of the 1000 HC distribu-
tions, and the median values were reported.

Statistical analysis
Analyses of demographic and clinical characteristics were performed using two-tailed t-tests or Chi-square 
tests, as appropriate. Assumptions for normality were tested for variables using the Shapiro–Wilk test. Changes 
in motor outcome were calculated by subtracting MDS-UPDRS-III scores at baseline from 48 M (∆ (MDS-
UPDRS-III) = MDS-UPDRS-III48M—MDS-UPDRS-IIIBaseline). Positive change scores denote a decline in motor 
functioning. In a similar fashion, we also calculated the changes in subscores of MDS-UPDRS-III such as rigidity, 
bradykinesia, gait and postural instability, postural-kinetic tremor, and resting tremor17. For instance, rigidity 
change scores (Δ rigidity) were calculated by subtracting each patient’s baseline rigidity subscore (item 3.3 on 
MDS-UPDRS-III) from their 48-month rigidity subscore. We tested whether MGMV could predict changes in 
motor outcome using multiple linear regression models covaried for age and sex. The effect size of the regression 
model was reported using Cohen’s f2 25. All analyses were performed using R software (version 4.1.2, https://​
www.r-​proje​ct.​org/). We applied the Bonferroni correction to account for multiple comparisons, encompassing 
both the overall motor changes and the five subscores. To achieve statistical significance, a threshold of P < 0.008 
(0.05 divided by 6) was considered.

Supervised machine learning for classification
We observed that MGMV could predict the motor progression in patients with PD (detailed in the results section). 
So, we explored if we could develop a machine learning model capable of classifying patients based on the rate of 
progression of their motor symptoms. We categorized the patients into two groups, "slower progressors" (SP) and 
"faster progressors" (FP), based on the median value of ∆ (MDS-UPDRS-III) = 9. Horvath et al. defined a minimal 
clinically important difference threshold of 4.63 for worsening of motor symptoms over a median interval of 
6 months26. Thus, the median value of 9 in this fairly early stage population may also be clinically meaningful. 
The Scikit-learn package of Python was used to develop the classifier27. To classify the patients, we used a sup-
port vector machine (SVM) classifier with a radial basis function kernel. The features used for developing the 
SVM classifier were MGMV, age, gender, and MDS-UPDRS-III at baseline; these features were standardized using 
StandardScalar, SKLearn (a ML library for Python), by removing the mean and scaling to unit variance. Among 
the eighty eight patients, forty six patients had a ∆ (MDS-UPDRS-III) ≤ 9 and were labeled as “0,” representing 
SP, and the rest (n = 42) with a ∆ (MDS-UPDRS-III) > 9 were labeled as “1,” representing FP. The data was split 
into training (70%, n = 61) and testing (30%, n = 27) datasets using the train/test split function in SKLearn. The 
testing dataset (n = 27) was held back and not used until the SVM classifier was completely trained using the 
training set (n = 61). The SVM classifier was fine-tuned by implementing GridSearchCV (a function in SKLearn 
for finding the optimal values for the hyperparameters of the classifier). To select the best set of parameters for 
the classification, the SVM classifier was trained with a ten-fold cross-validation. Finally, the performance of the 
SVM classifier was tested on the testing dataset, and the accuracy and area under the receiver operating charac-
teristic curve (AUC) with specificity and sensitivity were reported. Accuracy was computed using the formula 
(TP + TN) / (TP + TN + FP + FN), where true positives (TP) represent correct predictions of "SP," False Positives 
(FP) signify cases where "SP" was incorrectly predicted as "FP," False Negatives (FN) denote instances where "FP" 
was inaccurately predicted as "SP," and True Negatives (TN) indicate accurate predictions of "FP." Additionally, 
sensitivity was calculated as TP / (TP + FN) and specificity as TN / (TN + FP).

MGMV =

√

(s − µ)τ · C−1
· (s − µ)

https://github.com/rpomponio/neuroHarmonize
https://github.com/rpomponio/neuroHarmonize
https://www.r-project.org/
https://www.r-project.org/
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Results
Clinical and demographic data were as displayed in Table 1, with no significant differences between PD and HC 
at baseline in age (t = 0.90; P = 0.36) or sex distribution (χ2 = 0.05; P = 0.88). There was a significant increase in 
total MDS-UPDRS-III (t = 6.11; P < 0.001), as well as subscores such as rigidity (t = 4.20; P < 0.001), bradykinesia 
(t = 4.92; P < 0.001), gait and postural instability (t = 4.05; P < 0.001), and resting tremor (t = 3.75; P < 0.001) after 
48 months compared to the baseline in PD. Postural or kinetic tremor did not show any significant changes 
(t = 0.04; P = 0.96).

Group‑level gray matter volumetric changes associated with motor symptoms
We did not observe any significant correlations between harmonized GMVN of motor-specific ROIs and total 
MDS-UPDRS-III or subscores (bradykinesia, rigidity, gait and postural disturbances, resting or postural-kinetic 
tremor).

Prediction of motor symptom severity using patient‑specific multivariate gray matter volu‑
metric distance
In the multiple linear regression analysis, we included baseline MGMV as a predictor controlled for age and 
gender, with ∆ (MDS-UPDRS-III) as the outcome variable. In 88 patients with PD, MGMV at baseline signifi-
cantly predicted the rate of progression of motor symptoms (β (95% CI) = 5.10 (3.52 to 6.69), adjusted R2 = 0.33, 
P < 0.0001). Our result implies that a one-unit increase in MGMV at baseline reflects a corresponding change in 
the motor outcome, on average, by 5.10 points in 48 months. We also predicted the changes in subscores of 
MDS-UPDRS-III scores, namely., rigidity, bradykinesia, postural instability and gait, postural-kinetic tremor, 
and resting tremor. The results are shown in Table 2. The analysis revealed significant predictions for changes in 
rigidity, bradykinesia, gait, and postural instability (P < 0.008). Additionally, we observed a borderline level of 
significance for resting tremor (P = 0.03), while postural-kinetic tremor did not show a significant effect (P > 0.05).

Classification of patients based on their motor severity using SVM classifier
Given the finding that MGMV at baseline could predict motor severity, specifically, ∆(MDS-UPDRS-III) total 
with a large effect size (Cohen’s f2 = 0.49) in patients with PD, we next sought to examine if the patients could 
be differentiated as SP and FP using machine learning. A SVM classifier was tested using MGMV, age, sex, and 
MDS-UPDRS-III at baseline as features with these 88 patients as train data, comprising 46 SP and 42 FP. The 
clinical and demographic characteristics of patients with PD identified as SP and FP for building the SVM clas-
sifier are shown in Table 3.

The accuracy of the SVM classifier for the classification of PD patients as SP and FP for the test data was 
89% when MGMV, age, gender, and MDS-UPDRS-III at baseline were used as features. The AUC value reached 
0.85 with a sensitivity and specificity of 87.50% and 90.91%, respectively. The confusion matrix (summarizing 
the prediction results) on the test data is shown in Fig. 1. A significant decrease in the model’s performance was 

Table 1.   Clinical and demographic data of the participants.

(Mean ± SD) Healthy controls (N = 120)

Patients with PD (N = 88)

Baseline 48 months

Age, years 61.46 ± 11.11 60.18 ± 9.38 64.18 ± 9.38

Gender (Male: Female) 80:40 60:28 60:28

MDS-UPDRS-III total – 19.69 ± 8.79 30.38 ± 13.81

Rigidity – 4.01 ± 2.76 6.05 ± 3.60

Bradykinesia – 7.93 ± 4.49 12.11 ± 6.56

Postural instability and gait – 0.66 ± 0.72 1.48 ± 1.75

Postural or Kinetic tremor – 1.59 ± 1.47 1.60 ± 1.81

Resting tremor – 2.16 ± 2.07 3.65 ± 3.08

Table 2.   Linear regression model of MGMV predicting changes in motor scores.

Changes in motor scores (∆) β (95% CI) R2 P Cohen’s f2 Effect size

MDS-UPDRS-III total 5.10 (3.52–6.69) 0.33 < 0.0001 0.49 Large

Rigidity 0.85 (0.34–1.36) 0.11 0.005 0.12 Small

Bradykinesia 2.26 (1.47–3.04) 0.26 < 0.0001 0.35 Large

Postural instability and gait 0.46 (0.23–0.68) 0.18 0.0001 0.22 Medium

Postural-kinetic Tremor − 0.11 (− 0.43–0.22) − 0.02 0.72 – –

Resting Tremor 0.55 (0.15–0.95) 0.07 0.03 0.08 Small
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observed when either MGMV alone or clinical data alone (including age, gender, and MDS-UPDRS-III at baseline) 
were employed as features, as illustrated in Table 4.

Discussion
In the present study, we first demonstrated that group-level GMV reductions at baseline were not associated 
with changes in motor scores. Second, we introduced a patient-specific summary score capturing the GMV 
heterogeneity of 40 motor-specific GMV into a single score using MD (MGMV) that significantly predicted the 
rate of progression of motor symptoms in patients with PD. Finally, we classified the patients as SP and FP with 
higher accuracy using the SVM classifier. Thus, we developed a promising structural MRI-based biomarker for 
predicting the rate of progression of motor symptoms and classifying patients based on motor symptom severity.

The underlying pathology of PD involves degeneration of dopaminergic neurons in the substantia nigra, 
neuroinflammation, and the accumulation of misfolded α-synuclein proteins as Lewy bodies and neurites in 
multiple brain regions9,28,29. These processes can result in the alteration of brain morphology and functions. When 
we conducted group-level volumetric analysis, we found no evidence of a connection between GMV and the 
overall as well as subscores of motor symptoms as assessed by the MDS-UPDRS-III in patients with PD. Previous 
studies on the relationship between GMV and motor symptoms yielded contradictory results12–14,30. For exam-
ple, Li et al. reported a negative association between rigidity and the striatum, as well as an inverse relationship 

Table 3.   Demographic, and clinical characteristics of patients with Parkinson’s disease identified as slower 
progressors and faster progressors for building the support vector machine classifier.

Slower progressors (N = 46) Faster progressors (N = 42) p/χ2

Age 59.75 ± 9.05 60.43 ± 9.81 0.66

Sex (male: female) 27: 19 33: 9 0.06

MDS-UPDRS-III at baseline 22.41 ± 9.04 16.71 ± 7.55 0.002

MDS-UPDRS-III at 48 months 24.32 ± 10.68 37.00 ± 13.91 < 0.0001

Figure 1.   Confusion matrix depicting the performance of an SVM classifier trained to identify slower and 
faster progressors in test data (n = 27). True positives represent correct predictions of "slow progressors." 
False positives represent cases where "slow progressors" were incorrectly predicted as "fast progressors." False 
negatives denote instances where "fast progressors" were inaccurately predicted as "slow progressors." True 
negatives indicate accurate predictions of "fast progressors".

Table 4.   Performance of a support vector machine classifier with different sets of features as input.

Features Accuracy Sensitivity (%) Specificity (%) AUC​

MGMV, Age, Sex, MDS-UPDRS-III at baseline 89 87.50 90.91 0.85

MGMV 67 80.00 58.82 0.63

Age, Sex, MDS-UPDRS-III at baseline 70 76.92 64.28 0.71
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between axial symptoms and the left precentral cortex 14,30, while others did not observe such correlations12,31. 
These inconsistencies could be due to the variability in the methodology, the statistical evaluation, or the het-
erogeneity of the patient group. If there is a high level of inter-subject variability (i.e., different brain regions 
are involved in the different PD patients), then the group-level analyses fail to detect the overall effect for each 
brain region, which can hinder our understanding of the pivotal role of the brain region(s) in PD pathogenesis. 
Therefore, identification of a novel metric that can capture the subtle changes in the brain regions in individual 
patients is necessary to understand the pathology.

Here we present a patient-specific summary score of GMV heterogeneity in individual patients using 
Mahalanobis distance (MGMV). MD is a promising multivariate statistical approach that combines information 
from numerous brain regions into a single measure, and its application has been successful in traumatic brain 
injury, epilepsy, and autism32–36. MGMV describes the individual GMV heterogeneity by comparing one patient 
against a group of healthy controls. Hence, the larger the distance, the farther the patient is from the healthy 
control distribution. A novel finding of this study was that MGMV at baseline significantly predicted the rate of 
progression of motor symptoms measured using the MDS-UPDRS-III. Specifically, a higher MGMV (reflecting 
greater gray matter atrophy in the motor-relevant ROIs) was associated with more severe motor symptoms. 
Furthermore, it also predicted changes in the cardinal motor symptoms of PD, such as rigidity, bradykinesia, 
and postural instability and gait. MGMV also showed borderline significance for resting tremor (P = 0.03) but not 
for postural-kinetic tremor. PD tremor occurs most frequently at rest, and to a lesser degree with posture and 
action whereas postural-kinetic predominant tremor is a distinguishing feature of other tremor disorders such as, 
essential tremor (ET)37. Both ET and PD tremor are associated with tremulous activity in the cerebello-thalamo-
cortical circuit, but with distinct pathophysiological mechanisms38. Specifically, striatal dopaminergic depletion 
triggers the increased activity in the cerebello-thalamo-cortical circuit in PD tremor, whereas in ET, GABAergic 
dysfunction in the cerebellar dentate nucleus and brain stem triggers the tremulous activity in the circuit39. To the 
best of our knowledge, this is the first study to report the predictions of motor outcomes using MGMV. However, 
given the borderline significance observed in the prediction of resting tremor, it is essential to interpret this 
preliminary finding cautiously and seek replication in future studies before drawing definitive conclusions. We 
hope that we provided a starting point to consider MGMV as a candidate imaging prognostic biomarker for PD, 
and in the future, it would be interesting to explore its prognostic value in other movement disorders.

Predicting whether a patient is likely to have less severe or more severe motor symptoms can revolutionize 
clinical decision-making. We utilized SVM classifier to discriminate between patients with SP and FP of motor 
symptoms. The discriminating ability of our SVM classifier to correctly identify patients as SP and FP was con-
firmed with an accuracy of 89% and an excellent AUC of 0.85 using MGMV and clinical data as input features. 
With the higher accuracy of our classifier on the test data, our models’ ability to accurately stratify patients 
according to their motor outcomes is very promising, and it may act as a useful prognostic classifier in clinics.

However, an essential insight emerged when we used either MGMV alone or clinical data alone as features in 
our analysis, leading to a significant reduction in the classifier’s accuracy. Specifically, in the case of MGMV, the 
accuracy dropped from 89 to 67%, while for clinical data, it decreased to 70%. These initial findings underscore 
the crucial importance of integrating clinical variables with MGMV. This fusion not only improved model perfor-
mance but also enabled more accurate predictions to be made.

Our study has a few limitations. First, PD exhibits both motor and non-motor symptoms40. The present 
study focused on the utility of MGMV derived from motor-specific ROIs in predicting and classifying patients 
based on motor symptoms. In the future, we will interrogate the capability of the multivariate method (MD) to 
predict non-motor symptoms using ROIs specific to each non-motor symptom. Second, as mentioned in the 
methodology, there is no standard criteria for classifying SP or FP in the PD literature. Therefore, we followed the 
most common approach, “median splits”41,42 to categorize these patients as SP and FP for developing a machine 
learning classifier. Even though median splits could be used as a separation point, the marginal samples close 
to the median may fall in the incorrect group. An alternative solution was to select the first and third quartiles; 
however, this could significantly lower our small sample size (from n = 88 to n = 47) for classification and could 
lead to potentially spurious results43. Therefore, our SVM classifier results warrant further evaluation in a larger 
sample. Third, the present study evaluated the clinical utility of MGMV in predicting relatively long-term changes 
in motor symptoms derived from two time points (baseline and at 48 months). Continuing work to evaluate 
the clinical utility of MGMV in predicting motor outcomes in prospective and longitudinal data will be necessary 
to determine its effectiveness. Lastly, MDS-UPDRS-III scores were used for measuring the severity of motor 
symptoms. These scores are subjective and are prone to a considerable amount of inter-subject variability44,45. In 
the future, reliable scores that provide more precise measurements46–48 of the motor symptoms must be tested 
to improve the clinical relevance.

In summary, we developed a structural MRI-based biomarker to predict the rate of progression of motor 
symptoms and classify patients based on motor symptom severity. Our findings are an important step towards 
implementing a novel imaging biomarker for the personalized treatment of Parkinson’s disease. Future research 
should focus on the reproducibility of this imaging biomarker to ascertain its effectiveness in clinical practice.

Data availability
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