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Prediction of gestational diabetes 
mellitus using machine learning 
from birth cohort data of the Japan 
Environment and Children’s Study
Masahiro Watanabe 1*, Akifumi Eguchi 1, Kenichi Sakurai 2, Midori Yamamoto 1, 
Chisato Mori 1,3 & The Japan Environment Children’s Study (JECS) Group *

Recently, prediction of gestational diabetes mellitus (GDM) using artificial intelligence (AI) from 
medical records has been reported. We aimed to evaluate GDM-predictive AI-based models using 
birth cohort data with a wide range of information and to explore factors contributing to GDM 
development. This investigation was conducted as a part of the Japan Environment and Children’s 
Study. In total, 82,698 pregnant mothers who provided data on lifestyle, anthropometry, and 
socioeconomic status before pregnancy and the first trimester were included in the study. We 
employed machine learning methods as AI algorithms, such as random forest (RF), gradient boosting 
decision tree (GBDT), and support vector machine (SVM), along with logistic regression (LR) as a 
reference. GBDT displayed the highest accuracy, followed by LR, RF, and SVM. Exploratory analysis of 
the JECS data revealed that health-related quality of life in early pregnancy and maternal birthweight, 
which were rarely reported to be associated with GDM, were found along with variables that were 
reported to be associated with GDM. The results of decision tree-based algorithms, such as GBDT, 
have shown high accuracy, interpretability, and superiority for predicting GDM using birth cohort data.

Gestational diabetes mellitus (GDM) is the glucose intolerance that is first recognized during pregnancy. GDM 
is a common complication during pregnancy, affecting up to 15% of pregnant women worldwide, affecting both 
maternal and fetal status, and causing perinatal complications, including stillbirth, premature delivery, macroso-
mia, fetal hyperinsulinemia, and clinical neonatal hypoglycemia1. Fetuses exposed to a hyperglycemic environ-
ment have a higher risk of developing chronic diseases, such as obesity, diabetes, and cardiovascular disease2–5. 
Mothers are more likely to be diagnosed with GDM at 24–28 weeks of gestation. However, early interventions 
for GDM are effective in reducing its impact on mothers and fetuses6.

Diagnostic technology using artificial intelligence (AI) for disease evaluations has shown the equivalent per-
formance to that of clinicians, depending on the intended use and combination of AI algorithms7. These results 
come from the application of several characteristic types of AI algorithms. For example, deep learning is effective 
for unstructured data (e.g., images or sound data)8. Actually, deep learning has a variety of training models in 
the fields of image, natural language, and audio data. However, Grinsztajn et al. reported that they are inferior 
to decision tree-based models for tabular data9. Because of problems with the interpretability of the model and 
results, this study considered other methods.

Other algorithms included support vector machine (SVM), random forest (RF), and the gradient boosting 
decision tree (GBDT), which are effective for database and other structured data10–12. These diagnostic tech-
nologies predict GDM with high accuracy13–15. However, the related studies used medical records as their data 
source16. Medical records provide accurate medical histories and conditions along with several blood test results 
obtained during pregnancy13,14. In contrast, birth cohort data, including information on lifestyle and living 
environment that is not typically included in medical records, are used for only a few AI studies examining the 
accuracy and efficacy of GDM prediction15,16. Birth cohort data include lifestyle and social factors, depending on 
the purpose of the survey17,18. A recent study reported that the modifiable risk factors for GDM during pregnancy 
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include excessive weight gain, lifestyle behaviors, and poor mental health19. Analyzing a combination of medi-
cal records and lifestyle or living environment data can provide comprehensive evaluations of GDM prediction. 
Additionally, if lifestyle and living environment have a high impact on predictive accuracy, interventions target-
ing these factors or diagnostic algorithms considering these parameters may lead to early GDM prediction and 
prevention, thereby reducing GDM exacerbation and morbidity. Recently, a systematic review of the relationship 
between diet and physical activity and GDM has been reported20. In this report, the authors report that pre-preg-
nancy or early pregnancy intervention is effective in preventing GDM. This suggests that intervention can prevent 
GDM if it can be predicted at an early stage. For this purpose, it is important to investigate whether there are other 
factors in addition to the ones that are already reported that are predictive of GDM. The Japan Environment and 
Children’s Study (JECS) (2011–2014), a large birth cohort study, recruited participants from 15 Regional Centres 
in Japan. It enrolled pregnant women and collected a wide range of information (e.g., living environment and 
lifestyle factors) to reveal the environmental factors affecting children’s health and development17,18. Investigations 
using the JECS data have shown significant associations between GDM and various specific lifestyle factors (e.g. 
social capital)21. These were the projects that examined the relationship between limited variables and GDM. 
However, no study involved AI application to assess the relationship between GDM and comprehensive maternal 
data from a large cohort. Therefore, we aimed to evaluate the accuracy, predictive value, and utility of each AI 
algorithm in developing a GDM prediction model, and explore the factors contributing to GDM development 
using structured data, various parameters, and large data from the JECS.

Results
Of the 103,060 JECS cohort participants, excluding those not suitable for analysis, there were 82,698 partici-
pants. Of these, 624 were GDM in groups with a past history of GDM (GDM-PH(+)) and 82,074 were GDM in 
groups without a past history of GDM (GDM-PH(−)). Table 1 shows characteristics of the pregnant women. The 
incidence of GDM according to the study data was 2.7%. The incidence of GDM-PH(+) and GDM-PH(−) was 
52.3% and 2.7%, respectively. The number of weeks at the time of completion of the Maternal questionnaire at 
study enrollment for GDM-PH(+) and GDM-PH(−) was 14.88 weeks and 13.99 weeks, respectively.

The results of comparing the predictive accuracy of each algorithm are shown in Table 2. In the SVM model, 
overfitting occurred in both datasets; these overfitted models classified all input data as non-GDM. The results 
of the RF and LR models for the GDM-PH(+) group showed an area under the receiver operating characteristic 
curve (AUC) of 0.52 (95% CI 0.43–0.61) and 0.56 (95% CI 0.46–0.67), respectively. In the GBDT model for 
the GDM-PH(+) group, the performance were as follows: AUC = 0.67 (95% CI 0.57–0.75) and True Positive 
Rate (TPR) = 0.52 (95% CI 0.15–0.68). In contrast, the TPR of the RF and LR models for GDM-PH(−) mothers 

Table 1.   Baseline characteristics of the study population. BMI body mass index, GDM gestational diabetes 
mellitus, GDM-PH(+) past history of GDM, GDM-PH(−) no past history of GDM, SD standard deviation.

All GDM-PH(+) GDM-PH(−)

Number 82,698 624 82,074

Number of weeks at time of completion of maternal questionnaire at study 
enrollment(weeks) (mean, SD) 13.99 4.26 14.89 3.54 13.99 4.26

Age (year) (mean, SD) 30.77 4.97 32.93 4.66 30.76 4.96

Height (cm) (mean, SD) 158.13 5.35 157.41 5.39 158.14 5.35

Pre-pregnancy weight (kg) (mean, SD)s 53.12 8.84 60.42 13.85 53.06 8.77

Pre-pregnancy BMI (kg/m2) (mean, SD) 21.23 3.29 24.35 5.33 21.20 3.25

Maternal active smoking during pregnancy

 Never (N, %) 48,302 58.41 317 50.80 47,985 58.47

 Previously did, but quit before realizing current pregnancy (N, %) 19,637 23.75 204 32.69 19,433 23.68

 Previously did, but quit after realizing current pregnancy (N, %) 10,541 12.75 68 10.90 10,473 12.76

 Currently smoking (N, %) 3670 4.44 30 4.81 3640 4.44

Maternal drinking during pregnancy

 Never (N, %) 28,720 34.73 227 36.38 28,493 34.72

 Previously did (N, %) 45,659 55.21 324 51.92 45,335 55.24

 Currently drinking (N, %) 8012 9.69 71 11.38 7941 9.68

Educational background

 Junior high school (N, %) 3610 4.46 38 6.19 3572 4.44

 High school (N, %) 25,230 31.15 216 35.18 25,014 31.12

 Technical junior college (N, %) 1317 1.63 16 2.61 1301 1.62

 Technical/vocational college (N, %) 18,772 23.18 124 20.20 18,648 23.20

 Associate degree (N, %) 14,385 17.76 101 16.45 14,284 17.77

 Bachelor’s degree (N, %) 16,483 20.35 107 17.43 16,376 20.37

 Graduate degree (N, %) 1192 1.47 12 1.95 1180 1.47

GDM during pregnancy (N, %) 2253 2.72 307 49.20 1946 2.37
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were zero due to overfitting. In the GBDT model for the GDM-PH(−) group, the performance were as follows: 
AUC = 0.74 (95% CI 0.71–0.77) and TPR = 0.01(95% CI 0.00–0.02).

For the GDM-PH(−) group, wherein overfitting occurred frequently, the results of changing the sampling 
methods are shown in Table 3. The results obtained using the SVM model did not change, even after altering 
the sampling methods. However, the results of undersampling in the RF model improved; the TPR increased to 
0.18 (95% CI 0.14–0.22). The TPR also improved in both undersampling and oversampling in the GBDT and 
LR models as follows: undersampling in GBDT, 0.35 (95% CI 0.34–0.38); oversampling in GBDT, 0.21 (95% CI 
0.16–0.27); undersampling in LR, 0.24 (0.17–0.30); and oversampling in LR, 0.23 (0.17–0.28). Following changes 
in sampling methods, undersampling showed higher accuracy than oversampling in the GBDT, LR, and RF 
models (except the SVM models).

Using GBDT modeling for GDM-PH(−) group, the relationship between TPR, false-positive rate (FPR), and 
change in AUC on altering the risk threshold is shown in Fig. 1. When the risk threshold was reduced, the TPR 
increased faster than the FPR. The AUC yielded a unimodal graph with a maximum value of 0.66 when the risk 
threshold was 0.025. In other models, the probability of GDM occurrence was zero in most input data due to 
overfitting; thus, altering the risk threshold was ineffective.

Variables with high variable importance (VIP) identified in the analysis of the GBDT model without changing 
the sampling methods are shown in Table 4. Variables with high VIP in the GDM-PH(−) group included HbA1c 
levels, BMI before pregnancy, and maternal age. Variables with high VIP in the GDM-PH(+) group included 
triglyceride levels, platelet count, and firstborn child’s birth year. SHAP (SHapley Additive exPlanation) summary 
plot (Mean (|SHAP Value|) is shown in Fig. 2a. Variables with high Mean (|SHAP Value|) in the GDM-PH(+) 
group included number of previous deliveries, 1st born child’s birth year, and BMI before pregnancy. Figure 2b 
shows variables with a high Mean (|SHAP Value|) in the GDM-PH(−) group, including maternal age, HbA1c 
levels, and BMI before pregnancy.

Table 2.   AUC, TPR, and FPR for the training dataset in various algorithms. AUC​ area under the receiver 
operating characteristic curve, CI confidence interval, GDBT gradient boosting decision tree, GDM gestational 
diabetes mellitus, GDM-PH(+) past history of GDM, GDM-PH(−) no past history of GDM, LR logistic 
regression, RF random forest, SVM support vector machine.

GDM-PH(+) (N = 624) GDM-PH(−) (N = 82,074)

AUC​ TPR (%) FPR (%) AUC​ TPR (%) FPR (%)

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

SVM 0.51 (0.45–0.59) 0.37 (0.00–1.00) 0.36 (0.09–0.98) 0.50 (0.50–0.50) 0.0 0.0 0.0 0.0

RF 0.52 (0.43–0.61) 0.46 (0.30–0.62) 0.42 (0.26–0.59) 0.50 (0.50–0.50) 0.0 0.0 0.0 0.0

GBDT 0.67 (0.57–0.75) 0.52 (0.15–0.68) 0.37 (0.15–0.52) 0.74 (0.71–0.77) 0.01 (0.00–0.02) 0.0 0.0

LR 0.56 (0.46–0.67) 0.55 (0.40–0.70) 0.45 (0.30–0.60) 0.67 (0.64–0.70) 0.0 0.0 0.0 0.0

Table 3.   Result of resampling for the GDM-PH(−) group. AUC​ area under the receiver operating 
characteristic curve, CI confidence interval, GDBT gradient boosting decision tree, GDM gestational diabetes 
mellitus, GDM-PH(+) past history of GDM, GDM-PH(−) no past history of GDM, LR logistic regression, RF 
random forest, SVM support vector machine.

AUC​ TPR (%) FPR

Mean 95% CI Mean 95% CI Mean 95% CI

GDM-PH(−) (N = 82,074)

 SVM

  Undersampling 0.50 (0.50–0.50) 0.00 (0.00–0.00) 0.00 (0.00–0.00)

  Oversampling 0.50 (0.50–0.50) 0.00 (0.00–0.00) 0.00 (0.00–0.00)

 RF

  Undersampling 0.57 (0.55–0.59) 0.18 (0.14–0.22) 0.04 (0.04–0.05)

  Oversampling 0.50 (0.50–0.50) 0.00 (0.00–0.00) 0.00 (0.00–0.00)

 GBDT

  Undersampling 0.64 (0.63–0.65) 0.35 (0.34–0.38) 0.08 (0.07–0.10)

  Oversampling 0.59 (0.57–0.62) 0.21 (0.16–0.27) 0.03 (0.02–0.04)

 LR

  Undersampling 0.57 (0.55–0.60) 0.24 (0.17–0.30) 0.09 (0.07–0.11)

  Oversampling 0.57 (0.55–0.60) 0.23 (0.17–0.28) 0.08 (0.06–0.10)
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Figure 1.   Changes in true-positive rate and false positive rate by differences in risk thresholds in GBDT. AUC​ 
area under the receiver operating characteristic curve, GDBT gradient boosting decision tree.

Table 4.   Variable importance, top 20 in GBDT, and mean and SD of each variable. BMI body mass index, 
GDBT gradient boosting decision tree, GDM gestational diabetes mellitus, GDM-PH(−) no past history of 
GDM, GDM-PH(+) past history of GDM, HDL-Cholesterol High Density Lipoprotein-Cholesterol, SD standard 
deviation, SF-8 MCS SF-8 mental component summary, SF-8 PCS SF-8 physical component summary.

VIP rank

GDM-PH(+) GDM-PH(−)

N

GDM Non-GDM

N

GDM Non-GDM

Mean SD Mean SD Mean SD Mean SD

1 Triglyceride (mg/dL) 608 157.3 63.4 141.7 58.9 HbA1c (%) 79,752 5.2 0.4 5.0 0.3

2 Platelet count (*104/μL) 606 26.6 5.6 25.3 5.2 Pre-pregnancy BMI (kg/m2) 82,036 23.5 5.0 21.1 3.2

3 1st born child’s birth year (year) 526 2007.9 3.8 2008.6 3.7 Maternal age (year) 82,055 33.1 4.9 30.7 5.0

4 HDL-cholesterol (mg/dL) 608 72.0 12.3 76.1 14.5 Mother’s current weight (kg) 80,454 59.6 13.0 53.9 9.1

5 Number of previous deliveries 
(times) 620 1.1 0.9 1.4 0.9 Mother’s birth weight (g) 72,919 3037.8 437.9 3091.8 415.7

6 Age at first pregnancy (year) 548 27.6 5.8 27.3 5.6 1st pregnancy birth weight (g) 37,548 3045.9 507.7 2982.4 441.6

7 1st pregnancy birth weight (g) 402 3055.0 549.1 3100.5 540.9 Triglyceride (mg/dL) 79,841 148.7 70.8 129.6 56.6

8 Red blood cell count (*104/μL) 606 414.1 38.2 410.6 37.1 Platelet count (*104/μL) 79,627 26.2 5.6 24.8 5.1

9 Pre-pregnancy BMI (kg/m2) 624 25.5 5.7 23.3 4.7 Phospholipid (mg/dL) 79,841 242.5 34.4 235.0 33.6

10 Hematocrit (%) 606 36.8 2.9 36.7 2.6 Hematocrit (%) 79,627 36.8 2.8 36.0 2.7

11 Hemoglobin (g/dL) 606 12.2 1.1 12.2 0.9 Mean cell hemoglobin (pg) 79,627 29.9 2.0 29.9 1.9

12 1st pregnancy Age of mother at the 
delivery 470 28.0 6.0 27.9 5.2 SF-8 MCS 80,708 46.1 7.3 46.0 7.3

13 Mother’s current weight (kg) 616 63.0 14.2 58.5 12.1 SF-8 PCS 80,708 44.4 7.7 44.9 7.4

14 SF-8 MCS 613 45.7 7.4 46.5 7.0 Hemoglobin (g/dL) 79,627 12.3 1.0 12.0 1.0

15 Weeks of pregnancy at the time of 
enrollment (week) 384 13.8 3.4 12.9 3.1 Urinary creatinine (mg/dL) 79,822 106.3 66.5 100.2 62.1

16 White blood cell (/μL) 606 8403.3 1951.1 8044.1 2013.1 Monocyte (%) 79,626 4.7 1.3 4.8 1.3

17 Lymphocytes (%) 606 19.7 5.2 19.9 5.3 Eosinophil (/μL) 79,626 1.7 1.4 1.9 1.6

18 SF-8 PCS 613 44.5 7.1 44.5 7.8 Weeks of pregnancy at the time of 
enrollment 51,007 12.4 3.2 12.4 3.3

19 Mean corpuscular hemoglobin 
concentration (%) 606 33.0 1.1 33.2 1.0 Neutrophile (%) 79,626 74.5 5.6 73.9 6.2

20 Eosinophil (/μL) 606 1.6 1.2 1.8 1.3 Year of measuring height and 
weight 80,045 2012.4 0.9 2012.4 0.9
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Discussion
We compared four machine learning methods to improve GDM prediction models based on a large birth cohort. 
GBDT exhibited the highest accuracy, followed by LR, RF, and SVM. Without changing the sampling methods, 
overfitting occurred upon the use of all algorithms except for GBDT for GDM-PH(−). The accuracy for GDM 
prediction of all algorithms, except for SVM, improved without overfitting using undersampling or oversampling. 
Changing the risk thresholds improved the accuracy of GBDT.

Furthermore, GBDT results were more accurate than the existing method wherein LR used only maternal 
age, pre-pregnancy BMI, and laboratory results of specimens (see Supplementary Table S1 online). This could 
be because variables useful for GDM prediction can be increased using JCES data and GBDT can construct the 
boundary surface non-linearly.

a

b

Figure 2.   (a) SHAP summary plot for GDM-PH(+) (top 20 values) (b) SHAP summary plot for GDM-PH(−) 
(top 20 values). BMI body mass index, GDM gestational diabetes mellitus, GDM-PH(+) past history of GDM, 
GDM-PH(-) no past history of GDM.
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There were some differences in variables important for predicting GDM in the GBDT model between the 
GDM-PH(+) (recurrent GDM) and GDM-PH(−) (new-onset GDM) groups. Thus, differences in VIP between 
recurrent GDM and new-onset GDM in JECS data were not based on parity.

The RF, GBDT, and SVM algorithms used are reportedly effective for structured data; thus, we compared them 
to determine the most appropriate one for the JECS data. For the GDM-PH(+) group, overfitting occurred in the 
data in the SVM model. Other algorithms yielded stable results without overfitting. For the GDM-PH(−) group, 
overfitting occurred in the data of all models, except for the GBDT model. Owing to the exploratory approach 
for predicting GDM, the data set used here was unique because it included many variables that do not affect 
GDM. Those noisy data cause compounding negative effects on generalizability and overfitting22. Imbalanced 
datasets often result in an overfitted model to achieve high classification accuracy23. The GDM-PH(+) group 
(N = 624) had a much smaller sample size than the GDM-PH(−) group (N = 82,074). Both groups included many 
variables that did not affect GDM. However, the ratio of the GDM and non-GDM groups were almost similar 
in the GDM-PH(+) group. Furthermore, the GDM-PH(−) group had a very low incidence of GDM (2.8%). In 
the SVM model, the problems related to many variables that do not improve the predictability negatively affect 
the analysis. SVM extracts records near the boundary surface as support vectors and creates a discrimination 
surface using only support vectors10. Thus, SVM can reduce the number of records used for analysis. However, 
SVM is not an algorithm to properly select variables from a large number of variables. Therefore, the choice of 
support vectors in our study was inappropriate, possibly leading to overfitting.

In contrast, RF and GBDT models use decision tree algorithms. The decision tree requires repeated binary 
decision-making. Therefore, variables that do not included the predictability of GDM are not included in the 
decision tree11,12. Therefore, decision tree algorithms are highly robust to data with many variables. In the RF 
algorithm, random sampling of the training dataset is performed as the first step to create multiple datasets11. Sub-
sequently, the RF algorithm creates a decision tree model for each dataset to predict results by the majority rule. 
Sampling datasets from the GDM-PH(−) group using this particular algorithm may not ensure model diversity 
generated by random sampling, possibly leading to overfitting. In the GBDT model, hyperparameter optimization 
is performed using gradient descent before the start of each subsequent training session12. Therefore, unlike the 
RF model, the decision tree in the GBDT model may be trained while reducing the bias between the case and 
control groups. However, the TPR was not high even in the GBDT model (the only model without overfitting).

As in this study, the development of prediction models using data with a low case-to-control ratio requires 
adjustment of the sample size of the training data by changing the sampling method24. The TPRs of the RF, 
GBDT, and LR models were improved by changing the sampling method (Table 3). Undersampling could pre-
vent overfitting with excessive control data. However, in the SVM model, the accuracy of GDM prediction has 
not improved, possibly because changes in sampling methods do not solve the problem of multidimensional 
data with many variables that do not improve the predictability. Considering oversampling, the TPR improved 
slightly in the GBDT and LR models, but overfitting occurred in the RF model. The oversampling technique 
randomly duplicates data until the case-to-control ratio reaches a specific value; thus, this technique may not 
solve the problem of the RF model (i.e., model diversity). In contrast, in the LR model, imbalance corrections, 
including changes in sampling methods may even worsen model performance25. In this study, the method of 
changing the risk threshold was used for imbalance corrections without changing the sampling method. The 
JECS data were not designed to estimate imbalance correction; thus, it was not possible to evaluate such effects 
in this study. However, our study demonstrated the potential to improve TPRs while maintaining the FPR low 
by changing the thresholds (Fig. 1). Generally, lowering the risk threshold increases both the TPR and FPR, 
but setting an appropriate risk threshold for LR and GBDT enables imbalance corrections without changing 
the sampling method. For setting the risk threshold, Goorbergh et al. used two fixed values—the prevalence of 
malignancy in the training dataset and the default risk threshold of 0.5. However, in this study, when the risk 
threshold was varied from 0 to 0.5 in steps of 0.005, the AUC reached its maximum value at 0.025, as did the 
GDM prevalence at 0.027.

We performed an exploratory analysis of factors contributing to GDM using AI. Typically, our exploratory 
methods have the following disadvantages: (1) the results may be inappropriate depending on the AI algorithms 
used, and (2) due to the cost, increasing the number of participants to obtain enough variables that are acceptable 
for the exploratory analysis was difficult. However, using sufficient data, selecting appropriate algorithms, and 
comparing VIPs, it was possible to identify variables previously not associated with GDM and verify previously 
reported associated factors.

In this study, we predicted the development of GDM based on information that could be collected in the 
early stages of pregnancy. Mothers are more likely to be diagnosed with GDM at 24–28 weeks of gestation. In 
this study, the average date of completion of the collected questionnaires was 14–15 weeks, which is considered 
early enough to predict the diagnosis, even if considering the time between the blood collection and the results 
of the tests. In meta-analysis, protective association of physical activity (21–46%) from GDM when comparing 
any type of physical activity to none in either the pre-pregnancy or early pregnancy period20. If a high-risk group 
near the 1st trimester can be extracted, it may lead to GDM prevention.

In this study, 775 questions were used to predict the incidence of GDM. Obviously, it would not be practical 
to build a prediction model using all of these questions, as it would take a lot of time to enter the predictors. 
Therefore, it is important to screen out as many variables as possible that are important for prediction. In this 
study, two evaluation criteria, VIP and Mean (|SHAP value|), were used to select predictors. High VIP variables 
identified in this study are listed in Table 4. Previous GDM studies identified a history of GDM in previous 
pregnancies, maternal age, and obesity as risk factors for GDM26. Additionally, the effect of GDM on the inter-
pregnancy interval was reported27. The JECS data do not include the interpregnancy interval. Therefore, the 
firstborn child’s birth year was considered as an alternative variable. One study reported a significant difference 
in white blood cell count and platelet count between the GDM and non-GDM groups in the second trimester28. 



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17419  | https://doi.org/10.1038/s41598-023-44313-1

www.nature.com/scientificreports/

A meta-analysis showed a significant increase in lipid levels (e.g., triglyceride) in mothers with GDM in the first 
and second trimesters29. Variables that are reportedly associated with GDM in studies conducted before the JECS 
were also identified as factors with high VIP in this study. However, regarding urinary creatinine concentration, 
a study on the associations between urinary metals in early pregnancy and the subsequent risk of GDM reported 
no significant difference in urinary creatinine between GDM and non-GDM groups30. However, we revealed uri-
nary creatinine concentration with a higher VIP from the GDM-PH(−) group, especially the nulliparous group. 
Although the reason for this is unknown, it may be a surrogate indicator for some other factor, such as physique.

The items in the questionnaire administered at enrollment in this study include the 8-item Short-Form Health 
Survey (SF-8) items for health-related quality of life (HRQOL)31. Physical component summary and mental 
component summary were variables with high VIP regardless of the presence or absence of a history of GDM. 
Regarding GDM and HRQOL, a systematic review examining the short- and long-term progression of HRQOL 
and their association with GDM diagnosis was reported; GDM does not directly lead to reduced QOL in moth-
ers but causes some complicated interactions with psychological factors, resulting in reduced QOL32. The SF-8 
data in this study were collected before 22 weeks of gestation. Our study results suggest that mothers’ HRQOLs 
are related to the risk of GDM; thus, GDM further reduces HRQOL.

Recent studies examining the association between mothers’ birth weights and GDM revealed that mothers 
with low birth weights or macrosomia were at higher risk of GDM33. We identified mothers’ birth weights as 
factors with high VIP in the GDM-PH(−) group. Hales et al. reported a correlation between low birth weight 
and subsequent glucose intolerance34. GDM is mild glucose intolerance; thus, mothers with low birth weights 
may have an increased risk of GDM.

High Mean|SHAP| variables identified in this study are shown Fig. 2a,b. Although similar variables to the 
VIPs were found in the top 20, SF-8 MCS and SF-8 PCS were absent from the top 20 for both GDM-PH(+) and 
GDM-PH(−).On the other hand, the GDM-PH(+) group showed a new variable, chocolate and vitamin D intake 
from the dietary questionnaire, and the GDM-PH(−) group showed a new variable, supplement intake (folic 
acid). Both vitamin D and folic acid have been reported to have an association with GDM35,36.

Although variables including those already reported to be associated with GDM, such as these, were detected 
in this study, the AUC score of gradient boosting for those with GDM history (0.67) was below the acceptable 
minimum for clinical implication (0.70). But in the JECS study, we are currently analyzing maternal genetic data, 
which will be provided in the future. By re-constructing the model after taking these genetic backgrounds into 
account, we expect to improve the prediction accuracy.

This study has some limitations. First, in Japan, the diagnostic criteria of the Japanese Society of Obstetrics 
and Gynecology are used to determine GDM. But the JECS is a multi-region, multi-medical institution cohort 
study; GDM data were obtained from medical record transcripts; thus, we could not review in detail the diagnos-
tic criteria of GDM for the co-operating health care provider(s)21. Second, analysis in this study was performed 
considering information collected at the time of study enrollment. However, we did not consider the effects of 
other factors not identified in the JECS, especially genetic information and family history of diabetes mellitus. 
Third, information on diet was collected using self-administered questionnaires. Therefore, the results may 
not accurately reflect the actual food or nutrient intake. Fourth, the incidence of GDM in Japan is 7–13%37. 
However, the incidence of GDM in this study was 2.7%. This may indicate that the JECS included more health-
conscious mothers or favored low enrollment for high-risk pregnancies, leading to sampling bias. Fifth, the 
JECS was conducted in Japan, and most participants were Japanese. Thus, generalization to populations from 
other countries may be inaccurate because the JECS results consider the unique living environment and lifestyle 
in Japan. Finally, with the size of the JECS data, it is difficult to obtain predictions by physicians as an external 
evaluation. Studies combining the findings of this study (mother’s birth weight and psychological factors) with 
previously reported factors, including genes, are needed for more accurate prediction compared to prediction 
by other means, such as using genes.

In conclusion, we demonstrated that exploratory analysis using AI for a large birth cohort is possible through 
the appropriate use of algorithms. Algorithm comparison revealed high accuracy, interpretability, and superiority 
of decision tree-based algorithms, including GBDT considering datasets in this study. Further studies regard-
ing GDM prediction using AI are needed to improve the TPR by collecting other variables, including genetic 
information and family history of diabetes mellitus. Using exploratory analysis of the JECS data, we identified 
the importance of previously reported variables related to GDM and new variables, such as HRQOL in early 
pregnancy and mothers’ birth weights related to GDM.

Material and methods
Data sources
The JECS is a nationwide birth cohort study. The design of the JECS study is described elsewhere18. The eligibility 
criteria for participants in the JECS did not consider the presence or absence of disease. This study used the jecs-
ta-20190930 dataset, which was released in October 2019. The following data were identified from the dataset and 
used for analysis: maternal questionnaire data and dietary data from the survey administered at study enrollment 
(T1), medical record transcripts during pregnancy, child’s sex determined after delivery, laboratory results of 
specimens collected by 21 weeks of gestation, parental education and household income data collected during 
mid-late pregnancy, and parents’ birth weights (reported by the mother) after delivery. For the study outcome, 
GDM cases were defined as GDM during pregnancy per medical record transcripts. The maternal question-
naire included the Kessler Psychological Distress Scale (K6) as an indicator of psychological distress38, a short 
version of the International Physical Activity Questionnaire as an indicator of physical activity39,40, SF-8 Health 
Survey (SF-8) as an indicator of health-related quality of life31, and environmental exposures41. Food-intake and 
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nutrient-intake data were obtained from the food frequency questionnaires validated in the Japan Public Health 
Center-based Prospective Study for the Next Generation42.

Data preprocessing
The flow chart of the selection of participants is presented in Fig. 3. In this study, one pregnant woman with 
multiple fetuses is counted as one case. Of 103,060 pregnancies, the following were excluded from the present 
study: mothers with missing records on the diagnosis of GDM (N = 2375), mothers with a missing GDM history 
(N = 1960), and mothers who completed the T1 questionnaire at or after 22 weeks of gestation (N = 16,027). We 
followed 82,698 participants and observed 2253 pregnancies with GDM and 80,445 pregnancies without GDM. 
The recurrence rates of GDM were high43; thus, the remaining 82,698 pregnancies were divided as follows: (1) 
GDM in groups with a history of GDM (GDM-PH(+)) (N = 624) and (2) GDM in groups without a history of 
GDM (GDM-PH(−)) (N = 82,074).

As variables used to stratify this study, the history of GDM was reported in the T1 questionnaires. The qualita-
tive text response data from open-ended questions and original variables summarized as separate variables (e.g., 
K6 and SF-8) were excluded from the analysis of the questionnaire data. Due to the very low number of triplets, 
information on multiple births was classified into singleton and multiple pregnancies. The variables used are 
shown in Supplemental Table S2. Non-ordinal categorical variables (e.g., marriage status, maternal occupation, 
infertility treatment status, and drugs used during pregnancy) were converted to dummy variables. BMI before 
pregnancy was calculated using weight before pregnancy as weight (kg)/height2 (m2). The variables reporting 
time of day with separate hours and minutes were converted to hours (i.e., hours + minutes/60). Continuous 
variables were normalized.

Statistical analysis
The machine learning methods used in this study included SVM10 (which uses radial basis function [Gaussian] 
kernel), RF11, and GBDT12. LR44 was used as a reference.

All analyses were performed using python 3.8.5 in Jupyter Nortbook (Project Jupyter). Among the python 
libraries, scikit-learn 1.0.2 was used in the LR, SVM, and RF models; lightgbm 3.1.1 was used in the GBDT model; 
and imbalanced-learn 0.9.0 was used in undersampling and oversampling. The settings of the hyperparameters 
of these algorithms are shown in Table 5. SVM and LR do not accept datasets with missing data; thus, single 
imputation using mean substitution was performed. For cross-validation, our data were randomly divided into 
two groups with a ratio of 4:1, a training set, and a test set. To prevent overestimation from the use of imbal-
anced data, we used undersampling and oversampling methods, and the ratio of the GDM group to the non-
GDM group was set at 1:2. True-positive rate (TPR), calculated as true positive/(true positive + false negative), 
and false-positive rate (FPR), calculated as false positive/(false positive + true negative), were the parameters of 
GDM prediction across the models. The AUC was used for evaluating model accuracy. The risk threshold for 
GDM classification was set at 0.5. Changes in the TPR and FPR when the risk threshold was changed from 0 to 
0.5 step by 0.005 were examined.

Ethical approval
The JECS protocol was reviewed and approved by the Ministry of the Environment’s Institutional Review Board 
on Epidemiological Studies (approval no.: 100910001) and the Ethics Committees of all participating institutions; 
the Medical Support Centre (National Centre for Child Health and Development), and 15 Regional Centers 
(Hokkaido University, Tohoku University, Fukushima Medical University, Chiba University, Yokohama City 

The Japan Environment and Children's Study (JECS)

103,060 pregnancies

Missing data on GDM (N= 2 ,375)

Missing data on GDM history (N=1,960)

Questionnaires written after 22 weeks of gestation (N=16,027)

82,698

pregnancies

GDM past history ( + ): 

624

With GDM : 307

GDM past history ( - ): 

82,074

With GDM : 1946

Figure 3.   Flow chart showing the selection of the study population. GDM gestational diabetes mellitus.
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University, University of Yamanashi, University of Toyama, Nagoya City University, Kyoto University, Osaka 
University, Hyogo College of Medicine, Tottori University, Kochi University, University of Occupational and 
Environmental Health, and Kumamoto University). This study was conducted in accordance with the Helsinki 
Declaration and other nationally valid regulations and guidelines. In the JECS, written informed consent was 
obtained from all participants.

Data availability
Data were unsuitable for public deposition due to ethical restrictions and the legal framework of Japan. It is 
prohibited by the Act on the Protection of Personal Information (Act No. 57 of May 30, 2003, amendment on 
September 9, 2015) to publicly deposit data containing personal information. Ethical Guidelines for Medical 
and Health Research Involving Human Subjects enforced by the Japan Ministry of Education, Culture, Sports, 
Science and Technology and the Ministry of Health, Labour and Welfare also restrict the open sharing of epi-
demiologic data. All inquiries about access to data should be sent to: jecs-en@nies.go.jp. The person responsible 
for handling inquiries sent to this e-mail address is Dr. Shoji F Nakayama, JECS Programme Office, National 
Institute for Environmental Studies.
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