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Spin effects on transport 
and zero‑bias anomaly in a hybrid 
Majorana wire‑quantum dot 
system
Alexandre Huguet 1,2*, Kacper Wrześniewski 1* & Ireneusz Weymann 1

We examine the impact of spin effects on the nonequilibrium transport properties of a nanowire 
hosting Majorana zero-energy modes at its ends, coupled to a quantum dot junction with 
ferromagnetic leads. Using the real-time diagrammatic technique, we determine the current, 
differential conductance and current cross-correlations in the nonlinear response regime. We also 
explore transport in different magnetic configurations of the system, which can be quantified by the 
tunnel magnetoresistance. We show that the presence of Majorana quasiparticles gives rise to unique 
features in all spin-resolved transport characteristics, in particular, to zero-bias anomaly, negative 
differential conductance, negative tunnel magnetoresistance, and it is also reflected in the current 
cross-correlations. Moreover, we study the dependence of the zero-bias anomaly on various system 
parameters and demonstrate its dependence on the magnetic configuration of the system as well as 
on the degree of spin polarization in the leads. A highly nontrivial behavior is also found for the tunnel 
magnetoresistance, which exhibits regions of enhanced or negative values—new features resulting 
from the coupling to Majorana wire.

Topological states of matter are in the center of both theoretical and experimental research worldwide1–3, which is 
triggered by their unique features associated with protection, stemming from the system’s topology, against deco-
herence and noise4. In this respect, Majorana zero-energy modes (MZM) that appear at the ends of a quantum 
wire (Majorana wire), play a particularly important role5,6. Such modes constitute condensed-matter realizations 
of long-searched Majorana fermions7, and have been attracting a great attention due to possible applications in 
topological quantum computing8,9. In fact, MZMs exhibit non-Abelian statistical properties, which are forecast 
as a key feature for future topologically protected and decoherence-free qubits10,11. Conceptually, a Majorana wire 
can be realized in topological phase of a Kitaev chain, i.e. a tight-binding chain with triplet pairing8. Such chains 
can be implemented e.g. in topological superconducting nanowires with strong spin-orbit interaction subject 
to magnetic field12,13, or in one-dimensional spiral magnetization textures, where Majorana modes emerge in 
the absence of magnetic field14. The recent progress in experimental techniques and fabrication of Kitaev chains 
makes nowadays the investigations of MZMs even more appealing15–17.

The presence of Majorana modes gives rise to unique transport properties, with the zero-bias anomaly in 
the differential conductance of the device being one of the most important features18–21. An interesting twist 
arises when one explores transport properties of hybrid structures, in which Majorana wire is additionally cou-
pled to zero-dimensional systems, such as quantum dots (QDs)22–34. Transport characteristics of such hybrid 
quantum dots reveal then further distinctive properties, including fractional values of conductance, resulting 
from the leakage of Majorana modes into the dots and their half-fermionic nature29,35–37. We note that such half-
fermionic Majorana nature can be also revealed in thermodynamic properties of the system, namely through the 
entropy38–40, which provides further insight into the system’s behavior41–43. Here, however, we focus mainly on 
the transport spectroscopy, which provides a convenient tool to distinguish and validate the MZM presence in 
the system. In addition, further insight can be obtained from the studies of the shot noise and, in particular, the 
current cross-correlations44–47. Such cross-correlations in hybrid quantum dot-Majorana systems have already 
been studied in the case of nonmagnetic contacts48–52.
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Here, we extend those considerations to the case of spin-resolved tunneling caused by attaching the quantum 
dot to two separate ferromagnetic electrodes. We note that the considered setup is very similar to Cooper pair 
splitter geometries53, in which ferromagnetic leads have been shown to be crucial in detecting the entanglement 
between split Cooper pair electrons54,55. Although, here, instead of conventional superconductor, one has a 
nanowire with Majorana-like quasiparticles at its ends, the splitter geometry is still important, as the arrangement 
of magnetic moments of the electrodes provides additional tool to explore the signatures of leakage of MZMs 
into the quantum dot system.

In our considerations the focus is on the weak coupling regime between the ferromagnetic leads and the 
quantum dot, while the coupling to Majorana wire is arbitrary. In particular, we determine the transport charac-
teristics, such as the current, differential conductance, current cross-correlations, and tunnel magnetoresistance, 
for various parameters of the system in the nonlinear response regime. The calculations are performed with the 
aid of the real-time diagrammatic technique in the lowest-order expansion with respect to the coupling to nor-
mal leads56–58. Special attention is paid to the effects of spin-resolved tunneling on the transport behavior and, 
especially, on the zero-bias anomaly associated with the presence of MZM, which we explore for two different 
cases of biasing the system. For symmetrically biased device, we examine the current flowing to the Majorana 
wire, finding asymmetric behavior of the transport characteristics with respect to the bias voltage, with inverted 
tunnel magnetoresistance (TMR) in most of the transport regimes. On the other hand, for asymmetrically biased 
device, the focus is on transport to one of the ferromagnetic leads. In this case we find modified Coulomb dia-
monds, with zero-bias signatures of MZM and greatly modified TMR as compared to the bare quantum dot case. 
We also explore the impact of spin-resolved tunneling on zero-bias anomaly in the differential conductance and 
show that its magnitude strongly depends on the degree of spin polarization of the leads. Finally, we determine 
the cross-correlations between the currents flowing to the normal ferromagnetic electrodes. Our study provides 
a comprehensive understanding of spin effects on the nonlinear transport properties of Majorana-quantum dot 
systems with ferromagnetic leads and the zero-bias anomaly due to the presence of Majorana quasiparticles. We 
believe that our work shall foster further investigations of hybrid quantum dot-Majorana systems.

Results
Model and Hamiltonian
The considered hybrid system consists of a single-level quantum dot weakly coupled to two ferromagnetic leads 
and arbitrarily attached to a quantum wire hosting Majorana zero-energy modes at its ends, as shown in Fig. 1. 
It is further assumed that the quantization axis of MZM coincides with magnetizations of external ferromagnetic 
leads. Moreover, we assume that the magnetic moments of electrodes are collinear and can be found either in the 
parallel (P) or antiparallel (AP) magnetic configuration. We note that this assumption implies that the topologi-
cal phase of Majorana wire and the way it couples to the quantum dot is not affected by the change of magnetic 
configuration of the system. Such situation could be achieved by using e.g. local magnetic fields or ferromagnetic 
split-gates59,60. The considered system can be described by an extended Anderson impurity Hamiltonian of the 
following general form

(1)H = HLeads +HTun +HQD−Maj.
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Figure 1.   The schematic of the considered hybrid quantum dot-Majorana nanowire system. The quantum dot 
is coupled by VM to Majorana zero-energy mode at the end of the wire, described by γ , and weakly coupled to 
two ferromagnetic leads by the coupling constants Ŵσ

α . The energy of orbital level of quantum dot is denoted by 
ε , while U stands for the Coulomb correlations. We consider two different ways the system is biased: symmetric 
one when bias voltage is applied between the leads ( µL = µR = eV  ) and the Majorana wire and asymmetric one 
when µL = −µR = eV/2 . In all cases the Majorana wire is assumed to be grounded ( µS = 0 ). The magnetic 
moments of the leads are assumed to form either parallel or antiparallel magnetic configuration, as indicated.
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The leads are modeled as noninteracting quasiparticles, HLeads =
∑

α=L,R

∑

kσ εαkσ c
†
αkσ cαkσ . Here, εαkσ and 

c†
αkσ denote the single-particle energy and the fermionic creation operator, respectively, of an electron with spin 
σ momentum k in the left ( α = L ) or right ( α = R ) lead. The coupling between the reservoirs and the quantum 
dot is described by the tunneling Hamiltonian, HTun =

∑

α=L,R

∑

kσ (tαkσ c
†
αkσ dσ +H .c.) , with tαkσ being the 

relevant tunneling matrix elements and d†σ denoting the intra-dot fermionic creation operator for an electron of 
spin σ . The coupling of the dot to external leads gives rise to the broadening of quantum dot energy levels given 
by Ŵ =

∑

ασ Ŵσ
α , where Ŵσ

α denotes the coupling strength to the lead α for spin σ . Assuming the matrix elements 
tαkσ to be momentum-independent, Ŵσ

α can be expressed as, Ŵσ
α = 2π |tασ |

2ρασ , with ρασ being the constant spin-
dependent density of states of the lead α . By introducing the lead spin polarization pα = (ρ+

α − ρ−
α )/(ρ

+
α + ρ−

α ) , 
where + (−) corresponds to the majority (minority) spin species in the lead, the couplings can be written as 
Ŵσ
L = ŴL(1+ σ̃pL) and Ŵσ

R = ŴR(1± σ̃pR) , with Ŵα = (Ŵ
↑

α + Ŵ
↓

α )/2 . Here, σ̃ is equal to 1 (-1) for σ =↑ ( ↓ ) and 
the upper (lower) sign in Ŵσ

R corresponds to the parallel (antiparallel) magnetic configuration of the system. In 
other words, we assume that in the parallel configuration the spin-up electrons belong to the majority-spin sub-
band of the leads. In the following, we assume that the couplings are symmetric, ŴL = ŴR = Ŵ/2 , and the leads 
are made of the same ferromagnetic material, pL = pR ≡ p.

Finally, the last part of the total Hamiltonian, HQD−Maj , describes the low-energy properties of quantum dot 
coupled to Majorana wire, and it can be expressed as29,35,61

The quantum dot on-site energy is denoted by ε , while U is the Coulomb repulsion energy on the dot. The 
Majorana operator γ ( ̃γ ) describes the MZM near (far from) the quantum dot, whereas VM is the matrix ele-
ment for hopping between the MZM and the quantum dot. We assume that γ couples only to one spin species 
on the quantum dot, in particular, to spin-down electrons. The overlap between the MZMs is denoted by εM 
and for long enough nanowires it can be neglected, εM → 0 . The Majorana operator γ can also be expressed 
as a linear combination of auxiliary fermionic operators γ =

(

f † + f
)

/
√
2 , while the other Majorana mode, 

γ̃ = i
(

f † − f
)

/
√
2 , remains decoupled from the dot. In a very general case the Majorana mode could couple 

to both spin components of the quantum dot, however, for the sake of clarity of the present analysis, we restrict 
ourselves to collinear alignments29,61. However, although in Eq. (2) the spin-down electrons couple to Majorana 
wire, to make the considerations more comprehensive, we also discuss the transport behavior in the case when 
the spin-up quantum dot level couples to the Majorana mode.

Let us start the analysis by presenting the eigenspectrum of the quantum dot-Majorana subsystem decoupled 
from the leads. For such system, one can easily find the eigenspectrum of HQD−Maj , HQD−Maj|χ� = εχ |χ� , where 
we label the eigenstates by the number of spin-up electrons in the dot n↑ , the states parity P = e/o and sign ±, 
|χ� ≡ |n↑, P,±� . The corresponding eigenstates together with their eigenenergies are presented in Table 1. This 
eigenspectrum will be crucial in understanding the transport behavior at nonequilibrium settings, presented 
in the sequel, as the excitation energies between the even and odd states will be directly visible in the transport 
characteristics as a function of bias voltage and position of the orbital level, which can be effectively tuned with 
a gate voltage.

In the following, we will study the bias and gate voltage dependence of the transport coefficients considering 
two different cases of how the system is biased. In the first case, henceforth referred to as symmetric biasing case, 
the potential difference is applied between the ferromagnetic leads, which are assumed to share the same chemical 
potential ( µL = µR = eV  ), and the Majorana wire ( µS = 0 ). On the other hand, in the second asymmetric case, 
the bias voltage is applied between the two ferromagnetic leads, µL = −µR = eV/2 , while again µS = 0 , see also 
Fig. 1. In calculations we determine the currents flowing through the left and right ferromagnetic junctions, IL 
and IR , while the current to Majorana wire can be found from IS = IL + IR . All formulas used to determine the 
transport characteristics are presented in the “Methods” section.

(2)HQD−Maj =

∑

σ=↑,↓

εd†σ dσ + Ud†
↑
d↑d

†
↓
d↓ + VM

(

d†
↓
γ + γ d↓

)

+ 2iεMγ γ̃ .

Table 1.   Solving HQD−Maj|χ� = εχ |χ� gives rise to eight eigenstates presented in this table, |χ� ≡ |n↑, e/o,±� , 
where n↑ is the number of spin-up electrons, e/o refers to the electron parity (even or odd) in the subsystem. 

The coefficient α(±x) is defined as α(±x) =

√

1± x/
√

x2 + 2V2
m , with x specified in the table. The local 

states are |ξη� , where ξ = {0,↑,↓, d} corresponds to empty, singly occupied with spin-up/spin-down electron 
or doubly occupied quantum dot, while η = {0, 1} is associated with the auxiliary operator f.

Eigenenergy, εχ Eigenstate, |n↑ , e/o,±� x =

(ε ∓

√

x2 + 2V
2
M
)/2 |0, o,∓� = α(∓x)| ↓ 0� + α(±x)|01� ε − 2εM

(ε ∓

√

x2 + 2V
2
M
)/2 |0, e,±� = α(±x)|00� − α(∓x)| ↓ 1� ε + 2εM

(3ε + U ∓

√

x2 + 2V
2
M
)/2 |1, o,±� = α(±x)| ↑ 0� − α(∓x)|d1� ε + U + 2εM

(3ε + U ∓

√

x2 + 2V
2
M
)/2 |1, e,∓� = α(∓x)|d0� + α(±x)| ↑ 1� ε + U − 2εM
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The case of symmetrically biased system
In the case of symmetrically biased system the main interest is in the behavior of the current IS flowing between 
the ferromagnetic leads and Majorana nanowire. We will analyze the dependence of the current on magnetic con-
figuration of ferromagnetic leads and also the resulting tunnel magnetoresistance (TMR) effect, which describes 
the change of the system transport properties when the magnetic configuration changes from the parallel to the 
antiparallel one. For the considered hybrid setup, we define the TMR as62,63

where IP and IAP designate the corresponding currents flowing in the parallel and antiparallel magnetic con-
figuration, respectively.

Current and differential conductance
The normalized current IS together with the corresponding differential conductance GS = dIS/dV  is presented 
in Fig. 2 as a function of the bias voltage eV and the detuning from the particle-hole symmetry point δ = 2ε + U . 
The left (right) column corresponds to the parallel (antiparallel) magnetic configuration of the system. First of 
all, one can note that the transport characteristics are antisymmetric with respect to the change of δ → −δ and 
eV → −eV  . Furthermore, both currents, IPS  and IAPS  , exhibit qualitatively similar behavior in the full parameter 
space. This is also reflected in the differential conductance GS presented in the bottom row of Fig. 2. Because of 
this similarity, let us for the moment focus on the behavior of the current and conductance in the parallel con-
figuration. We firstly observe a pronounced zero-bias anomaly in the differential conductance, which is a mani-
festation of the presence of Majorana zero-energy mode in the system. This anomaly extends over the whole 
range of the detuning parameter δ , see Fig. 2c,d. With increasing the bias voltage, the current starts flowing and 
exhibits steps whenever the chemical potential of normal leads crosses the corresponding excitation energy of 

(3)TMR =
IP − IAP

IAP
,
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Figure 2.   (a, b) The normalized current IS flowing between ferromagnetic leads and Majorana wire and (c, 
d) the corresponding differential conductance GS as a function of the bias voltage and quantum dot detuning 
δ = 2ε + U for (left column) the parallel and (right column) antiparallel magnetic configuration of the device 
for symmetrically biased system, µL = µR = eV  and µS = 0 . The dashed and dashed-dotted lines correspond 
to the excitation energies of the quantum dot-Majorana system, see the main text for details. Since the relevant 
single-particle excitations always happen between the even and odd parity states, we do not show the parity 
label here. The parameters are: Ŵ = 0.01 , kBT = 0.02 , VM = 0.2 , εM = 0 , in units of U ≡ 1 , and the lead spin 
polarization is p = 0.5 . The current is plotted in units of I0 = eŴ/ℏ.
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the Majorana-quantum dot subsystem. These excitation energies are marked in Fig. 2a with dashed and dashed-
dotted lines and they actually coincide with the behavior of the differential conductance. We note that the possible 
excitations, due to single-electron tunneling, involve only the transitions between the even and odd parity states, 
therefore we suppress this index in the following notation. The black dashed lines marked by �E1α,0β correspond 
to the excitation energies �E1α,0β = ε + (U − α�U − β�)/2 , whereas the green dashed-dotted lines denoted 
by �En↑−,n↑+ present the excitation energies �E1−,1+ = �U and �E0−,0+ = −� , with �U =

√

(ε + U)2 + 2V2
M  

and � =

√

ε2 + 2V2
M  . As can be seen in Fig. 2a,b, there are two regions of enhanced tunneling, one at δ ≈ U 

for eV < 0 and another one at δ ≈ −U  for eV > 0 . For those values of δ the current exhibits a large asymmetry 
with respect to the bias reversal. Consider the case of δ ≈ −U  for eV > 0 . At equilibrium, the system is mostly 
occupied by the two states, which are degenerate, namely, |1, o,+� and |1, e,−� . With increasing the bias voltage, 
around eV � �E1−,1+ ≈ U/4 , the other two states, |1, o,−� and |1, e,+� , come into play giving rise to an increase 
in the current. These four states are equally occupied at larger voltages resulting in large current visible in 
Fig. 2a,b. However, once the bias voltage is reversed, the current becomes generally suppressed, except for the 
following regions of the bias voltage, 0 � eV � �E1+,0− and �E0−,0+ � eV � �E1+,0+ , see Fig. 2a. Otherwise 
the system is trapped in certain states that block the current flow in the system. In particular, for 
�E1+,0− � eV � �E0−,0+ , the system is occupied by the states |0, o,−� and |0, e,+� , while for eV � �E1+,0+ , it 
is occupied by the states |0, e,−� and |0, o,+� . As a consequence, for negative bias direction one observes pro-
nounced lines of negative differential conductance, see Fig. 2c,d. The mechanism for the current asymmetry with 
respect to bias reversal in the case of δ ≈ U is similar to the one discussed above, and can be adequately adapted 
by performing the particle-hole transformation.

Tunnel magnetoresistance
As can be seen in Fig. 2, a general tendency is that the current is larger in the antiparallel configuration compared 
to the parallel one. One can thus conclude that coupling to Majorana zero-energy mode facilitates transport 
through the system for the spin channel coupled to Majorana wire. The Majorana quasiparticle couples to the 
spin-down electrons on the dot, so for the parallel configuration this coincides with the minority-spin band of 
both leads, and therefore this enhancement is relatively weak. However, in the antiparallel configuration, the spin-
down electrons always belong to majority band of one of the leads and, consequently, transport through one of the 
spin channels is enhanced, such that one finds IPS < IAPS  in most transport regions. This is clearly visible in Fig. 3, 
which presents the bias voltage eV and detuning δ dependence of the TMR. As can be seen, TMR ≈ −p , except 
for the regions of bias voltage where �E1−,1+ � eV � �E1−,0− , for δ � −U  , and �E0−,0+ � eV � �E1+,0+ , 
for δ � U  , where one finds a weakly positive TMR. We also note that if one assumes that the Majorana mode 
couples to the spin-up electrons on the dot, the behavior of the TMR would be approximately reversed, with 
TMR ≈ p in most of the transport regimes (not shown).

Zero‑bias anomaly
Let us now focus on the behavior of the zero-bias anomaly in the differential conductance due to the presence 
of Majorana zero-energy mode. Figure 4 presents the bias voltage dependence of the differential conductance 
GS for different values of spin polarization of ferromagnetic leads, for different values of strength of the coupling 
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Figure 3.   The tunnel magnetoresistance calculated as a function of the bias voltage eV and the detuning 
parameter δ . The TMR is obtained from the currents in both magnetic configurations shown in Fig. 2. The 
dashed and dashed-dotted lines correspond to the excitation energies of the quantum dot-Majorana system, see 
the main text for details.
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to Majorana wire VM , and nonzero overlap εM between the Majorana quasiparticles. First of all, one can see 
Fig. 4a that increasing p results in suppression of the zero-bias anomaly in the parallel configuration, while the 
anomaly does not depend on p in the antiparallel configuration, see Fig. 4b. This is because in the antiparallel 
configuration the relative number of spin-up and spin-down states available in the leads does not change with 
p, but is only transferred between the two leads. As far as the total current to both leads is concerned, this does 
not affect its magnitude, so antiparallel configuration effectively corresponds to the case of p = 0 . This is why for 
finite p, the anomaly is smaller in the case of parallel configuration compared to the antiparallel one. When the 
strength of coupling to Majorana wire is increased, it boosts the zero-bias anomaly, as can be seen in the second 
row of Fig. 4. This enhancement is clearly larger in the case of antiparallel configuration, which is due to the 
fact that conductance in this configuration behaves as in the p = 0 case. Finally, the last row of Fig. 4 presents 
the bias dependence of the differential conductance for different values of the overlap between the Majorana 
quasiparticles εM . One can see that finite εM results in the suppression of the conductance at the zero bias, while 
two satellite peaks, corresponding to split Majorana modes, emerge. The height of those peaks is approximately 
twice smaller than the peak for εM = 0 and this holds for the two magnetic configurations.

Current cross‑correlations
In the case of symmetrically biased device, when the current flows between the Majorana wire and two ferro-
magnetic contacts, further important information about the system transport properties can be obtained from 
the analysis of the cross-correlations between the left and right currents. Such cross-correlations calculated for 
the two magnetic configurations of the system are shown in Fig. 5. One can generally see that SLR takes large 
negative values only in certain narrow regimes of the bias voltage and detuning parameter. These regions actually 
coincide with the appropriate behavior of the current, cf. Fig. 2a,b. Large negative SLR indicates that the two cur-
rents are anti-correlated, i.e. on average a tunneling act through one junction is anti-correlated with a tunneling 
event through the other junction. Interestingly, for δ ≈ −U  and eV > 0 , and δ ≈ U  and eV < 0 , i.e. when we 
found maximum current, the cross-correlations are rather weak, with only small positive values. This implies 
that in these transport regions the currents through the left and right junctions are only very weakly correlated. 
We notice that positive cross-correlations were already predicted in quantum dot-Majorana systems, where 
non-local transport through both edges of the nanowire was present64. In our setup, however, such non-local 
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Figure 4.   The dependence of the zero-bias anomaly in the differential conductance on (a, b) the degree of 
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for p = 0.5 and εM = 0 , and (e, f) the overlap between the two Majorana quasiparticles for p = 0.5 and 
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parameters are the same as in Fig. 2.
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processes are absent, and particles tunnel between one edge of the nanowire and single orbital of quantum dot 
coupled to metallic leads. It turns out that the crucial role here is played by the ratio VM/Ŵ . When VM > Ŵ , as 
considered in our analysis, the nanowire is a fast source of particles, while the bottleneck for transport is formed 
by the junctions between quantum dot and ferromagnets. Consequently, when a tunneling event takes place 
through one of those junctions, it is a process that immediately enhances probability of consecutive tunneling 
processes, since the quantum dot is quickly refilled with another particle in a fast process governed by VM , which 
positively contributes to SLR . This scenario takes place when the dot level is detuned from the resonance with 
the leads, while the left and right currents are not correlated ( SLR = 0 ) when the system is tuned to the resonant 
tunneling δ/U = ±1 , see Fig. 5. On the other hand, in the case of VM < Ŵ , the system does not reveal positive 
cross-correlations anymore.

The case of asymmetrically biased system
Let us now examine the case when the chemical potentials of the ferromagnetic leads are asymmetric, i.e. 
µL = −µR = eV/2 , while the Majorana wire is grounded. In this case we focus on the current that flows out 
of the device to the right electrode, I ≡ IR . Based on this current we explore the behavior of the differential 
conductance G ≡ dIR/dV  and tunnel magnetoresistance, TMR = IPR/I

AP
R − 1.

Current and differential conductance
The bias voltage and detuning dependence of the current and the differential conductance in both magnetic con-
figurations of the device is shown in Fig. 6. The absolute value of the current clearly reveals the Coulomb diamond 
structure of the system. In the absence of Majorana mode, VM = 0 , the current and differential conductance 
would exhibit a typical Coulomb diamond pattern. However, in the case of finite VM , we observe a distortion of 
the Coulomb diamonds. First of all, the diamond lines do not cross at δ = ±U  when changing sign of the bias 
voltage, but there is an opening of the gap, see Fig. 6c,d. Moreover, a clearly visible zero-bias anomaly develops 
in the differential conductance, which indicates the leakage of Majorana quasiparticles onto the quantum dot 
system. In addition, there are also regions of very weak negative differential conductance.

Zero‑bias anomaly
Let us now focus on the analysis of how the zero-bias anomaly depends on various system parameters, including 
lead spin polarization, strength of coupling to Majorana wire and the overlap between MZMs. The corresponding 
dependencies are shown in Fig. 7. One can see that, contrary to the symmetrically biased system, the conduct-
ance only very weakly depends on the spin polarization of the leads. While increasing p gives rise to a slight 
enhancement of G in the case of parallel configuration, it results in a small suppression of G for the antiparallel 
case. In both magnetic configurations increasing VM leads to comparable enhancement of the zero-bias anomaly. 
Finally, for shorter wires, when finite overlap εM emerges, the anomaly becomes split and only two side peaks 
are present, see the last row of Fig. 7.

Tunnel magnetoresistance
The difference in the currents in the two magnetic configurations gives rise to finite TMR, which is presented in 
Fig. 8. As can be seen, now, the dependence of the TMR is much more complex, with pronounced regions of both 
positive and negative TMR. This is due to the fact that TMR is obtained based on the current that flows out of the 
device to the right ferromagnetic lead. Such setup resembles thus a ferromagnetic tunnel junction, however, with 
a complex quantum dot-Majorana nanostructure embedded in the junction. In the absence of this nanostruc-
ture, the TMR would be given by the Julliere value62, TMR = 2p2/(1− p2) , which for assumed spin polarization 
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( p = 0.5 ) yields, TMR = 2/3 . Furthermore, in the case of embedded quantum dot (the case of VM = 0 ), the 
TMR would get reduced and would range from TMR = p2/(1− p2) ( TMR = 1/3 ) to TMR = (4/3)p2/(1− p2) 
( TMR = 4/9)65. Interestingly, in the presence of Majorana quasiparticles, we find a greatly modified TMR pattern. 
At the onset of steps in the current, the TMR is very much suppressed and approximately given by TMR ≈ 0 . 
For larger voltages, however, the TMR becomes positive but generally lower than the Julliere TMR. On the other 
hand, a negative tunnel magnetoresistance is found at low bias voltages for |δ| � U/2 , where the absolute value 
of TMR is approximately given by the Julliere value (for p = 0.5 ), see Fig. 8.

Let us also comment on the case when the Majorana mode is coupled to the spin-up electrons in the quan-
tum dot. Such change of coupling is most visible in the behavior of the TMR, which for this case is presented in 
Fig. 9. Now, opposite to the previously-discussed situations, the TMR is positive in the whole parameter space. 
For larger voltages, there is an enhancement of the TMR to around the Julliere value. Moreover, as can be seen 
in Fig. 9, a largely increased tunnel magnetoresistance is found at low bias voltages for |δ| � U/2 , where the 
TMR exceeds by a few times the Julliere value. Such high values of the TMR are associated with the presence of 
MZM in the system.

Discussion
As follows from the above presented results, the presence of Majorana zero-energy modes gives rise to some 
unique spin-resolved transport properties of the system, visible in the current, differential conductance, tun-
nel magnetoresistance, as well as the current cross-correlations. We have in particular studied the bias voltage 
and orbital level detuning dependence of those quantities for two different ways in which the system is biased.

In the firstly studied case of symmetric biasing, we have examined the transport between the ferromagnetic 
leads, kept at the same chemical potential, and the grounded Majorana wire. We have identified regions of 
negative differential conductance, which can be explained by invoking the corresponding excitation energies 
of quantum dot-Majorana subsystem. We have also analyzed the bias-reversal asymmetric dependence of the 
current, where the suppression of tunneling was associated with trapping the system in certain states. The differ-
ence in transport properties when the magnetic configuration of the device is varied was captured by the tunnel 
magnetoresistance. The TMR for assumed model parameters turned out to be mostly negative, TMR ≈ −p , 
with narrow regions of positive TMR in the parameter space of eV and δ . For the symmetrically biased system, 
we have also determined the current-current correlation function, which revealed regions of both positive and 
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negative values, indicating the type of cross-correlations between the currents flowing through the ferromagnetic 
junctions. A special attention has been paid to the dependence of the zero-bias anomaly on the system’s magnetic 
configuration and the degree of spin polarization of the leads. We have shown that the conductance does not 
depend on spin polarization in the case of antiparallel configuration, whereas for parallel system’s configuration, 
increasing the lead spin polarization results in suppression of the zero-bias anomaly. Moreover, we have also 
examined the effect of finite length of the Majorana nanowire and showed that with increasing the overlap of 
Majorana quasiparticles εM , the zero-bias anomaly becomes suppressed and the differential conductance exhibits 
only side resonances at voltages corresponding approximately to ±εM.

On the other hand, for the asymmetrically biased device, we have analyzed the dependence of the current, 
differential conductance and TMR associated with the current flowing through the right junction. We have 
shown that the presence of Majorana quasiparticles modifies the typical Coulomb diamonds and gives rise to 
zero-bias anomaly. Moreover, even more pronounced signatures are observed in the tunnel magnetoresistance, 
which exhibits negative or positive values depending on the bias and gate voltages. In fact, in certain transport 
regions we found the TMR by several times exceeding the TMR of the system consisting of a bare quantum dot 
coupled to ferromagnetic leads.

Our study thus reveals new features observable in spin-dependent transport properties of the Majorana-
quantum dot system that may serve as further indications of the presence of Majorana quasiparticles in the 
system. Moreover, by providing a comprehensive analysis of spin effects on the nonlinear transport properties of 
the considered system, our work promotes further investigations of quantum dot-Majorana wire devices. Finally, 
as an outlook, we would like to mention that further insight into the behavior of such hybrid systems can be 
obtained from the studies of thermoelectric transport, where e.g. sign changes of the thermopower can provide 
additional information about the presence of Majorana zero-energy modes in the system25,33,66–69.

Methods
We determine the spin-dependent transport properties of the system by using the real-time diagrammatic 
technique56–58,70. This approach consists in a systematic perturbation expansion of the quantities of interest with 
respect to the coupling strength Ŵ to the ferromagnetic leads. Within the real-time diagrammatic technique, the 
time evolution of the system’s reduced density matrix can be visualized as a sequence of irreducible diagrams 
on the Keldysh contour56,70. On the other hand, the elements of the reduced density matrix can be found from 
a general kinetic equation within Markov approximation by including diagrams of given order, which can be 
found from the corresponding diagrammatic rules56–58,70. Our interest lies in the sequential tunneling regime, 
where transport is determined through one-by-one electron tunneling processes. The current flowing between 
the ferromagnetic leads and the Majorana wire can be found from the Kirchhoff ’s law, IS = IL + IR . Here, Iα is 
the current flowing through the α-junction with the normal lead, which can be found from

where pst denotes the stationary occupation probability vector, the elements of which pstχ describe the probability 
of occupying the eigenstate |χ� . The probabilities can be in turn calculated from the following kinetic equation

(4)Iα =
e

2ℏ
Tr{WIαpst},

(5)Wpst = 0,
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by using the normalization condition 
∑

χ pstχ = 1 . The elements of the self-energy matrix, Wχχ ′ , correspond 
to transitions between the states |χ� and |χ ′

� , while WIα is similar to W but it takes into account the number of 
particles transferred through the junction α . The self-energies can be found by evaluating contributions from 
first-order diagrams that are topologically different by using the diagrammatic rules56–58.

Finally, the diagrammatic expression for current cross-correlations between the left and right junctions in 
the first-order approximation is given by57,58

where P denotes the corresponding propagator.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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