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Advanced stage, high‑grade 
primary tumor ovarian cancer: 
a multi‑omics dissection 
and biomarker prediction process
Yousof Saeedi Honar 1, Saleh Javaher 1, Marziye Soleimani 2, Amir Zarebkohan 3, 
Behrouz Farhadihosseinabadi 4, Masoud Tohidfar 2* & Meghdad Abdollahpour‑Alitappeh 5*

Ovarian cancer (OC) incidence and mortality rates continue to escalate globally. Early detection of 
OC is challenging due to extensive metastases and the ambiguity of biomarkers in advanced High-
Grade Primary Tumors (HGPTs). In the present study, we conducted an in-depth in silico analysis in OC 
cell lines using the Gene Expression Omnibus (GEO) microarray dataset with 53 HGPT and 10 normal 
samples. Differentially-Expressed Genes (DEGs) were also identified by GEO2r. A variety of analyses, 
including gene set enrichment analysis (GSEA), ChIP enrichment analysis (ChEA), eXpression2Kinases 
(X2K) and Human Protein Atlas (HPA), elucidated signaling pathways, transcription factors (TFs), 
kinases, and proteome, respectively. Protein–Protein Interaction (PPI) networks were generated using 
STRING and Cytoscape, in which co-expression and hub genes were pinpointed by the cytoHubba 
plug-in. Validity of DEG analysis was achieved via Gene Expression Profiling Interactive Analysis 
(GEPIA). Of note, KIAA0101, RAD51AP1, FAM83D, CEP55, PRC1, CKS2, CDCA5, NUSAP1, ECT2, and 
TRIP13 were found as top 10 hub genes; SIN3A, VDR, TCF7L2, NFYA, and FOXM1 were detected as 
predominant TFs in HGPTs; CEP55, PRC1, CKS2, CDCA5, and NUSAP1 were identified as potential 
biomarkers from hub gene clustering. Further analysis indicated hsa-miR-215-5p, hsa-miR-193b-3p, 
and hsa-miR-192-5p as key miRNAs targeting HGPT genes. Collectively, our findings spotlighted 
HGPT-associated genes, TFs, miRNAs, and pathways as prospective biomarkers, offering new avenues 
for OC diagnostic and therapeutic approaches.

Abbreviations
OC	� Ovarian cancer
HGPT	� High grade primary tumor
GEO	� Gene expression omnibus
DEG	� Differently-expressed gene
GSEA	� Gene set enrichment analysis
ChEA	� ChIP enrichment analysis
X2K	� eXpression2Kinases
HPA	� Human protein atlas
TF	� Transcription factor
PPI	� Protein–protein interaction
GEPIA	� Gene expression profiling interactive analysis

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths globally, resulting in significant 
mortality among women. OC is projected to increase mortality by 2035, mainly due to its increasing burden in 

OPEN

1Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 
Tehran 1983963113, Iran. 2Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, 
Shahid Beheshti University, Tehran  1983969411, Iran. 3Department of Medical Nanotechnology, Drug Applied 
Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 516661‑4733, 
Iran. 4Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 
Iran. 5Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, 
Iran. *email: m_tohidfar@sbu.ac.ir; abdollahpour1983@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44246-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17265  | https://doi.org/10.1038/s41598-023-44246-9

www.nature.com/scientificreports/

low- and middle-income countries. The World Health Organization (WHO) has categorized OC into five distinct 
histological subtypes, including high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), 
mucinous carcinoma (MC), endometrioid carcinoma (EC) and clear cell carcinoma (CCC). Of note, each subtype 
is characterized by its unique risk factors, cellular origins, molecular compositions, clinical presentations, and 
therapeutic approaches1. Despite advances, the persistently high incidence and mortality rates of OC over the 
past two decades can be attributed to the limited efficacy of existing therapies in prolonging overall survival (OS) 
beyond five years for advanced-stage patients and challenges in early and effective diagnosis. Early diagnosis of 
OC, due to extensive metastases and the lack of biomarkers in advanced stages of high-grade primary tumors 
(HGPTs), remains one of the most important challenges2,3.

Over the past decade, the oncology field has increasingly prioritized rapid, reliable, and precise cancer detec-
tion methods. Numerous approaches have emerged for the discovery of biomarkers that play a pivotal role in 
early cancer detection. Molecular profiling, for example, offers promising strategies for the diagnosis of patients 
with OC. Of note, multi-omics data provide a comprehensive understanding of tumor biology, paving the way 
for the identification of prognostic biomarkers. Such biomarkers have the potential to significantly enhance early 
diagnosis and prognostic prediction for aggressive OCs, in turn governing treatment outcomes. By exploring the 
hallmarks of OC, similar to other solid tumors, researchers can increase the likelihood of discovering potential 
biomarkers in the early stage of OC4–6.

Understanding of intrinsic signaling pathways, angiogenesis, hormone receptors, and immunologic factors 
involved in OC pathogenesis seems to be potential theranostic targets. Similar to other normal and malignant 
cells, OC cells have their own unique transcriptome, proteome, epigenome, and metabolome. Transcriptome 
analysis is typically used to characterize transcriptional activity (coding and non-coding RNAs), and provides a 
snapshot of actively-expressed genes and transcripts under diverse situations, such as cancer7. Bioinformatics, a 
science combining molecular biology and information technology, is being used to study the molecular mecha-
nisms controlling normal and abnormal biological processes. Bioinformatics and computational models have 
been well used to study various tumors, demonstrating to be an efficient and reliable approach in the identifica-
tion of novel tumor markers for cancer diagnosis and targeted therapies8. In recent decades, high-throughput 
technologies, such as microarray, have provided large expression data sets and discovered a large number of 
disease/tumor markers9. Such discoveries remarkably improved the early diagnosis and prognosis of tumors10,11. 
The microarray technology, in combination with bioinformatics analysis, has been used to analyze a variety of 
cancers12,13; Importantly, microarray was demonstrated to be an appropriate approach to comprehensively analyze 
the genes involved in the development and progression of OC14.

In the present study, in silico approaches were conducted to leverage multi-omics data for OC biomarker 
prediction. We analyzed microarray data comparing HGPT to normal samples, identifying upregulated genes 
associated with HGPTs. These genes underwent a multifaceted analysis, including gene set enrichment analysis 
(GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping, protein–protein interaction 
(PPI), co-expression profiling, biomarker clustering, and Human Protein Atlas (HPA) analysis (Fig. 1).

Materials and methods
Microarray data and gene expression profile analysis
Gene Expression Omnibus (GEO), a database for gene expression and RNA methylation profilings managed 
by the National Center for Biotechnology Information (NCBI), supports reporting standards derived from 

Figure 1.   An overview of analyses carried out in this study.
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the scientific community; GEO determines the presence of several critical study elements including raw data, 
processed data, and descriptive metadata15. The whole-genome oligonucleotide expression analysis of papillary 
serous ovarian adenocarcinomas data was acquired from NCBI GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo). The gene expression profile dataset with the access number GSE18520 was retrieved from GEO (GPL570 
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array). Samples with |Log FC|> 2 and p < 0.05 
were screened and considered to be statistically significant; these samples included 53 HGPT and 10 normal 
ovarian surface epithelium (OSE) samples.

Protein–protein interaction (PPI) network and co‑expression analysis
The goal of the STRING database is to integrate all known and predicted associations between proteins, includ-
ing both physical interactions and functional associations. To achieve this goal, STRING collects and evaluates 
evidence from several sources, including (i) automated text retrieving of the scientific literature, (ii) databases 
of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from 
co-expression and preserved genomic context, and (iv) systematic transmission of interaction evidence from 
one organism to another14. STRING is the search tool for retrieval of interacting genes database (version 11.5; 
https://​string-​db.​org) which integrates both known and predicted PPIs and predicts functional interactions 
between DEGs (high confidence score 0.700 was set as the cut-off criteria to construct the PPI network). Ulti-
mately, the cytoHubba (version 0.1) plug-in of the Cytoscape software (version 3.9.1; www.​cytos​cape. org) was 
used to identify hub genes.

Decoding biological significance: gene set enrichment analysis (GSEA)
The GSEA software (version 4.2.3, https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp) was used to determine the 
enrichment of the dataset obtained from the expression matrix of the GPL570-GSE18520 datasets downloaded 
from the GEO database. GSEA was performed to compare the molecular profile data with the priori-defined 
gene sets available at Molecular Signatures DataBase (MolSigDB). The KEGG gene sets were employed for the 
detection of signaling pathways16.

Identification of MicroRNA (miRNA)‑Targeted Genes
Enrichr dataset-linked miRTarBase (http://​amp.​pharm.​mssm.​edu) was used to find the top 10 microRNAs (miR-
NAs) that presumably target HGPT-related genes. miRTarBase provides information about experimentally-
validated miRNA-target interactions (MTIs), whose new updated version has accumulated more than 13,404 
validated MTIs from 11,021 articles from manual curations17. Top 10 miRNAs targeting HGPT-related genes 
were selected and ranked based on p-value (P ≤ 0.05).

Detection of Transcription Factors (TFs) and Kinases
The ChIP enrichment analysis (ChEA) database was used to find transcription factors (TFs), which potentially 
control the expression of HGPT-related genes. The ChEA database provides data on eukaryotic TFs, consensus 
bond sequences (positional weight matrices), experimentally proven bond regions, and regulated genes18. In 
addition, eXpression2Kinases (X2K) (https://​amp.​pharm.​mssm.​edu/​X2K/) was used to identify and rank puta-
tive TFs, protein complexes, and protein kinases which are most likely responsible for the observed changes in 
HGPT transcriptomes.

The possible role of long non‑coding RNAs (lncRNAs) in HGPT
Long non-coding RNAs (lncRNAs) may regulate cell proliferation, apoptosis, migration, invasion and mainte-
nance of stemness during cancer development19. Therefore, our ultimate goal was to demonstrate the relation 
between the lncRNAs and HGPT genes. To assess our targeted lncRNAs, we used lncHUB database analysis and 
trimmed our dataset based on p-value (p ≤ 0.05).

Hub gene selection and validation in the human protein atlas (HPA)
The hub gene expression level between cancer patients and healthy controls were identified by using the HPA 
database (https://​www.​prote​inatl​as.​org/), a Swedish-based program initiated in 2003 with the goal of surveying 
all the human proteins in cells, tissues, and organs using an integration of various omics technologies20. We also 
visualized the expression of key hub genes in HGPT samples and normal ovarian surface epithelia using boxplots 
and Gene Expression Profiling Interactive Analysis (GEPIA), a recently-developed interactive web server able to 
analyze RNA sequencing expression data of 9736 tumors, 8587 normal samples from the TCGA and the GTEx 
projects, by using a standard processing pipeline21.

Results
Identification of differentially‑expressed genes (DEGs)
The differentially-expressed gene (DEG) up- and down-regulated genes were screened among the defined groups 
(53 HGPT and 10 normal ovarian surface epithelium samples). The Limma R packages were used to identify 
DEGs. P-value < 0.05 and |LogFC|> 2 were considered to be statistically significant and displayed using Volcano 
and Voom plots, showing that averages were log2-transformed mean-counts with a two-standard-deviation-offset 
(Fig. 2a,b). The interactions of up- and down-regulated genes were investigated using the STRING database. It 
was found that 642 and 917 genes were up- and down-regulated genes as HGPT-related and OSE-related genes, 
respectively; the expression level of these genes was displayed as the heatmap in all normal and cancer samples 
(Fig. 2c). Cytoscape software v 3.9.1 (cytoHubba plug-in) analysis was used to identify Hub genes (Fig. 3a,b). 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://string-db.org
http://www.cytoscape
https://www.gsea-msigdb.org/gsea/index.jsp
http://amp.pharm.mssm.edu
https://amp.pharm.mssm.edu/X2K/
https://www.proteinatlas.org/
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Additionally, approaches for gene co-expression analysis were carried out with the assistance of STRING data-
base tools. In active interaction sources tools, we selected the co-expression analysis, followed by the minimum 
needed interaction score option with high confidence. According to the results, 46 genes from the hub gene list 
were potentially correlated to the co-expression network. The correlation value of genes was calculated using a 
correlation plot (Fig. 3c,d).

Unraveling biological insights through gene set enrichment analysis (GSEA)
GSEA was performed using the KEGG package in the GSEA software environment for statistical analysis. Our 
results showed the expression of the genes in the data matrix targeting signaling pathways which are essential 
for the cell’s metabolic functions, including one-carbon pool by folate, pyruvate metabolism, selenoamino acid 
metabolism, glycolysis gluconeogenesis, arginine and proline metabolism, ascorbate and aldarate metabolism, 
cysteine and methionine metabolism, and glycerophospholipid metabolism (Fig. 4).

MicroRNA target gene identification
ChEA, which is one of the Enrichr tools linked to miRTarBase, was used to identify the top 10 miRNAs to target 
HGPT-related genes. We found that three of the top 10 miRNAs, including hsa-miR-215-5p, hsa-miR-193b-3p 
and hsa-miR-192-5p that play a critical role in tumor suppression, have the most commonality with target genes 
(Table 1).

Identification of kinases and transcription factors (TFs)
X2K was used to identify the key TFs, kinases, and intermediary proteins involved in the regulation of gene 
expression. Our results revealed that SIN3A, VDR, FOXM1, KLF4, and TCF7L2 were the most significant TFs 

Figure 2.   Gene expression analysis. (a) A volcano graphic illustrates data on differentially-expressed gene 
(DEG) down- and up-regulated genes colored by blue and red, respectively. (b) The voom plot illustrates the 
relationship between the coefficients of variation on the count size of significant genes. (c) The heatmap shows 
the expression level of hub genes in various samples.
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targeting the greatest number of genes associated with HGPTs. Among 10 TFs, SIN3A and VDR showed the 
most interactions with intermediate proteins and kinases (Fig. 5).

Long‑non coding RNA (LncRNA) prediction
Long-non coding RNAs (LncRNAs) were shown to have crucial roles in regulating cancer migration, invasion 
and metastasis. lncRNAs were analyzed using the lncHUB database linked in Enrichr. We identified the top 10 
lncRNAs correlated to up- and down-regulated genes (Table 2).

Exploring the protein atlas database: an in‑depth analysis
The hub genes were chosen from the PPI network of HGPT-related genes using cytoHubba. Among the top 20 
genes associated with HGPT-related genes, five hub genes, including CDCA5, CKS2, CEP55, PRC1 and NUSAP1, 
were evaluated in the protein atlas server. The gene information of these gene markers was first obtained from 
single-cell data and then clustered in OC using the UMAP plot, displaying these gene clusters in granulosa cells, 
fibroblasts, and smooth muscle cells (Fig. 6a). Subsequently, immune cell type section analysis showed that gene 

Figure 3.   Protein–protein network analysis. (a) Protein–protein interaction (PPI) network of ovarian surface 
epithelium (OSE)-related genes. (b) PPI network of high-grade primary tumor (HGPT)-related genes. (c and d) 
co-expression analysis and graphical interaction between hub and non-target genes, as well as the construction 
of a correlation heatmap.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17265  | https://doi.org/10.1038/s41598-023-44246-9

www.nature.com/scientificreports/

markers, such as CKS2, are clustered in plasmacytoid dendritic cells (pDCs) where they help fold proteins; PRC1 
and NUSAP1, CEP55, and CDCA5 were clustered in basophils, regulatory T cells (T-regs; where it helps control 
the cell cycle), and natural killer cells (NK cells; where it obviously makes copies of DNA), respectively (Fig. 6b). 
Moreover, the GEPIA database was used to examine the expression of the candidate hub genes in HGPT-related 
genes. Our outcomes confirmed that the expression of potential hub genes (at the mRNA level) is much higher 
in HGPT samples than those in normal tissues (Fig. 7a). The information of five genes in OC were evaluated 
after assessing the hub genes (Fig. 7b).

Identification of significant survival‑related genes
According to the gene expression, GEPIA analyzes OS or disease-free survival (DFS, also known as relapse-free 
survival [RFS]). GEPIA uses the log-rank test, usually known as the Mantel-Cox test, in order to test hypotheses. 
Both adjustable cohort thresholds and the utilization of gene pairs are possible. It is also possible to add the cox 
proportional hazard ratio and the 95% confidence interval in the survival plot. We also utilized survival plots 
created by GEPIA to compare the expression levels of hub genes in OC and normal tissues (GEPIA). According 
to the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) value of each gene, patients were 
divided into two expression groups, and the relationship between patient survival and expression levels was 
measured. In the OC dataset, hub genes include CDCA5, CKS2, CEP55, PRC1, and NUSAP1 with confidence 
intervals less than 0.05; the hazard ratio was calculated by using the Cox PH Model (Fig. 8).

Subcellular location and immunohistochemistry functions
The subcellular section of the database refers to high-resolution, multicolor images of labeled proteins by indirect 
immunocytochemistry/immunofluorescence (ICC-IF). It provides spatial analysis about protein expression pat-
terns in order to define the subcellular localization to cellular organelles and structures at the single cell level. 
HPA contains images of histological sections from normal and cancer tissues, which have been obtained by 
immunohistochemistry. Antibodies are labeled with DAB (3,3′-diaminobenzidine) and the resulting brown stain-
ing indicates where an antibody has bound to its corresponding antigen. In this section, we found that biomark-
ers, including CDCA5, CKS2 and CEP55, are recognized through HPA023691 and HPA076007, HPA003424, 
and HPA023430 antibodies, respectively (Fig. 9).

Discussion
OC prognosis remains challenging, primarily due to late-stage diagnosis22, highlighting the need for innova-
tive therapeutic strategies to investigate the molecular intricacies underlying OC development, recurrence, and 
metastasis. By exploring the gene expression landscape of advanced-stage HGPTs, we aimed to uncover potential 
insights into these intricacies. Leveraging omics sciences, such as transcriptomics and proteomics, our analysis 
focused on key entities, including hub genes, TFs, miRNAs, lncRNAs, kinases and PPIs. These entities play crucial 
roles in HGPT-associated gene or protein expression and offer potential therapeutic targets.

Figure 4.   Pathway enrichment analysis and visualization of omics data using gene set enrichment analysis 
(GSEA) software. GSEA plots show the most enriched gene sets in metabolism pathways; twenty-four and 105 
gene sets are significantly enriched at nominal p-value < 1% and p-value < 5%, respectively (permission has been 
obtained from Kanehisa laboratories from using KEGG pathway database32–34).
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Moreover, our investigation of significant co-expression genes has shed light on potential targets related to 
HGPT-associated hub genes. These genes, through their co-expression patterns, may serve as indicators of cancer 
progression or regression. Our comprehensive in silico analysis aimed to address critical questions regarding the 
key signaling pathways for HGPT, identify hub genes in the PPI network, uncover regulatory TFs and kinases, 
determine potential antibody targets for hub genes, and elucidate the roles of miRNAs and lncRNAs in the 
behavior of HGPT cancer cell lines.

Our GSEA analysis revealed that HGPT-related genes play a significant role in metabolic processes. The one-
carbon pool by folate metabolism, in particular, emerges as a pivotal pathway with far-reaching implications. This 
pathway plays a critical role in various physiological processes, including biosynthesis, amino acid homeostasis, 
epigenetics, and redox defense. Disruptions within this pathway can fundamentally alter the course of cancer 
initiation and progression. Folate and choline, central components in the one-carbon metabolism, play a key 
role in the pathobiology of epithelial OC (EOC), underscoring the position of EOC as one of the most lethal 
gynecological malignancies23.

A nuanced understanding of the signaling intricacies in HGPTs is crucial for the development of therapeutic 
approaches capable of balancing efficacy, reducing toxicity, and increasing chemotherapy sensitivity24. In our PPI 
network analysis, we found a complex interplay of direct and indirect interactions among genes linked to HGPTs. 
The interaction density of each gene indicates its potential therapeutic value. In addition, co-expression patterns 
within the PPI underscore the intricate relationships between hub and non-hub genes, shedding light on potential 
avenues for miRNA-based therapies. We identified 10 hub genes, including KIAA0101, RAD51AP1, FAM83D, 
CEP55, PRC1, CKS2, CDCA5, NUSAP1, ECT2 and TRIP13. The mRNA and protein levels of hub gene expres-
sion were verified using GEPIA and HPA databases, respectively. Five genes, including CEP55, PRC1, CKS2, 
CDCA5 and NUSAP1, were found to be overexpressed in OC. Most importantly, several antibodies, including 

Table 1.   Identification of the key miRNAs and genes involved in ovarian cancer.

Term P-value Target genes

Key miRNAs targeting up-regulated genes (ChEA)

 hsa-miR-215-5p 1.72E−08 CENPF; KIF14; DEPDC1; MCM10; TRIP13; FAM83D; 
ECT2; CEP55; KIF15

 hsa-miR-193b-3p 4.87E−08 CENPU; MELK; CDCA5; CDCA7; MCM10; KIF11; TRIP13; 
ECT2; KIF15

 hsa-miR-192-5p 1.81E−07 CENPF; KIF14; DEPDC1; MCM10; TRIP13; FAM83D; 
ECT2; CEP55; KIF15

 hsa-miR-6507-5p 2.89E−04 PRC1; KIF11; CEP55

 hsa-miR-4473 0.001416427 PRC1; DEPDC1

 hsa-miR-373-3p 0.001696928 CENPF; MELK; PRC1; PBK

 hsa-miR-4255 0.003079761 KIF14; ECT2

 hsa-miR-340-5p 0.004479009 CDCA7; DEPDC1; KIF11

 hsa-miR-493-5p 0.005819938 DEPDC1; CKS2

 hsa-miR-18b-5p 0.005918504 RAD51AP1; CDCA5

 mmu-miR-6951-3p 0.005985691 MCM10

mmu-miR-7116-3p 0.005985691 MCM10

 mmu-miR-193a-3p 0.007973357 KIF15

 mmu-miR-193b-3p 0.009957248 KIF15

 hsa-miR-124-3p 0.012137728 RAD51AP1; CDCA7; DEPDC1; CKS2; FAM83D

Key miRNAs targeting down-regulated genes (ChEA)

 hsa-miR-24-2-5p 4.63E−04 PARVA; RSPO1

 hsa-miR-24-1-5p 5.86E−04 PARVA; RSPO1

 hsa-miR-1256 9.58E−04 WNT2B; ARHGEF7

 hsa-miR-888-5p 0.002590114 PARVA; ARHGEF6

 hsa-miR-6757-3p 0.00286498 WNT2B; GATA6

 hsa-miR-135b-5p 0.003079761 APC; GATA6

 hsa-miR-135a-5p 0.003929872 APC; GATA6

 hsa-miR-7850-5p 0.0044345 WNT2B; GATA6

 hsa-miR-6758-3p 0.005151575 RSPO1; PAK3

 hsa-miR-6761-5p 0.005151575 GATA6; WNT16

 hsa-miR-564 0.005433372 GATA6; COL8A1

 mmu-miR-466i-3p 0.005582627 CXCL6; CNR1; COL8A1

 hsa-miR-494-3p 0.008278453 CNR1; WNT16

 mmu-miR-7b-5p 0.009014359 SFRP1; CNR1; PARVA

 hsa-miR-429 0.009841197 GATA6; WNT16
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HPA023691 and HPA076007, HPA003424, and HPA0230, play key roles in the CDCA5, CKS2, and CEP55 genes, 
respectively; for example, HPA023691 is an antibody against CDCA5, a cell cycle regulatory protein with a crucial 
role in the development of several human malignancies25. Analysis of GEPIA and the Protein Atlas database 
demonstrated that CDCA5, CEP55, PRC1, CKS2, and NUSAP1 have the potential to serve as diagnostic and 
prognostic markers for HGPTs, as well as therapeutic targets for OC26. According to a recent study, overexpres-
sion of CEP55 has resulted in spontaneous tumorigenesis, which raises the risk of metastasis27. Our findings 
demonstrated that tumor suppressor miRNAs, such as miR-215-5p, could decrease tumor development28. In 
addition, we provided a significant list of lncRNAs for diagnosis; based on our findings, HMMR-AS1, LINC01775 
and SGO1-AS1, for example, may be useful in OC diagnosis.

Recent advancements in the understanding of the fundamental molecular mechanisms underlying cancer 
cell signaling have revealed the pivotal role of kinases in the carcinogenesis and metastases of various cancer 
types29. Since most protein kinases, when constitutively overexpressed or active, promote cell proliferation, 
survival and migration, they are consequently associated with oncogenesis30. We could find kinases and deter-
mine their network interaction with the hub genes via X2K. At the end, the most significant kinases, including 
CDK1, AKT1, MAPK14, MAPK1 and CSNK2A1, were identified in this study. CDK1 is a family member of cell 
cycle regulatory proteins involved in cell cycle maintenance. Given that CDK1 overexpression was found to be 
associated with cancer, CDK1 inhibitors may restore equilibrium to the skewed cell cycle system and serve as 
an effective therapeutic agent31.

In conclusion, findings from our study shed light on the critical factors associated with the development of 
HGPTs, paving the way for improved therapeutic interventions. By integrating omics data, we aimed to develop 
novel treatment approaches for patients with OC.

Figure 5.   The interaction of transcription factors (TFs; red spots) and kinases (blue spots) with hub genes.
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Table 2.   Identification of the key lncRNAs and genes involved in ovarian cancer.

Term P-value Target genes

Key lncRNAs targeting up-regulated genes (ChEA)

 HMMR-AS1 4.08E−26 CDCA5; KIF14; MCM10; KIF11; KIF15; MELK; PRC1; DEPDC1; NUSAP1; CKS2; PBK; ECT2; CEP55

 LINC01775 1.50E−23 CENPF; MELK; PRC1; CDCA5; KIF14; DEPDC1; NUSAP1; PBK; MCM10; KIF11; CEP55; KIF15

 SGO1-AS1 4.48E−21 CENPF; MELK; PRC1; CDCA5; KIF14; DEPDC1; NUSAP1; MCM10; KIF11; CEP55; KIF15

 RRM1-AS1 4.48E−21 CENPU; MELK; PRC1; CDCA5; DEPDC1; NUSAP1; PBK; MCM10; KIF11; CEP55; KIF15

 DIAPH3-AS1 4.48E−21 CENPF; MELK; PRC1; KIF14; DEPDC1; PBK; MCM10; KIF11; ECT2; CEP55; KIF15

 PRC1-AS1 1.09E−18 CENPU; MELK; PRC1; CDCA5; KIF14; NUSAP1; MCM10; KIF11; CEP55; KIF15

 DEPDC1-AS1 1.09E−18 CENPU; MELK; PRC1; CDCA5; DEPDC1; NUSAP1; CKS2; PBK; KIF11; CEP55

 CSRP3-AS1 2.17E−16 MELK; PRC1; CDCA5; DEPDC1; NUSAP1; KIF11; ECT2; CEP55; KIF15

 APOBEC3B-AS1 3.52E−14 CENPU; MELK; PRC1; CDCA5; NUSAP1; MCM10; KIF11; CEP55

 H2AZ1-DT 4.64E−12 CENPU; MELK; PRC1; CDCA5; NUSAP1; CKS2; PBK

 TMPO-AS1 4.64E−12 PRC1; CDCA5; KIF14; DEPDC1; NUSAP1; KIF11; KIF15

 ODF2-AS1 4.91E−10 CENPF; PRC1; KIF14; MCM10; KIF11; KIF15

 POLH-AS1 4.91E−10 CENPF; KIF14; PBK; MCM10; KIF11; KIF15

 CNOT10-AS1 4.91E−10 MELK; DEPDC1; PBK; MCM10; KIF11; KIF15

 CDKN2A-DT 4.13E−08 CENPU; MELK; PRC1; DEPDC1; NUSAP1

Key lncRNAs targeting down-regulated genes (ChEA)

 PRICKLE2-AS1 1.30E−04 APC; LAMA4; PARVA

 OBI1-AS1 1.30E−04 APC; ARHGEF7; ARHGEF6

 LINC01945 1.30E−04 LAMA4; CNTN4;WNT16

 KCNAB1-AS1 0.0044345 SFRP1; MGP

 LRRC8C-DT 0.0044345 APC;ARHGEF6

 LINC02613 0.0044345 SFRP1; MGP

 LINC02150 0.0044345 APC; ARHGEF7

 LINC00583 0.0044345 SFRP1; MGP

 CYP1B1-AS1 0.0044345 COL8A1; PARVA

 LINC01581 0.0044345 LAMA4; PARVA

 ARHGEF7-IT1 0.0044345 APC; ARHGEF7

 WARS2-IT1 0.0044345 APC; ARHGEF6

 TEX26-AS1 0.0044345 LAMA4; COL8A1

 COL4A2-AS2 0.0044345 LAMA4; PARVA

 ECI2-DT 0.0044345 APC; ARHGEF6
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Figure 6.   Cluster cell type analysis. (a) Clustering of gene markers recognized by UMAP including granulosa 
cells, fibroblasts, and smooth muscle cells in the cell types. (b) Clustering of gene markers in immune cell types.
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Figure 7.   Protein expression analysis. (a) Analysis of five high-grade primary tumor (HGPT)-related gene 
markers based on the Human Protein Atlas (HPA). (b) The expression level of potential hub genes is based on 
the gene expression profiling interactive analysis (GEPIA) database.
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Figure 8.   Analysis of the overall survival (OS) of five hub genes in ovarian cancer (OC) patients. The TCGA 
database illustrates the impact of CDCA5, CKS2, CEP55, PRC1, and NUSAP1 genes on the OS rate of patients 
with OC. All five graphs contain blue low and red high TPM lines, which are normalized by GAPDH.
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Data availability
1. The datasets generated during and/or analysed during the current study are available in the [GSE DataSets 
and Human Protein Atlas] repository, [https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE18​520] and 
[https://​www.​prote​inatl​as.​org/ accession numbers, ENSG00000146670, ENSG00000138180, ENSG00000123975, 
ENSG00000198901 and ENSG00000137804]. 2. All data generated or analysed during this study are included in 
this published article (and its supplementary information files).
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