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Deconvolution reveals 
cell‑type‑specific transcriptomic 
changes in the aging mouse brain
Yingxue Ren 1*, Xue Wang 1, Shuwen Zhang 2, Hongru Hu 3, Zachary Quicksall 1, 
Sangderk Lee 4, Josh M. Morganti 4,5, Lance A. Johnson 4,6, Yan W. Asmann 1 & Na Zhao 7*

Mounting evidence highlights the crucial role of aging in the pathogenesis of Alzheimer’s disease 
(AD). We have previously explored human apoE‑targeted replacement mice across different ages 
and identified distinct molecular pathways driven by aging. However, the specific contribution 
of different brain cell types to the gene modules underlying these pathways remained elusive. To 
bridge this knowledge gap, we employed a computational deconvolution approach to examine cell‑
type‑specific gene expression profiles in major brain cell types, including astrocytes (AS), microglia 
(MG), oligodendroglia (OG), neurons (NEU), and vascular cells (VC). Our findings revealed that 
immune module genes were predominantly expressed in MG, OG, and VC. The lipid metabolism 
module genes were primarily expressed in AS, MG, and OG. The mitochondria module genes showed 
prominent expression in VC, and the synapse module genes were primarily expressed in NEU and VC. 
Furthermore, we identified intra‑ and inter‑cell‑type interactions among these module genes and 
validated their aging‑associated expression changes using published single cell studies. Our study 
dissected bulk brain transcriptomics data at the cellular level, providing a closer examination of the 
cell‑type contributions to the molecular pathways driven by aging.

Aging and Alzheimer’s disease (AD) involve intricate processes including pathways such as inflammation, lipid 
dysregulation, mitochondrial dysfunction, and synaptic  alterations1–4. The progression of these conditions is 
influenced by multiple cell types, forming a complex network of interactions that underpin disease develop-
ment. Understanding how these cell types interact is pivotal in deciphering the mechanisms driving AD and 
other aging-related diseases.

Recent advancements in single-cell and single-nuclei RNA sequencing have significantly enhanced our under-
standing of diseases at the single cell and cell-type  levels5,6. However, the high cost associated with these tech-
niques often restricts large-scale experiments necessary for investigating multiple traits of interest with robust 
statistical power. To address this limitation, deconvolution approaches have emerged, employing computational 
algorithms to estimate cell-type-specific gene expressions from bulk tissue data, leveraging reference data from 
single-cell and single-nuclei  studies7–10. These methods enable the utilization of lower-cost, larger-scale bulk 
transcriptomics datasets to gain insights into gene interactions across different cell types.

In this study, we applied a cell type deconvolution method to analyze our previously published cerebral cortex 
transcriptomics data, obtained from male and female apoE-targeted replacement (TR) mice at different ages 
(3-month-old, 12-month-old, and 24-month-old)11. In our previous work, we had reported strong aging-related 
effects, including immune responses, at bulk transcriptomic level. Using deconvoluted data, our goal of this study 
was to explore how various brain cell types collectively contribute to critical molecular pathways influenced by 
aging by examining the cell-type-specific expression of module genes associated with aging. To validate our find-
ings, we conducted comparisons between our deconvoluted data and three single-cell RNA sequencing datasets 
derived from mice of different  ages12–14. Our findings highlight the value of computational deconvolution when 
applied to bulk transcriptomics data, providing novel insights at the cellular level to enhance our understanding 
of AD and other aging-related diseases.
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Results
Computational deconvolution of bulk transcriptomics data and identification of major cell 
types
We employed  CIBERSORTx8 to perform deconvolution on our previously published bulk transcriptomics data 
generated from the cerebral cortex of apoE-TR  mice11 (Fig. 1A, Supplementary Table S1). Our deconvolution 
process included two primary levels: estimating cell type proportions within each sample and determining 
transcriptome-wide cell-type-specific expressions within each sample. To ensure the accurate assignment of 
cell types, we cross-referenced the cell-type-specific expressions of genes with an ensemble of published cell-
type-specific data and databases (proteinatlas.org)15–17. We then focused on gene modules that showed robust 
associations with aging. We assigned the genes within these modules to their respective cell types based on 
their highest cell-type-specific expressions. We then constructed intra- and inter-cell type gene co-expression 
networks within these modules. This approach allowed us to pinpoint the key cell types involved in the aging-
associated gene modules, all while exploring the interactions among genes both within and between cell types. 
To validate our findings related to aging, we conducted cross-validation using data from three published mouse 
brain single-cell RNA-seq  studies12–14.

Our analysis identified five major cell types from the bulk transcriptomics data: astrocytes (AS), microglia 
(MG), oligodendroglia (OG), neurons (NEU), and vascular cells (VC). To validate the deconvolution results, 
we compared the expression of cell type markers obtained from our analysis with known cell type marker genes 
from publicly available  data9 and confirmed the accuracy of cell type assignments (Fig. 1B).

Analysis of cell type proportions in relation to aging, APOE genotype, and sex
In our analysis of the deconvoluted data, the initial step was to compare cell type proportions among different 
age groups, APOE genotypes, and between sexes for the five distinct brain cell types. In our prior  report11, we 
observed that the transcriptomic differences between 12 and 24 months old were mild, with the most substantial 
distinction occurring between 3- and 24-month-old brains. Therefore, in this study, our focus was on compar-
ing the two age groups, specifically 3 months and 24 months old. Our analysis revealed that when comparing 
young and old brains, the only significant difference in cell proportions was within the neuronal population 
(NEU). Specifically, we identified a significant reduction in the neuronal component at 24 months compared to 
3 months, while no significant changes were observed in other cell types in relation to aging (Fig. 2A). This find-
ing is consistent with previous reports demonstrating the loss of neuronal markers, including synaptic proteins, 
in aged mice compared to young  mice18. In addition, we did not observe any significant alterations in cell type 
proportions related to APOE genotype (Fig. 2B) or between sexes (Fig. 2C).

Cell type‑specific analysis of gene modules related with immune responses
The dysregulation of the immune responses is a defining feature of  aging19 and plays a substantial role in the 
development of  AD20. In our prior study, we identified an immune gene module characterized by upregulation 
with aging and enriched for genes related to immune  responses11. To gain insights into the specific cell types and 
their associated genes driving this collective immune response, we assigned the immune module genes to different 
cell types based on their estimated cell-type-specific expressions (Fig. 3). Our analysis revealed that the immune 
module genes were predominantly expressed in microglia (MG), oligodendroglia (OG), and vascular cells (VC) 
(Fig. 3A). Pathway analysis showed that MG genes were enriched for innate immune response (-logP = 29.4), 
positive regulation of response to stimulus (-logP = 26.7), and cell activation (-logP = 17.6) (Fig. 3B). Among 

Figure 1.  Computational deconvolution of bulk transcriptomics data and identification of major cell types. (A) 
Analytical workflow. (B) Heatmap showing the expression of known cell type marker genes deconvoluted from 
our previously published bulk RNA-seq data.
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these pathways, well-known MG markers such as Trem2, Tyrobp, Cd74, Cd14, and Csf1r contributions to these 
 pathways21. OG genes also displayed enrichment in immune system processes, sharing genes with MG such as 
Stat1, Ifit1, Ifit3, and Appl2, consistent with the recent findings suggesting that OG is active immunomodulator 
in response to  disease22,23. Additionally, OG genes were implicated in specialized pathways including glial cell 
development (− logP = 7.6), myelination (− logP = 6.2), and axon ensheathment (− logP = 6.1) (Fig. 3C). Key 
genes in these pathways included Smo, Tspan2, Itgb4, Ugt8a, and Sh3tc2. Furthermore, numerous VC genes 
were co-expressed in MG and exhibited functions related to immune responses, with examples including Gbp2, 
Gbp3, P2rx7, Trim30a, and Fcer1g. VC-specific genes, on the other hand, displayed enrichment in processes such 
as hemostasis (-logP = 6), blood vessel morphogenesis (− logP = 4.9), and angiogenesis (− logP = 4) (Fig. 3D). 
Notable genes in these pathways encompassed Tgfa, Cmtm6, and Fmnl3. The complete pathway analysis results 
can be found in Supplementary Table S2.

To gain a deeper understanding of the interactions among these genes, we constructed a gene correlation 
network encompassing the three cell types. Notably, we observed strong connections between MG genes (Trem2, 
Stat1, Tyrobp, Trim30a), OG genes (Ugt8a, Itgb4, Car2), and a VC gene (Psmb9) (Fig. 3E).

To validate the age-related expression changes of these key genes and others, we calculated fold changes 
between old and young animals in MG, OG, and VC, respectively, using our deconvoluted cell-type-specific 

Figure 2.  The proportion of the five major brain cell types in each age, APOE and sex group. (A) The estimated 
cell type proportions in 3 months (3 m) and 24 months (24 m) mice. (B) The estimated cell type proportions in 
APOE2 (E2), APOE3 (E3), and APOE4 (E4) mice. (C) The estimated cell type proportions in female and male 
mice. T test was used to detect differences between groups. Bonferroni correction was applied to correct for 
multiple testing. ****p < 0.0001; n.s. not significant.
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expressions. We then compared these changes with data from three prominent mouse aging single-cell RNA 
sequencing  studies12–14 (Fig. 3F). Specifically, for the study by Ximerakis et al.12, we extracted the fold changes 
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Figure 3.  Immune gene module deconvolution. (A) Heatmap showing the expression of immune module genes 
in the five cell types. (B) Top GOs enriched in MG genes. All 3 GO terms were based on Biological Processes 
(BP) (C) Top GOs enriched in OG genes based on BP. (D) Top GOs enriched in VC genes. Hemostatis was 
based on Reactome Gene Sets, while Blood vessel morphogenesis and Angiogenesis were based on BP. (E) 
Correlation network of selected module genes from MG, OG and VC. (F) Dot plot showing gene fold changes of 
old versus young animals from our deconvoluted data, Ximerakis et al.12, Allen et al.13 and Lee et al.14. MG genes 
are denoted in pink, OG genes in gold, and VC genes in green.
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between old and young animals in each cell type as listed in their publication. In the studies of Allen et al.13, and 
Lee et al.14, we performed differential expression analyses comparing old versus young animals within each cell 
type using their respective Seurat data objects. Out of the 50 immune genes examined, 31 (62%) displayed the 
same change in expression direction with age as reported by Ximerakis et al.12, 33 (66%) exhibited consistent 
changes with aging as observed in Allen et al.13, and 26 (52%) showed similar age-related changes as reported by 
Lee et al.14. In total, 45 out of these 50 genes (90%) were validated by at least one of the single-cell studies. Addi-
tionally, 15 genes (30%) were validated by all three studies. Five genes displayed opposite changes in expression 
direction with aging compared to all three single-cell studies or were expressed in less than 10% of cells in these 
studies. These genes include Ifit3, Isg15, Csf1r, Smo, and Plxdc2 (Fig. 3F). It’s worth noting that the discrepancies 
may be attributed to variations arising from factors such as animal sexes, ages, brain regions, tissue preparations, 
and cell dissociation procedures employed in these single-cell studies.

Collectively, our deconvoluted data indicate that microglia, together with oligodendroglia and vascular cells, 
play a pivotal role in orchestrating the immune response network within the brain during the aging process.

Cell type‑specific analysis of gene modules related with lipid metabolism
Lipids play pivotal roles in cell signaling and various physiological processes within the brain and central nerv-
ous system. Disruptions in lipid homeostasis and impaired lipid metabolism have been implicated in both 
aging and AD  pathogenesis3,24. In our previous  study11, we identified an upregulated lipid metabolism module 
(part of the extracellular vesicle module) associated with aging. Given the potential relevance of these genes 
to aging and AD, we conducted further investigations focusing on this module. Our findings revealed that the 
lipid metabolism module predominantly comprised genes expressed in astrocytes (AS), microglia (MG), and 
oligodendroglia (OG) (Fig. 4A). Only a limited number of genes were attributed to neuronal population (NEU) 
and vascular cells (VC). Specifically, in AS, genes were significantly enriched for processes such as phospho-
lipid metabolism (− logP = 48.4), fatty acid metabolism (− logP = 43.9), and phosphatidylinositol metabolism 
(− logP = 24.3) (Fig. 4B). Key genes contributing to these pathways included Mboat2, Mecp2, Pik3c2a, Gpld1, 
Inpp5a, Chpt1, Ocrl, and Lpin1. In MG, genes were notably enriched for fatty acid metabolism (− logP = 25.1), 
the PPAR signaling pathway (− logP = 8.4), and the regulation of cholesterol metabolic process (− logP = 5.8) 
(Fig. 4C). Genes associated with these pathways included C3, Spp1, Pnpla7, Apobec1, Hcar2, Ggta1, and Gpx4. 
OG genes exhibited enrichment in glycerolipid metabolic processes (− logP = 41.5), phospholipid metabolic 
processes (− logP = 38.7), and sphingolipid metabolic processes (− logP = 22.1) (Fig. 4D). Genes contributing to 
these pathways encompassed Cers2, Asah1, St8sia1, Smpdl3b, and Alg2. The complete pathway analysis results 
can be found in Supplementary Table S2.

Furthermore, our correlation network analysis of module genes across all three major cell types revealed 
both intra- and inter-cellular interactions. The most robust connections were observed among AS genes (Inpp5a, 
Chpt1, Gpld1, Lpin1, and Mecp2), MG genes (Spp1, C3, and Pnpla7), and OG genes (Asah2 and Cers2) (Fig. 4E).

To validate the aging-associated expression changes of these key genes, we again compared fold changes 
between old and young animals in our deconvoluted data with the three single-cell RNA sequencing  studies12–14. 
We found that, out of the 38 lipid metabolism genes, 25 (65.7%) exhibited consistent directional changes with 
age as reported by Ximerakis et al.12, 17 (44.7%) with Allen et al.13, and 14 (36.8%) with Lee et al.14. In total, 34 
out of these 38 genes (89.5%) were validated by at least one single-cell study. Of note, two genes—Lpin1 and 
Nus1—were validated by all three studies, while four genes displayed opposite aging-related changes compared 
to these three single-cell studies or were expressed in less than 10% of cells in these single-cell studies, including 
Pigv, Fitm2, Smpdl3b, and Bdh2 (Fig. 4F).

Altogether, our deconvoluted data indicate both similarities and differences in lipid dysregulation across vari-
ous cell types. Further investigation is required to elucidate how these lipid changes influence cellular functions.

Cell type‑specific analysis of gene modules related with mitochondrial function
Mitochondrial dysfunction and diminished energy metabolism are prominent neuropathological characteristics 
of  AD25 and represent key hallmarks of the aging  process26. In our prior research, we identified a module of genes 
associated with mitochondria that displayed a downregulation pattern with aging and enriched for respiratory 
chain pathways. Notably, our deconvolution analyses revealed that these genes were predominantly expressed 
in vascular cells (VC) (Fig. 5A). This module comprised pivotal hub genes (Fig. 5B), including members of 
the Cytochrome C Oxidase gene family such as Cox6a1, Cox7a2, Cox8a, and Cox7b, alongside genes from the 
mitochondrial NADH: ubiquinone oxidoreductase gene family, including Ndufa1, Ndufa8, Ndufb3, and Ndufb6. 
Additionally, prominent genes from the Ubiquinol-Cytochrome C Reductase gene family, such as Uqcrb and 
Uqcr10, were also featured within this module (Fig. 5B).

The further validation with the three single-cell RNA sequencing studies showed that, among the 28 mito-
chondria function genes, 23 (82.1%) exhibited concordant changes with age as reported by Ximerakis et al.12, 
6 genes (21.4%) aligned with Allen et al.13, and 16 genes (57.1%) were consistent with Lee et al.14 (Fig. 5C). 
Importantly, 26 out of these 28 genes (92.9%) were validated by at least one single-cell study. Two genes, Cox7a1 
and Cox7b2, displayed opposing changes with aging when compared to these three single-cell studies or were 
expressed in less than 10% of cells in these single-cell studies. It is worth noting that the module of mitochon-
dria-related genes exhibited the most variation when compared to Allen et al.13. This divergence is likely due to 
inadequate sampling of certain vascular cell types, including pericytes and endothelial cells, in the Allen et al.13 
study, potentially leading to inaccuracies in gene expression profiling.

Overall, the consistent downregulation of these mitochondrial function genes with aging, as reported in our 
study and corroborated by Ximerakis et al.12 and Lee et al.14, aligns with the established notion that impaired 
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mitochondrial signaling in the endothelium constitutes an early event in the aging process and contributes caus-
ally to the development of various age-related  diseases27.

Cell type‑specific analysis of gene modules related with synapses
Accumulated research over the years has firmly established that synaptic transmission undergoes changes as 
individuals age. Indeed, studies have shown that genes regulated by age are associated with synaptic  functions28. 
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Figure 4.  Lipid metabolism gene module deconvolution. (A) Heatmap showing the lipid metabolism module 
genes in the five cell types. (B) Top GOs enriched in AS genes. All 3 GO terms were based on Biological 
Processes (BP). (C) Top GOs enriched in MG genes. Fatty acid metabolic process and Regulation of cholesterol 
metabolic process were based on BP, while PPAR signaling pathway was based on WikiPathways. (D) Top GOs 
enriched in OG genes based on BP. (E) Correlation network of selected module genes from AS, MG and OG. (F) 
Dot plot showing gene fold changes of old versus young animals from our deconvoluted data, Ximerakis et al.12, 
Allen et al.13, and Lee et al.14. AS genes are denoted in dark blue, MG genes in pink, and OG genes in gold.
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In our investigation, we deconvoluted the synapse module, which exhibited downregulation with aging. Our 
analysis revealed that the majority of genes within this module were expressed in neurons (NEU), with some also 
expressed in vascular cells (VC) (Fig. 6A). A subset of genes was associated with astrocytes (AS), demonstrating 
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Figure 5.  Mitochondria gene module deconvolution. (A) Heatmap showing the respiration chain module 
genes in the five cell types. (B) Correlation network of VC genes. (C) Dot plot showing gene fold changes of old 
versus young animals from our deconvoluted data, Ximerakis et al.12, Allen et al.13, and Lee et al.14. VC genes are 
denoted in green.
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overlapping expression with the neuronal population (Fig. 6A). Key hub genes within this synapse module 
included Madd, Shank2, Baiap2, Nrcam, and Dmtn, all from NEU (Fig. 6B).

In the validation with single-cell RNA sequencing data sets, we found that out of the 30 neuronal genes, 21 
(70%) exhibited consistent directional changes with Ximerakis et al.12, and 15 (53.3%) with Allen et al.13. Of note, 
there were not many genes captured by Lee et al.14 due to the lack of neuronal population in this dataset. In total, 
27 out of these 30 neuronal genes (90%) were validated by at least one single-cell study (Fig. 6C). Three genes 
displayed opposing changes with aging compared to these three single-cell studies or were expressed in less than 
10% of cells in these single-cell studies, including Lzts3, Oprd1, and Pak1. Regarding the genes associated with 
vascular cells (VC), our validation using all three single-cell studies indicated that 3 out of the total 9 (33.3%) 
VC genes exhibited consistent aging-related changes with Ximerakis et al.12, 8 (88.9%) with Allen et al.13, and 5 
(55.6%) showed similar aging-related changes with Lee et al.14. In total, 8 out of 9 VC genes (88.9%) were validated 
by at least one single-cell study, with gene Adrbk1 being the only exception, showing opposite changes with aging 
compared to these three single-cell studies or being expressed in less than 10% of cells in these single-cell studies.

Together, these data provide support for the concept of synaptic alterations occurring with aging, as well as 
for the critical network changes of neurovascular coupling and neuronal-glial-endothelial interactions observed 
during  aging29,30.

Discussion
In this study, we applied cell type deconvolution to bulk RNA sequencing data from apoE-TR mice to identify 
key cell types involved in gene modules related to aging. We also explored the molecular pathways and interac-
tions between module genes within and across cell types. Additionally, we identified hub genes with significant 
connections to others, providing a further understanding of the contributions of different cell types to important 
aging-regulated pathways. Most of our deconvoluted aging-associated gene expression changes were validated 
by one or more previously published single cell studies.

During the aging process, the brain undergoes various immune responses, such as neuroinflammation, micro-
glial activation, blood–brain barrier dysfunction, myelin disintegration, immune cell senescence, and altered 
interactions between immune cells and other brain  cells2. These immune changes contribute to cognitive decline 
and increase the risk of neurodegenerative diseases. Our deconvolution data consistently highlights the involve-
ment of microglia, oligodendrocytes, and vascular cells in the immune response during aging. It was reported 
that microglia and oligodendrocytes have mutual interactions and influence each other’s  functions31. Microglia 
play a role in modulating immune responses and impacting the survival and differentiation of oligodendrocytes. 
Additionally, brain vascular cells, including endothelial cells and pericytes, have a dual role in maintaining the 
integrity of the blood–brain barrier and participating in immune  responses32. They interact with immune cells 
and influence inflammation in the brain. Further understanding the intricate crosstalk among these brain cells 
and their interactions with immune responses is crucial for unraveling disease mechanisms and developing 
targeted therapies.

Furthermore, our deconvolution analysis reveals dysregulation of lipids in astrocytes, microglia, and oligoden-
drocytes, with variations in the specific lipid processes involved in each cell type. Both astrocytes and microglia 
show affected fatty acid metabolism, which has been linked to  neuroinflammation33–35. It was reported that the 
pro-inflammatory microglia suppress fatty acid oxidation and synthesis, while anti-inflammatory microglia 
enhance these  processes35. Additionally, microglia show dysregulation in the PPAR signaling pathway, known 
to modulate microglial innate immunity and fatty acid  metabolism36,37. These findings suggest a potential link 
between lipid dysregulation and neuroinflammation in astrocytes and microglia. In oligodendrocytes, we observe 
dysregulation in glycerolipid, phospholipid, and sphingolipid processes. While the understanding of glycerolipid 
metabolism in oligodendrocytes is limited, it is crucial to acknowledge the significant roles of phospholipids and 
sphingolipids in myelin  composition38,39. Importantly, lipid metabolism in oligodendrocytes has been implicated 
in the development of demyelination, a key factor contributing to the risk of  AD40. Taken together, these findings 
highlight age-related lipid dysregulation that may contribute to neuroinflammation and demyelination during 
the aging process and in AD.

Mitochondrial dysfunction is a key feature of aging, characterized by structural and functional changes in 
the  mitochondria2. This leads to reduced energy production, increased production of reactive oxygen species, 
and impaired mitochondrial quality control. Interestingly, our deconvolution data suggests strong mitochondrial 
respiration dysregulation in brain vascular cells. It is known that endothelial mitochondrial dysfunction is an 
important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis 
 development41. These changes can also disrupt the integrity and function of the blood–brain barrier, resulting 
in increased permeability and inflammation in the brain.

Our deconvoluted data imply that the downregulated synapse module with aging includes genes primarily 
originating from neurons, vascular cells, and astrocytes. This suggests that during the aging process, it’s not just 
neurons experiencing synaptic loss; the interactions or networks between neurons, glial cells, and vascular cells 
are also disrupted. This observation aligns well with our current understanding that the brain is a complex tis-
sue, where vascular cells and glial cells closely collaborate with neurons to maintain brain  functions29,30. These 
network gene changes can be challenging to detect in single-cell RNA sequencing data if specific cell types are 
not adequately captured during the cell isolation process.

In our prior study, we reported several gene module changes associated with the APOE genotype, including 
lysosome functions and RNA  splicing11. However, our deconvolution results indicate that the majority of these 
genes are attributed to neurons (data not shown). Unfortunately, because the neuronal population was not 
adequately represented in our single-cell validation  dataset14, we were unable to validate and present this data 
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in the current study. Therefore, the analysis and validation of APOE genotype-related gene module changes will 
be a subject of future investigation.
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Figure 6.  Synapse gene module deconvolution. (A) Heatmap showing the synapse module genes in the five 
cell types. (B) Correlation network of NEU genes. (C) Dot plot showing gene fold changes of old versus young 
animals from our deconvoluted data, Ximerakis et al.12, Allen et al.13 and Lee et al.14. NEU genes are denoted in 
purple, and VC genes in green.
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It has long been recognized that cell heterogeneity in tissue samples leads to the caveat in bulk RNA sequenc-
ing experiments that it is often hard to dissociate true transcriptomics landscape changes from the contribution 
of cell types. In the study of diseases where certain cell types play a major role in disease pathogenesis, cell-type 
specific information is particularly pertinent. Computational deconvolution methods have the unique advantage 
of being readily available as open-source packages, and can be applied to old or previously published data where 
samples are no longer available or difficult to re-obtain. The success of our application of the deconvolution 
algorithm in this study serves as proof of principal for the potential of applying computational deconvolution 
methods to the vast available bulk public dataset to gain novel insights of disease mechanisms.

Limitations of the study
Our study has several limitations, some of which are inherent to the use of computational deconvolution. First, 
it is important to acknowledge that computational methods are susceptible to generating false positives. In our 
case, the transition from bulk gene expression to cell-type-specific gene expression involved multiple layers of 
machine learning processes, which collectively could lead to inaccurate estimations of gene expression in cer-
tain cell types. To mitigate this, it is essential to cross-reference our results with publicly available databases and 
existing literature, ensuring that we identify and rectify any such estimations and avoid overgeneralization of 
our findings. For genes with limited public information, experimental validations, such as co-staining, will be 
crucial to confirm the accuracy of the sample-level deconvolution results in the future. Second, it’s important to 
recognize that different computational deconvolution algorithms may be better suited for specific types of bulk 
transcriptomics data. Many deconvolution methods have been developed for or evaluated on blood, immune, 
or tumor samples, and their performance may not be equivalent for tissues with high complexity, such as the 
 brain7,10,42. Depending on the specific characteristics of the bulk tissue being studied, it becomes imperative to 
carefully evaluate the choice of deconvolution method and exercise caution in its application. Acknowledging 
these limitations, future study should aim to minimize potential errors through rigorous validation strategies. It 
is also important to critically interpret our findings within the context of existing knowledge, recognizing that 
computational deconvolution, while a powerful tool, must be employed judiciously and complemented with 
experimental evidence when necessary.

Methods
Dataset description
We used our previously published cerebral cortex transcriptomics data of 141 apoE-TR animals, including male 
and female APOE2, APOE3 and APOE4 mice at 3, 12, and 24 months of  age11. The animal husbandry, tissue 
processing, RNA extraction, RNA sequencing, quality control and gene count normalization were previously 
 described11. The CQN normalized RPKM gene expression values of 19,120 genes were used for deconvolution 
analyses.

Cell type deconvolution and gene correlation network analysis
We used the CIBERSORTx algorithm high resolution mode to deconvoluted the bulk transcriptomics data based 
on the author’s  recommendations8. Specifically, we used the mouse brain single cell RNA sequencing data from 
GSE129788 to construct the single cell signature gene matrix due to the data’s close match in both age and brain 
region to our bulk  data12. From the cell-type-specific gene expression results, we removed genes that were either 
“NA” or “− 1”, or had the same deconvoluted expression values across all samples, which indicated insufficient 
evidence of estimation. Module genes were scaled and visualized via hierarchical clustering in heatmaps using 
the ComplexHeatmap R  package43. Pathway analyses of cell type specific module genes were performed using 
Metascape (https:// metas cape. org)44. Gene correlation network analysis of selected modules were performed 
using  WGCNA45,46 and visualized using Cytoscape version v3.10.047.

Validation of cell‑type‑specific module genes using public data
To validate the deconvoluted cell-type-specific modules genes, we compared their cell type assignments against 
the following sources: (1) top 50 mouse brain cell type marker genes from each brain cell type from the BRETI-
GEA R package, which compared and contrasted five human and mouse cell type-specific transcriptomics data-
sets to identify consensus brain cell-type marker  genes9, (2) brain single cell RNA sequencing expression profiles 
from the Human Brain Atlas v22.0 (proteinatlas.org), (3) published mouse brain MG gene expression profiles 
across different activation  states15, (4) published AS gene expression profiles in mouse brain cortical  regions16, 
and (5) published OG gene expression profiles across various mouse brain  regions17.

To validate aging-associated changes in our cell-type-specific module genes, we compared fold changes of old 
versus young animals between our deconvoluted data and three prominent mouse aging single cell  studies12–14. 
For our deconvoluted genes in each cell type, fold changes were calculated between 24 and 3 months using an 
ANOVA model while adjusting for APOE genotype and sex. The fold changes between old (21–23 months) and 
young (2–3 month) mice from Ximerakis et al.12 were obtained from their supplementary Table 6, which was 
calculated using the MAST  model48 for each annotated single cell type. To calculate fold changes in Allen et al.13, 
we downloaded the integrated and annotated R data object GSE207848_Cell.rds from CELL x GENE repository 
(https:// cellx gene. czisc ience. com/ colle ctions/ 31937 775- 0602- 4e52- a799- b6acd d2bac 2e), and used the MAST 
model to compare 90 weeks (22.5 months) and 4 weeks (1 month) for each single cell type using Seurat version 
 549. To calculate fold changes in Lee et al.14, we obtained the integrated and annotated R data file from the authors 
and used the MAST model to compare 24 months and 3 months for each single cell type while adjusting for 
APOE genotype using Seurat version 5.

https://metascape.org
https://cellxgene.cziscience.com/collections/31937775-0602-4e52-a799-b6acdd2bac2e
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Data availability
The bulk transcriptomics data that were deconvoluted in this study are available on Synapse: https:// doi. org/ 10. 
7303/ syn20 808171.
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