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A virus infection can be initiated with very few or even a single infectious virion, and as such can 
become extinct, i.e. stochastically fail to take hold or spread significantly. There are many ways that 
a fully competent infectious virion, having successfully entered a cell, can fail to cause a productive 
infection, i.e. one that yields infectious virus progeny. Though many stochastic models (SMs) have 
been developed and used to estimate a virus infection’s establishment probability, these typically 
neglect infection failure post virus entry. The SM presented herein introduces parameter γ ∈ (0, 1] 
which corresponds to the probability that a virion’s entry into a cell will result in a productive cell 
infection. We derive an expression for the likelihood of infection establishment in this new SM, and 
find that prophylactic therapy with an antiviral reducing γ is at least as good or better at decreasing 
the establishment probability, compared to antivirals reducing the rates of virus production or virus 
entry into cells, irrespective of the SM parameters. We investigate the difference in the fraction of 
cells consumed by so-called extinct versus established virus infections, and find that this distinction 
becomes biologically meaningless as the probability of establishment approaches zero. We explain 
why the release of virions continuously over an infectious cell’s lifespan, rather than as a single 
burst at the end of the cell’s lifespan, does not result in an increased risk of infection extinction. We 
show, instead, that the number of virus released, not the timing of the release, affects infection 
establishment and associated critical antiviral efficacy.

Typically, mathematical models describing the course of a virus infection within a host (in vivo) or a cell culture 
(in vitro) express the number of cells and infectious virions (virus particles) as real positive numbers (continu-
ous), and infection events as deterministic, e.g. one virion infects 0.2 cell. By nature, however, the number of 
cells and virions are whole numbers (discrete) and infection events are stochastic, e.g. one virion will infect one 
cell 20% of the time. When dealing with large numbers of infectious virions and cells, stochastic fluctuations can 
become negligible, and the continuous, deterministic, mean-field approach can provide an accurate representa-
tion of the kinetics of interest. Yet the small number regime arises commonly. For example, antiviral therapy can 
reduce the effective number of infection-capable virions to near or below unity. In such cases, random fluctua-
tions could have an important effect on the time course and outcome of an infection.

Several stochastic models (SMs) of virus infection kinetics have been proposed to date, e.g.1–7. Notably, Heldt 
et al.4 predicted with an intracellular SM that most cells inoculated with a single infectious virion would result 
in a non-productive cell infection. But extracellular SMs typically do not account for cell infection failure post 
virus entry. When it has been included only some lethal replication errors were represented, e.g. lethal reverse 
transcription errors  only6. In fact, there are many ways that infectious virions post cell entry can fail to cause a 
cell infection that will produce fully infectious progeny. Fig. 1 illustrates early steps of human immunodeficiency 
virus (HIV) and influenza A virus (IAV) replication and associated opportunities for abortive cell infections.

For HIV, entry begins with successful binding to the cell surface, followed by fusion of the virus membrane 
with the cell surface. Yet sometimes virions can be taken in via the endocytic  route8. In this case, virions can 
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fail to fuse with late endosomes and eventually be  degraded9. Or, if there is successful entry, virions can still be 
degraded in the  cytosol10. The virus can also fail to be imported into the  nucleus11,12. In addition, fatal mutations 
can be acquired during reverse  transcription13, when viral RNA is transcribed into complementary DNA (cDNA) 
which is used to make typically a single copy of viral DNA for integration. Finally, failure may also be the result 
of host cell mechanisms that interfere with early replication  steps14,15.

For IAV, entry begins with successful binding to the cell surface, followed by internalization by endocytosis. 
Failure to undergo fusion with late endosomes can then  occur16,17. If uncoating happens, released viral ribonu-
cleoproteins (vRNPs) containing the viral RNA segments could be subject to RNA degradation in the  cytosol18 or 
fail to enter the  nucleus17,19. Degradation of one or more genome segments, following nuclear import and prior 
to transcription could also  occur4. Since each genome segment encodes at least one viral protein, degradation of 
only one of them means failure to cause a productive cell infection. There is also a multitude of host cell mecha-
nisms that can impair early steps of virus  replication20–22 and these may be yet more potential sources for failure.

These are just some of the ways in which otherwise fully physically infectious virions could, through random 
chance, fail to complete a key step following cell entry. In addition to such stochastic occurrences in fully func-
tional virions, a number of entry capable virions could have physical defects that prevents them from completing 
one or more key replication steps, leaving them physically unable to cause a productive infection. As such, failure 
of productive cell infection post virus entry is a combination of both the stochastic post-entry failure of otherwise 
fully infectious virions, and the inevitable failure of replication defective, entry capable virions.

Figure 1.  Early steps of HIV and IAV replication and possible routes of abortive cell infections. (A) An HIV 
virion attaches to the cell surface (Step 1), and can enter by direct fusion of the virus membrane with the cell 
surface (Step 2a) or be endocytosed (Step 2b). Endosomal fusion can be successful and the virus genomic 
material is released into the cell (Step 3) or fails and the virus-containing endosome is eventually degraded (Step 
3f). Following successful entry, the virus genomic material can be imported into the nucleus (Step 4) or fail to 
do so and eventually be subject to degradation (Step 4f). Reverse transcription, i.e. viral RNA is converted to 
viral DNA, either proceeds successfully (Step 5) or fatal errors are introduced into the viral DNA during reverse 
transcription (Step 5f). Once in the nucleus, viral DNA is integrated into the cell DNA (Step 6) and can later 
be used for virus replication. (B) An IAV virion attaches to the cell surface (Step 1). The virion then enters by 
endocytosis (Step 2). Next, endosomal fusion can be successful (Step 3) or fail (Step 3f). If fusion is successful, 
the released viral ribonucleoproteins (vRNPs) containing the viral RNA segments can either all be imported 
into the nucleus (Step 4) or some might fail to enter the nucleus and be degraded (Step 4f). Once vRNPs are 
inside the nucleus, virus replication is then initiated. For both viruses, as the number of copies of viral RNA and 
proteins grow during replication, it becomes increasingly unlikely that the cell infection will fail to produce any 
infectious progeny.
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A common, important application of SMs is to estimate the extinction probability of an infection: the likeli-
hood that the infection will fail to take hold or spread significantly. It typically depends on both the replication 
capabilities of the virus (i.e. infection parameters) and the initial number of infectious virions or cells. The 
extinction probability is an important quantity to derive as it can, for example, be used to evaluate the probability 
of success of antiviral  therapy3,23. In particular, Czuppon et al.23 compared the ability of prophylactic antivirals 
acting either on the rate of virus entry into cell or the rate of virus production, to reduce the establishment prob-
ability, or 1−(extinction probability), of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 
in vivo. However, the effect of certain classes of antivirals, such as endosomal fusion inhibitors, would be better 
represented as reducing the probability that, having successfully entered a cell, a virion will go on to cause the 
productive infection of that cell. For IAV, it would be a more appropriate way to represent the mode of action 
of adamantanes, such as amantadine and rimantadine which block the M2 ion channel necessary for successful 
fusion of IAV with the  endosome24,25. For SARS-CoV-2, it has been suggested that cathepsin L inhibitors can 
reduce the probability of successful endosomal  fusion26. Failure to undergo endosomal fusion would lead to loss 
of the infectious virion, but would not result in a productive cell infection.

Although the extinction probability is often an important consideration in comparing prophylactic antivirals, 
what is never discussed is the number or fraction of cells that are actually consumed by infections that are said to 
have gone “extinct” or to have “established”. It is possible that antivirals with different modes of action, even with 
the same extinction probability, could result in a very different fraction of cells consumed by so-called established 
or extinct infections. This would have important implications for how one should interpret the probability of 
success of a particular antiviral therapy.

In addition, nearly all SMs, including past works that used the extinction probability to evaluate the prob-
ability of success of antiviral  therapy3,23, assume the duration of the infectious phase, the period during which 
infected cells are producing and releasing virus progeny, to be exponentially distributed. Careful pairing of 
mathematical models and experimental measurements has established that the duration of the infectious phase 
in vitro for cells infected with  IAV27, simian  HIV28, or Ebola  virus29, follows a log-normal or normal-like distri-
bution, and has clearly rejected the probability of an exponentially distributed infectious phase duration. Yan 
et al.5 estimated the extinction probability for a SM of IAV infection in vivo that allowed the lifespan of infec-
tious cells to follow an Erlang distribution which, via its shape parameter (k), can capture exponential ( k = 1 ), 
log-normal-like ( k ∼ [1, 6] ), normal-like ( k > 10 ), and even Dirac delta-like ( k → ∞ ) distributions. Yan et al.5 
have shown that increasing the shape parameter (k) from exponential to log-normal leads to a decrease in the 
extinction probability given an infection initiated with a number of infectious virions. Hence, the distribution 
of the infectious phase duration is also expected to affect the likelihood that an infection will become established 
under antiviral therapy.

In this work, we construct a SM for virus infection through the physical consideration of key infection steps, 
rather than through a systematic, direct mathematical conversion of our mean-field model. Our SM explicitly 
represents the probability that a virion, after having successfully entered a cell, will fail to result in the productive 
infection of that cell. The SM is first used to estimate the extinction probability of an infection. Extending work 
by Czuppon et al.23, we show that prophylactic therapy with an antiviral that blocks productive cell infection after 
virus entry, is better at reducing the establishment probability, than one reducing either the virus production rate 
or the rate of virus entry into cells. In addition, we investigate the difference in the fraction of cells consumed by 
so-called extinct versus established infections, and re-visit the comparison of antivirals through this new lens. 
Finally, we demonstrate how the antiviral efficacy required to achieve a desired infection extinction probability 
critically depends on the assumed distribution of the infectious phase duration.

Results
The mathematical models
The mean-field mathematical model (MFM), its stochastic counterpart, and associated infection parameters are 
illustrated in Fig. 2. Mathematically, the MFM and SM are given by

Initially, all cells are uninfected, susceptible target cells, T, i.e. T(t = 0) = Ncells , which are exposed to an initial 
dose of V(t = 0) = V0 infectious virions. As target cells, T, encounter infectious virions, V, in the supernatant 
of a cell culture, a tissue, or an organ compartment of volume s , some become infected ( T → E1 ). The rate of 
successful cell infections by infectious virions is γβV/s , which depends on the concentration of infectious 
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virions V/s . When a cell becomes infected, it enters ( T → E1 ) and traverses ( E1 → E2 → . . . → EnE ) the nE 
compartments of the eclipse phase, during which it is infected but not yet producing infectious virions. The 
infected cell then enters ( EnE → I1 ) and traverses ( I1 → I2 → . . . → InI ) the infectious phase, during which it 
produces infectious virions at constant rate p. When an infected cell leaves the last compartment ( InI ), it ceases 
virus production and thus ceases to contribute to the infection kinetics, and possibly undergoes apoptosis. The 
exponentially distributed durations of the nE eclipse (or nI infectious) phase compartments together yield an 
Erlang distributed total duration for the eclipse (or infectious) phase of mean duration τE (or τI ), and standard 
deviation τE/

√
nE  (or τI/

√
nI  ), where nE (or nI ) corresponds to the shape parameter of the Erlang distribution. 

These compartments are not meant to correspond to particular biological states. Rather, they offer a mathemati-
cally and computationally expeditious way (compared to delayed, partial or integro-differential  equations27,30) to 
implement biologically realistic durations for the time spent by infected cells in the eclipse and infectious phases 
(e.g., normal and lognormal  distributions28,29,31).

Infectious virions (V) are produced at a constant rate of p per infectious cell, and are lost either through loss 
of infectivity at rate c, or irreversible commitment to entry into susceptible cells at rate βT/s . Here, βT/s is not 
meant to represent the rate of virus loss due to cell attachment because attachment is a reversible process: viri-
ons can still either detach and re-join the pool of virions in the extracellular space or irreversibly enter the cell. 
Instead, given the ongoing kinetics of virus attachment/detachment, βT/s represents the net rate at which virions 
irreversibly commit to cell entry, i.e. pass the point of no return from which they cannot re-enter the extracellular 
space. For brevity, we will refer to β hereafter simply as the rate of virus loss due to cell entry.

This MFM is similar to that widely validated and applied to analyze and predict the course of in vitro infec-
tions with  IAV32–34, simian  HIV28, Ebola  virus29,  RSV35 and  rotavirus36. It differs from our previous MFM by 
explicitly accounting for the loss of infectious virions due to cell entry (term −βTV/s in the dV/dt equation), 
previously considered by  others2,5,37,38. This loss of infectious virions due to cell entry causes a corresponding 
loss of uninfected target cells becoming infected ( T → E1 ) at rate γβTV/s . Parameter γ therefore has units of 
cell per infectious virion (IV), where γ ∈ (0, 1] cell/IV , and corresponds to the average fraction of infectious 
virion entries into a cell that results in the successful, productive infection of that cell ( T → E1 ). This additional 
parameter γ distinguishes our work from past  work2,5,37,38 where it has been assumed that the loss of one infec-
tious virion due to cell entry always inevitably leads to the successful infection of one cell, i.e. γ = 1 infected 
cell per infectious virion entry. We use this assumption as our base parameter value for γ throughout the work 
presented herein.

Biologically, γ accounts for several different causes of infection failure after a virion has irreversibly committed 
to entry into a cell, e.g. Fig. 1. It can represent semi-infectious virions that are entry-competent, but are defec-
tive in their ability to complete another downstream step, e.g. are missing one or more viral genome segment or 
have deleterious genetic mutations. It can also represent fully infectious virions that are not defective but rather, 
through random chance, fail to achieve a key step they could have functionally achieved, e.g. 50% of influenza 
A virions failing to fuse with endosome membrane following cell  entry16,39. Herein it is assumed that when an 
infectious virion enters a cell, the cell will either be successfully infected ( T → E1 ) with probability γ , or remain 

Figure 2.  Representation of the mathematical models. (1) As uninfected, susceptible target cells (T) interact 
with infectious virions (V) over time, some portion of the latter ( V enter ) irreversibly enter some of the available 
target cells, at rate βTV/s . (2) Out of these, a fraction γ ∈ (0, 1] will cause the successful infection of N inf  
target cells, while infection failure of the remaining fraction (1− γ ) leaves cells in their uninfected state. (3) 
A newly infected cell will first enter the eclipse phase, and (4) then transition into the infectious phase during 
which it produces infectious virions at an average rate p, before (5) ultimately ceasing virus production and 
possibly undergoing apoptosis. (6) At each time step in the SM, a random number of newly produced infectious 
virions ( Vprod ) are released into the medium or organ compartment of volume s , increasing the infectious virus 
concentration already present, while Vdecay infectious virions will lose infectivity, and another V enter will be lost 
to irreversible cell entry. Terms like βTV/s , nE/τE , nI/τI , pI, and cV represent the rates at which events take 
place in the MFM, whereas terms like V enter , Eouti  , Ioutj  , Vprod , and Vdecay correspond to the random number of 
such events over one time step of the SM (see Table 1).
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uninfected (T) with probability 1− γ . Failed infections are assumed to have no significant effect, leaving the 
uninfected cell exactly as they found it in state T. Upon infection, we assume the cell becomes instantaneously 
unavailable for co-infection, i.e. virions are lost through entry into target cells only, and cannot enter infected 
cells. As such, we do not attempt to represent the case of co-infection of a cell by semi-infectious, segmented 
RNA virions, each with an incomplete set of functional genome segments, which together have a complete set 
and are thus able to cause a productive cell  infection40,41. We also do not include defective interfering particle 
 production42. Since our work focuses on infections starting from very few infectious virions, where random-
ness plays a meaningful role, the likelihood of cell co-infection and these associated effects should be negligible.

The SM is largely analogous to the MFM, where SM variables, e.g. Tt the number of target cells at time t, 
each denoted with a superscript t, are whole numbers. The remaining terms, corresponding to changes in these 
variables, are random whole numbers drawn at each time step from distributions thought to best represent the 
corresponding underlying biological process (see Methods). Table 1 summarizes how each random variable is 
generated.

Important biological quantities
Following Pearson et al.2, let us define PV→Extinction and PI→Extinction as the probability of infection extinction 
given an infection initiated with either only one infectious virion or only one infectious cell, respectively. We 
now rewrite the derivation from Pearson et al.2 for these quantities, in the context of our SM and its associated 
parameter notation. Unless otherwise stated, equivalent equations can be found in Pearson et al.2.

The extinction probability given any initial number V0 of infectious virions and I0 of infectious cells is 
(PV→Extinction)

V0 · (PI→Extinction)
I0 . If initially there is only one infectious virion, the infection can fail to spread 

if either that initial infectious virion fails to cause a successful cell infection with probability 1− PV→ I , or if it 
does cause a successful cell infection with probability PV→ I but that cell infection subsequently leads to extinc-
tion with probability PI→Extinction . We can therefore write

If initially there is only one infectious cell, the cell will produce m infectious virions over its lifespan with prob-
ability PI→mV . Each one of these produced infectious virions can be treated as an independent infection event 
such that,

Taken together, the extinction probability given an infection initiated with only one infectious virion, 
PV→Extinction , yields the implicit relation

The probability that an infectious virion is successful at causing a productive cell infection, PV→ I , can be 
expressed as the ratio between the rate of successful cell infection per infectious virion γβNcells/s and the rate of 
virion loss through loss of infectivity plus cell entry, c + βNcells/s (see Methods for derivation), namely,

This expression reduces to that presented in Pearson et al.2 when one assumes that the loss of one infectious 
virion due to cell entry always results in the infection of one cell, i.e. γ = 1 cell/IV.

The probability that an infectious cell produces m infectious virions over its lifespan, PI→mV  , can be 
expressed as the marginal probability distribution of the probability that an infectious cell produces m infec-
tious virions given a lifespan of length t, Poisson(m|� = pt) , and the probability that the lifespan is of length t, 
Erlang(t|k = nI , � = nI/τI ) . Therefore,

(2)PV→Extinction = (1− PV→ I )+ PV→ I · PI→Extinction .

(3)PI→Extinction =
∞
∑

m=0

PI→mV · (PV→Extinction)
m .

(4)PV→Extinction = (1− PV→ I )+ PV→ I ·
∞
∑

m=0

PI→mV · (PV→Extinction)
m .

(5)PV→ I =
γβNcells/s

c + βNcells/s
=

γ

1+ c/(βNcells/s)
.

Table 1.  Random variables of the stochastic model. † N inf  is equal to the cardinality, i.e. the number of unique 
elements, in the set of V suc random numbers drawn from the discrete uniform distribution over the interval 
[1,Tt ].

Random variable Random number generator

Eouti Binomial(n = Eti , pE = �t · nE/τE) where i = 1, 2, ..., nE

Ioutj Binomial(n = Itj , pI = �t · nI/τI ) where j = 1, 2, ..., nI

Vprod Poisson(� = �t · p
∑nI

j=1 I
t
j )

Vdecay,V enter, otherwise Trinomial(n = Vt , p1 = �t · c, p2 = �t · βTt/s, p3 = 1− p1 − p2)

N inf
|{xi |xi ∈ U{a = 1, b = Tt }, 1 ≤ i ≤ V suc}|†

where V suc = Binomial(n = V enter, pV = γ )
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where NB stands for the negative binomial (or Pascal) distribution and describes the probability that m successes 
will have occurred by the time one has observed r = nI failures from a series of independent Bernoulli trials 
with a probability of success pB (see Methods for derivation). The mean of the distribution corresponds to the 
average burst size, B = pτI , i.e. the average number of infectious virions produced by a productively infected 
cell over its lifespan, with p the rate of infectious virion production per cell and τI the average infectious cell 
lifespan. This expression for PI→mV is novel, and it does not have a corresponding equation in Pearson et al.2.

Combining the mean number of infectious virions produced by a productively infected cell, B , and the prob-
ability that each of them causes the infection of a cell, PV→ I (Eq. 5), we obtain the average basic reproductive 
number ( R0 ), defined as the average number of productive secondary infections caused by an infected cell over 
its lifespan when placed within a fully susceptible and uninfected cell population,

Substituting Eqs. (5) and (6) into Eq. (4) results in the following expression for PV→Extinction

While Eq. (8) does not lead to an analytical solution for PV→Extinction , a solution can easily be obtained numeri-
cally (see Methods). The probability of infection establishment given an infection initiated with only one infec-
tious virion, PV→Establishment , is simply 1− PV→Extinction.

Effectiveness of antivirals to reduce an infection’s establishment probability
Prophylactic antiviral therapies are often characterized and compared in terms of their ability to reduce an infec-
tion’s establishment probability. This is because for natural infections in a host, the initial virus inoculum can 
be sufficiently small that prophylactic antiviral therapy can prevent infection, i.e. induce infection extinction.

Recently, Czuppon et al.23 used a SM to evaluate the effectiveness of prophylactic treatment with antivirals 
reducing the rate of virus entry into cells sometimes called the virus infectivity rate, herein β , or the virus pro-
duction rate, p, to reduce the establishment probability for a SARS-CoV-2 infection in vivo initiated by a small 
number of infectious virions. But an endosomal fusion inhibitor (e.g. cathepsin L inhibitors for SARS-CoV-226) 
would not affect the rate of removal of infectious virions from the medium (i.e. it leaves β unaffected), but by 
enhancing fusion failure post cell entry, it would prevent the cell from progressing to a productively infectious 
state, hence blocking 100% of virion progeny production. Using our SM, which can explicitly represent produc-
tive infection failure post virus entry via parameter γ , we extend Czuppon’s investigation to evaluate how such 
an antiviral would compare against those reducing β or p. Fig. 3 illustrates the different antiviral modes of action 
considered herein.

Figure 4 shows the establishment probability given an infection initiated with only one infectious virion as 
a function of the efficacy ( ε ) for antivirals reducing β , p or γ . As antiviral efficacy ε increases, the establishment 
probability decreases at first slowly and then abruptly as it approaches zero (as the basic reproductive number, 
R0 , approaches one). As others before  us3,23, we assume that these antivirals have negligible cytotoxic effects, i.e. 
do not cause cell damage or death, over the range of concentrations (efficacies) explored, and that all antivirals 
can achieve all efficacies. In reality, antivirals with different mechanisms of action would likely differ in their 
cytotoxicity profile, and in the maximum efficacy they can achieve following the Emax  model43, which relates 
drug concentration to efficacy. The parameter values used to generate this figure and all other figures herein are 
provided in the Methods. They were taken from Czuppon et al.23 for SARS-CoV-2 infections in patients, and 
in particular assume an exponentially distributed duration for the infectious phase ( nI = 1 ). For nI = 1 , the 
expression for the establishment probability in Eq. (8) reduces to

where B = pτI is the burst size (see Methods). Since β and c appear as a ratio, c/(βNcells/s) , in the expression 
for the establishment probability (Eq. (9)), an antiviral reducing β and increasing c would have the same effect 
on the establishment probability as one only reducing β with greater efficacy. This is particularly interesting 
because many antivirals that reduce the ability of infectious virions to enter cells (reduce β ), such as monoclonal 
antibodies, often target the virions directly by binding to and disabling their surface protein, thus also enhancing 
the rate at which virions lose infectivity (increasing c).

At relatively low efficacy, e.g. ε = 0.8 (see line 0© in Fig. 4), for the parameters chosen, an antiviral reducing 
γ is more effective than one reducing β , which is more effective than one reducing p at reducing the establish-
ment probability. The infection parameters used by Czuppon et al.23 correspond to a sufficiently large burst size 
( B = pτI = 18.8 IV/cell , see Methods) such that PV→Establishment ≈ PV→ I ( = 0.409 ). As such, the bottleneck 
to infection establishment is the probability that the single initial infectious virion causes a productive cell infec-
tion, PV→ I , which depends on β and γ , but not p. While an antiviral reducing β reduces both the numerator 

(6)
PI→mV =

∫ ∞

0
Poisson(m|� = pt) · Erlang(t|k = nI , � = nI/τI ) dt

=
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m = NB(m|r = nI , pB = B/(nI + B))
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γ

1+ c/(βNcells/s)
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γ

1+ c/(βNcells/s)

]

+
γ
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1

B
=
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−

1
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−
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and denominator of PV→ I , one reducing γ reduces only the numerator and therefore has a greater effect. At 
this relatively low antiviral efficacy ( ε ≈ 0.8 ), as the initial number of infectious virions increases and as the 
establishment probability approaches 100%, differences in the efficacy of antivirals reducing p, β or γ to reduce 
the establishment probability vanishes (see Supplementary Material, Section S2).

As the antiviral efficacy is increased further, it eventually reaches the critical point where R0 = 1 , and the 
establishment probability, (R0 − 1)/B , equals zero. The value of the antiviral efficacy at which this is achieved 
is the same for antivirals reducing p or γ (line 1© in Fig. 4) since they affect R0 (Eq. (7)) identically. The efficacy 
of an antiviral reducing β must be much higher in order to reach this critical point (line 2© in Fig. 4), because 
reducing β reduces both the numerator and denominator of R0.

Figure 3.  Antiviral modes of action. Antiviral reducing (left) the virus entry rate β , (centre) the probability 
of a successful cell infection post virus entry γ , or (right) the virus production rate p. If an antiviral reducing β 
prevents an infectious virion from entering a cell, the virion could try again later on and succeed. Whereas, if an 
antiviral reducing γ prevents an infectious virion from completing a successful cell infection post cell entry, the 
virion would be removed from the overall infection. Also, an antiviral reducing p would reduce virus production 
rather than totally block it, as would be the case if an antiviral reducing γ prevents a productive cell infection. 
These differences between the modes of actions previously studied (reducing β or p) and newly considered 
herein (reducing γ ) highlight why the latter might prove advantageous.

Figure 4.  Effect of different antivirals on the probability of infection establishment. The establishment 
probability given an infection initiated with only one infectious virion as a function of efficacy ( ε ) for antivirals 
acting either to reduce the virus entry rate, β → (1− ε)β , the virus production rate, p → (1− ε)p , or the 
probability of a successful cell infection post virus entry, γ → (1− ε)γ . The line labelled 0© indicates a value of 
lower efficacy ( ε = 0.8 ), at line 1© the establishment probability goes to zero ( R0 = 1 ) for an antiviral reducing 
p or γ ( ε ≈ 0.87 ), and at 2© it goes to zero for an antiviral reducing β ( ε ≈ 0.92 ). The infection parameters are 
from Czuppon et al.23 (see Methods).
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Therefore, as Czuppon et al.23 before us, and for their choice of parameters, we find that at lower efficacies, 
an antiviral reducing β is better than one reducing p at reducing the establishment probability, whereas at higher 
efficacies it is the opposite. However, here we show that an antiviral reducing γ at any efficacy is best, better than 
one reducing p or β , at reducing the establishment probability.

Distinction between infection extinction and establishment
The mathematical expression for the probability of extinction of an infection, PV→Extinction , gives the probability, 
starting from a single infectious virion, that this virion fails to infect a cell, or should it succeed, the probability 
that this cell’s virion progeny all go on to fail, or should any succeed, the probability that the cells they infect 
in turn produce virions that all fail, or should any succeed ..., and so on. The recursive nature of this expres-
sion makes it difficult to accuratelly define what constitutes the establishment or extinction of an infection in 
biological terms. Can one look at a given biological or SM infection outcome and classify it as an extinct versus 
an established infection?

Let us look at the variety of infection outcomes that the mathematical expression, PV→Extinction , expects will 
fall into two categories: established or extinct infections. Figure 5 shows the frequency and complementary cumu-
lative frequency distributions, or 1−(cumulative frequency), for the number of cells consumed by 106 SM simu-
lated infections. The SM infection outcomes neatly separate into 2 distinct categories: infections that consumed 
none or very few cells (close to 0%, on the left); and those that consumed many (around 80%, on the right), which 
we will assume correspond to infections said to have gone extinct or to have established, respectively, as indicated 
by red arrows. The presumed extinct infections make up 85% (848,227) of the 106 SM simulations, which matches 
the theoretically predicted probability of infection extinction, PV→Extinction , for the infection parameters used 
(see Methods). Of these, 69% (59%/85%) result in no cells consumed, 93% ( (59+ 16+ 4)%/85% ) in fewer 
than 3 cells consumed, and 95% in fewer than 5 cells consumed, or less than 0.01% of all susceptible cells. Of 
the presumed established infections, all consumed at least 30,600 cells or about 10,000× more than infections 
considered extinct. The presumed extinct infections are unlikely to engage a measurable immune response nor 
trigger symptoms, whereas the presumed established infections, consuming  80% of cells, certainly would. In 
this case, the difference between extinction and establishment is statistically and biologically significant. While 
85% of patients would essentially avoid infection altogether, the other 15%, (around 1 in 6) would experience 
substantial infections.

We show in the Methods (see Eq. (40)) that the median fraction of cells consumed by established infections 
in the SM monotonically decreases as one increases the quantity T∗/Ncells , where

For the presumed established infections in Fig. 5, Eq. (40) based on T∗/Ncells predicts that ∼80% of cells (31,873 
out of 40,000) will be consumed, indicated by a vertical solid line in the figure. Biologically, the quantity T∗/Ncells 
is not particularly meaningful, but mathematically it shows how the median fraction of cells consumed by estab-
lished infection depends on and is sensitive to each parameter.

Figure 6 shows the frequency and complementary cumulative frequency distributions of the number of cells 
consumed by an infection, using parameter sets where T∗/Ncells is increasingly closer to 1. It is achieved here by 
increasing the efficacy of an antiviral reducing the virus production rate, p → (1− ε)p , thus increasing T∗/Ncells . 

(10)
T∗

Ncells
=

c/(βNcells/s)

γ pτI − 1
.

Figure 5.  Infection extinction versus establishment. The distribution for the frequency (black dots) or 
complementary cumulative frequency (solid red curve), or 1−(cumulative frequency), of the number of cells 
consumed by the infection, Ncells − T(∞) , out of Ncells = 4× 104 cells , based on 106 SM simulations. For the 
frequency distribution, each black dot represents the fraction of the SM simulations where exactly this discrete 
number of cells were consumed by the infection (e.g. 0, 1, 2, ...). The 95th-percentile upper and lower bounds 
(95% bounds) for the number of cells consumed by extinct infections is between zero and the vertical (grey) 
dotted line, and that by established infections is indicated by a pair of vertical (orange) dashed lines flanking the 
median (vertical solid line). Parameters are the same as in Fig. 4 for an antiviral reducing the virus production 
rate, p → (1− ε)p , at efficacy ε = 0.79 such that T∗/Ncells = 0.5 (see Methods).
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As T∗/Ncells is increased from 0.6 to 0.85, the median number of cells consumed by infections presumed extinct 
increases slightly, while that by established infections decreases from ∼68% down to ∼28%, and the distinc-
tion blurs as the two distributions begin to merge. In Fig. 6C, the red arrow demarcating so-called extinct and 
established infections is located so that ∼96% of the 106 SM simulated infections are to the left. Mathematically, 
this location corresponds to the expected fraction of extinct infections, PV→Extinction , but the difference in the 
fraction of cells consumed by established and extinct infections is becoming less biologically meaningful. There-
fore, when an antiviral is applied and the establishment probability is non-zero ( R0 > 1 ), varying the antiviral 
efficacy affects not only the establishment probability but also the fraction of cells consumed by both established 
and extinct infections, and likely also the intensity of the immune response and symptoms. For higher antivi-
ral efficacies (higher T∗/Ncells ), the biological distinction between extinct and established infections becomes 
increasingly meaningless.

The parameter values used in our SM are taken from Czuppon et al.23 where the number of cells susceptible 
to SARS-CoV-2 (parameter Ncells ) is assumed to be 40,000 cells, or around just 0.01% of the estimated 4× 108 
cells in the human upper respiratory tract. Yet in earlier work, some of the same authors estimate that a more 
plausible 1% of these cells (4 million cells) are susceptible to SARS-CoV-244. Mathematically, assuming a larger 
Ncells with a proportionally smaller β yields the same probability of infection extinction ( PV→Extinction ) and the 
same fraction but not the same number of cells infected by established infections, because it leaves T∗/Ncells but 
not T∗ unchanged. Figure 7 explores the fraction and number of cells consumed by infections as the size of the 
cell population, Ncells , is increased while keeping βNcells fixed, and thus also the establishment probability and the 
fraction of cells consumed by established infections. In Fig. 7A, with the smallest cell population considered, the 
distributions for the number of cells consumed by extinct and established infections are merged, making the two 

Figure 6.  Effect of infection parameters on extinction and establishment. The frequency or complementary 
cumulative frequency of the fraction or number of cells consumed by the infection out of Ncells = 4× 104 cells 
where the efficacy ( ε ) of an antiviral reducing the virus production rate, i.e. p → (1− ε)p , was varied such that 
(A) T∗/Ncells = 0.6 ; (B) 0.7 or (C) 0.85. Everything else is generated, computed, and represented visually as 
described in the caption of Fig. 5.
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outcomes biologically indistinguishable. In Fig. 7B,C, as the size of the cell population ( Ncells ) is increased, the 
fraction of cells consumed by established infections remains centred at ∼28% (because T∗/Ncells is unchanged), 
while the number of cells consumed (28% of Ncells ) increases as Ncells increases, from 4,000 cells up to 40 million 
cells. Underestimating the number of host cells susceptible to infection, Ncells , can thus have profound implica-
tions for the expected severity and extent of immune engagement expected from so-called established infections.

Figure 8 explores more generally how the median and 95% bounds of the distribution for the number and 
fraction of cells consumed by established infections vary as a function of T∗ and Ncells . Increasing T∗/Ncells from 
0.5 to 0.94 decreases the median fraction of cells consumed from 80% down to 12%. Extrapolating from Fig. 8B 
(see Methods), this corresponds to about zero to 7,600 cells ( [0, 0.19] × Ncells ) consumed by established infec-
tions for Ncells = 4× 104 , sufficiently few that all extinct and established infections could possibly be asympto-
matic. In contrast, for a susceptible cell population of Ncells = 4× 106 , established infections would consume 
∼ [0.11, 0.13] × Ncells , or between ∼440,000 to 520,000 cells, which are unlikely to be asymptomatic infections. 
For larger (possibly more realistic) susceptible cell population sizes, the distinction between the fraction of cells 
consumed by extinct and established infections is greater, and a higher antiviral efficacy (higher T∗/Ncells ) is 
required for the distinction to vanish.

Figure 7.  Effect of the susceptible cell population size on extinction and establishment. The frequency and 
complementary cumulative frequency of the fraction or number of cells consumed by the infection out of Ncells , 
as the latter is varied, while βNcells , and therefore also the establishment probability and T∗/Ncells , are fixed; (A) 
Ncells = 4× 103cells ; (B) 4× 105cells or (C) 4× 107cells . The frequency distribution in (A) is shown in (B) in 
grey, and that in (B) is shown in (C) in grey. As in Fig. 6(C), the efficacy ( ε ) of an antiviral reducing the virus 
production rate, p → (1− ε)p , was such that T∗/Ncells = 0.85 . Everything else is generated, computed, and 
represented visually as described in the caption of Fig. 5.
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Reduction in the number of cells consumed by infections under antiviral therapy
As shown above, prophylactic antiviral therapy not only reduces an infection’s establishment prob-
ability, but also decreases the fraction of cells consumed by established infections, which decreases as 
T∗/Ncells = [c/(βNcells/s)]/[γ pτI − 1] increases (see Methods, Eq. (40)). Figure 9A shows the fraction of cells 
consumed by established infection, given an initial inoculum of only one infectious virion, as a function of anti-
viral efficacy ( ε ) for antivirals reducing either β , p, or γ . At a given efficacy, ε , an antiviral reducing p or γ will 
increase T∗/Ncells identically because both appear in the same way in T∗/Ncells , whereas one reducing β will cause 
a smaller increase in T∗/Ncells . As such, an antiviral reducing p or γ will reduce the fraction of cells consumed by 
established infections more than one reducing β . Here again, β and c appear as a ratio in T∗/Ncells , as they did in 
the infection establishment probability, Eq. (9), such that an antiviral increasing c and/or decreasing β will have 
the same impact on reducing the fraction of cells consumed by established infections. Figure 9B illustrates how 
these differences, and therefore their biological relevance, depends on the antiviral efficacy under consideration. 
The difference is most pronounced as one approaches the line labelled 1© from either side, which corresponds 
to the efficacy ( ε ≈ 0.87 ) at which R0 = 1 for an antiviral reducing p or γ while still R0 > 1 for one reducing β . 
The shaded areas on segments of the curves in Fig. 9 correspond to the 95% bounds, and can only be computed 
from the SM simulations over portions of the curve where established and extinct infections are clearly distinct. 
It shows that the SM variability is small relative to the difference in the fraction of cells infected.

Figure 8.  Effect of the susceptible cell population size on cells consumed by infection. The 95% bounds 
about the median (Eq. (40)) for the fraction and/or number of cells consumed by established infections, as 
a function of T∗/Ncells , for different susceptible cell population sizes ( Ncells ) while holding βNcells fixed. The 
95% bounds are based on 106 SM simulations of which no less than about 40,000 were established infections 
( PV→Establishment=4% at T∗/Ncells = 0.85 ). Here, T∗/Ncells = [c/(βNcells/s)]/[γ pτI − 1] is increased by 
increasing the efficacy of an antiviral reducing the virus production rate, p → (1− ε)p.

Figure 9.  Effect of different antivirals on the fraction of cells consumed by established infections. (A) Fraction 
of cells consumed by established infections initiated with only one infectious virion as a function of efficacy ( ε ) 
for antivirals acting prophylactically either to reduce the virus entry rate, β → (1− ε)β , the virus production 
rate, p → (1− ε)p , or the probability of a successful cell infection post virus entry, γ → (1− ε)γ . (B) 
Difference in the fraction of cells consumed by established infections shown in (A) for an antiviral reducing 
β minus that for one reducing either p or γ . The vertical lines are the same as in Fig. 4 and indicate antiviral 
efficacies at which the establishment probability goes to zero ( R0 = 1 ) for an antiviral reducing p or γ (line 1© ); 
or β (line 2© ). The thin shaded areas visible over portions of the curves correspond to the 95% bounds about 
the median over (A) 10,000 SM simulations; or (B) 10,000 differences between pairs of SM simulations for an 
antiviral reducing either β or γ , drawn at random with replacement. Infection parameters are the same as in 
Fig. 4.
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Figure 10 shows the number of cells consumed by extinct and established infections, given an initial inoculum 
of a single infectious virion, for antivirals reducing β , p or γ at an antiviral efficacy of ε = 0.86 . This efficacy was 
chosen so that, given the infection parameters, the establishment probability is the same for an antiviral reducing 
β or p ( PV→Establishment = 4% ), yet it corresponds to a lower establishment probability for an antiviral reducing 
γ ( PV→Establishment = 0.5% ). This can be seen from Fig. 4: it corresponds to the efficacy where the orange line 
(antiviral reducing p) crosses the blue line (antiviral reducing β ). At this efficacy, and for the chosen infection 
parameters, an antiviral reducing β compared to one reducing p or γ will result nearly ∼3× more cells consumed 
by established infections, and likely engage a more intense immune response and symptoms. There could be 
clinical merit to weighing a reduction in the probability of infection establishment against a reduction in the 
severity of those infections that will become established.

We investigated a second parameter set also explored in Czuppon et al.23, which is characterized by a 10-fold 
decrease in the number of susceptible cells Ncells , a 10-fold increase in the virus production rate p (and in the 
average burst size, B = pτI ), and a corresponding ∼10-fold decrease in βNcells (see Supplementary Material, Sec-
tion S3). For this second parameter set, we found that an antiviral reducing γ was comparable to one reducing 
β , but better than one reducing p, for reducing the establishment probability, but all 3 modes of action reduced 
the fraction of cells consumed by established infections by the same amount at the same drug efficacy, ε . Since 
the degree to which an antiviral reducing γ is better than one reducing p or β depends on infection parameters, 
it is critical that such parameters be well-determined if such investigations are to yield useful predictions. More 
generally, we can show that, for infections initiated with one or a few infectious virions, an antiviral reducing γ 

Figure 10.  Antiviral with different modes of action cause different fraction of cells to be consumed by 
infections. The number of cells consumed by the infection out of Ncells = 4× 104 cells for antivirals with 
efficacy ε = 0.86 acting either to reduce (A) the virus entry rate, β → (1− ε)β , (B) the virus production rate, 
p → (1− ε)p , or (C) the probability of a successful cell infection post virus entry, γ → (1− ε)γ . Antiviral 
modes of action are represented by different colours: reducing β (blue), p (orange) or γ (green). Everything else 
is generated, computed, and represented visually as described in the caption of Fig. 5.
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will always be better or at least as good than one reducing p or β at reducing the establishment probability and 
the fraction of cells consumed by established infections irrespective of the parameters (see Methods).

Lastly, as in Czuppon et al.23, we also considered antiviral therapy for an infection initiated with only one 
infectious cell which could be representative of post-exposure antiviral therapy (see Supplementary Material, 
Section S4). In this case, we found that an antiviral reducing p or γ has the same effectiveness, greater than one 
reducing β , in reducing the establishment probability, which differs from the results reported above for an infec-
tion initiated with a single infectious virion. In contrast, we found that an antiviral reducing p or γ reduced the 
fraction of cells consumed by established infections more so than one reducing β at the same efficacy, which 
exactly matched the results for an infection initiated with only one infectious virion.

Overall, these results over different infection parameters and antiviral efficacy indicates that, under certain 
conditions, the fraction of cells consumed by both or either extinct and established infections can be an important 
consideration when evaluating and comparing antivirals with different modes of action. It also highlights the 
importance of properly identifying biologically relevant base parameter values in order to provide meaningful 
comparisons.

Continuous versus burst release of virus and the impact of the virus burst size distribution
In the MFM and SM used herein, virus is released continuously at a fixed rate of p infectious virion per hour by 
infectious cells. In the SM, this fixed rate maps to a Poisson distributed, discrete, stochastic number of infectious 
virions produced per time step by each infected cell over the duration of its infectious lifespan. The duration of 
this infectious phase is represented by an Erlang distribution characterized by shape parameter nI and average 
duration τI . As shown in Eq. (6), this means that the SM’s stochastic virus burst size follows a negative binomial 
or Pascal distribution with a mean corresponding to the MFM’s virus burst size, B = pτI , where nI now corre-
sponds to the distribution’s integer-valued, stopping-time parameter. Figure 11A illustrates how the SM’s burst 
size distribution varies as a function of nI , for a fixed average burst size.

Up to this point, as with most SMs, the duration of the infectious phase has been assumed to be exponentially 
distributed ( nI = 1 in Eq. (1)) and, hence, the burst size to be geometrically distributed (special case of the nega-
tive binomial distribution). With higher values of nI , the burst size is represented by the more general case of 
the negative binomial distribution, and as nI → ∞ , it approaches a Poisson distribution. The choice of nI does 
not affect the fraction of cells consumed by established infections, since nI does not appear in Eq. (40), but it 
does affect the extinction probability, as per Eq. (8). Previously, Yan et al.5 have shown that increasing nI leads 
to a decrease in the extinction probability when infection is initiated with a small initial number of infectious 
virions. Figure 11B shows this for the infection parameters used so far for an infection initiated with a single 
infectious virion.

Recall that the extinction probability is an implicit expression with 2 main terms,

where the first term, 1− PV→ I , is the probability that the initial virion inoculum fails to productively infect 
a single cell, and the second is the likelihood that it does actually cause a cell infection which then itself fails 
to establish an infection. Figure 11C shows how the contribution from the second term, i.e. the extinction 
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Figure 11.  Effect of the infectious phase duration’s shape parameter, nI , on the extinction probability. (A) 
Negative binomial distributed virus burst size as a function of the shape parameter ( nI ) of the Erlang distributed 
infectious cell lifespan. The shaded region highlight a region where the burst size is small ( ≤ 5 infectious virions) 
and therefore more likely to result in infection extinction. The vertical grey line corresponds to the average 
burst size value ( B = pτI = 18.8 IV/cell ), which is constant as nI is varied. (B,C) The probability of infection 
extinction as a function of nI , given an infection initiated with only one infectious virion (B); or one infectious 
cell (C). Note that the extinction probability is shown on a linear scale in (B) but a logarithmic scale in (C) to 
better capture the relationships. Unless otherwise specified, the parameters are the same as in Fig. 4.
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probability for an infection initiated with a single infected cell, decreases as nI increases. What is observed in 
Fig. 11B, therefore, is the shrinking contribution to PV→Extinction by the second term as nI increases.

This second term depends critically on the burst size distribution which, in our SM, is a result of the Erlang 
distributed infectious phase duration. As the latter distribution goes from exponential ( nI = 1 ) to fat-tailed 
( nI ∈ [2, 7] ), to normal-like ( nI = 60 ), tending ultimately to a Dirac delta distribution ( nI → ∞ ), it becomes less 
probable that an infectious cell will have a very small burst size, as shown in Fig. 11A. For example, the probability 
that an infectious cell will have a burst size less than or equal to 5 infectious virions (shaded region in Fig. 11A) 
is 27% when nI = 1 compared to 0.07% when nI = 60 ( > 380× less likely). This is why, as nI increases, the prob-
ability of infection extinction once one cell has been infected decreases, and this effect is more pronounced for 
larger virus burst sizes.

Work by Pearson et al.2, expanded in Conway et al.3, concluded that the continuous release of infectious viri-
ons throughout an infected cell’s lifespan leads to a higher probability of infection extinction than when virions 
are released as a single burst at the end of a cell’s  lifespan45–48. In the authors’ continuous production model, 
infected cells release virions at a constant rate over the duration of their infectious lifespan (Fig. 12A), while in 
their burst model, virions are released all at once, as a single burst, upon an infected cell’s death (Fig. 12B). The 
total number of virions thus produced (burst size) is geometrically distributed in their continuous production 
model (Fig. 12C), and Kronecker delta distributed (a fixed value) in their burst model (Fig. 12D). As such, two 
attributes were simultaneously varied and conflated: the timing of virus production by infected cells (continu-
ously versus as a burst); and the total number of virions released (burst size). In the end, the difference in extinc-
tion probabilities was the result of the different burst size distributions (geometric vs. delta distributed), rather 
than the timing of the release (continuous vs. burst). As can be seen from Eq. (8), the timing of release does not 
affect the extinction probability since each infection event, i.e. whether or not each infectious virion results in 
an infection, can be treated independently of other infectious virions.

Biologically, the mode or timing of the release does not have a one-to-one relationship with the total number 
of virions that will be released (burst size). In fact, Pearson et al.2 considered a variation of their burst model 
wherein the burst size, released all at once upon the cell’s death, followed a Poisson distribution (Fig. 12E), rather 
than a Kronecker delta distribution. Figure 12F–G illustrates the differences in the extinction probability for the 
geometric, Kronecker delta, and Poisson distributed burst sizes explored in Pearson et al.2. Echoing earlier results 
(Fig. 11B), distributions with a higher probability of low burst sizes (geometric followed by Poisson then delta) 
result in higher extinction probabilities. The effect is most pronounced when the average burst size, B , is small.

Having explored how the shape parameter of the infectious phase duration distribution ( nI ) affects the extinc-
tion probability, we can now consider its impact in evaluating and comparing antivirals. For a higher value of nI , 
since the extinction probability is lower, the establishment probability, or 1−(extinction probability), is higher. 
This means that although the effectiveness of antivirals in reducing the establishment probability does not change 
qualitatively (the better ones remain better), it does change quantitatively (see Supplementary Material Fig. S6). 
For example, the choice of nI affects ε50 , the efficacy at which the establishment probability is 50% of its value 
without antivirals, i.e. at ε = 0 (see Table 2). Czuppon et al.23 state that for an infection initiated with 10 infec-
tious virions, ε50 is 81% for an antiviral reducing β , and 85% for an antiviral reducing p, where the authors have 
assumed nI = 1 . When nI = 60 , however, we find that ε50 is comparable for an antiviral reducing β vs. p (85% 
vs. 86%), and far less (77%), and therefore potentially easier to achieve, for one reducing γ . This again highlights 
the importance of properly estimating parameters before making quantitative comparisons of antiviral regimens.

Discussion
Stochastic models (SMs) of virus infection kinetics usually do not represent failure of a virion to cause an infec-
tion post cell entry. Yet biologically, there are many ways in which a virion, post cell entry, will fail to cause a 
cell infection that will yield infectious progeny. Herein, we constructed a SM of virus infection kinetics with an 
explicit parameter ( γ ) to represent the probability that a virion will cause a productive infection post cell entry. 
The SM was first used to estimate the extinction probability of an infection, i.e. the probability that an infection 
will fail to take hold or spread significantly.

Previously, Czuppon et al.23 compared prophylactic antivirals reducing virus entry ( β ) or production (p) for 
their ability to reduce the establishment probability, or 1−(extinction probability), of a SARS-CoV-2 infection 
in patients. Extending this work, we investigated how an antiviral reducing γ would compare against antivi-
rals reducing β or p. We found that a prophylactic antiviral reducing γ was best at reducing the establishment 
probability when infection is initiated with a small number of infectious virions. When instead an infection is 
initiated with an initial number of infectious cells, possibly representative of post-exposure antiviral therapy, we 
found that an antiviral reducing γ or p caused the same reduction in the establishment probability, better than 
that for an antiviral reducing β . While the degree to which an antiviral with a particular mode of action is better 
than another depends on the chosen parameters, under prophylactic therapy our SM predicts that an antiviral 
reducing γ will invariably reduce the probability of establishment at least as much or more so, than one reducing 
β or p with the same efficacy, irrespective of the choice of parameters.

In HIV antiviral therapy, reverse transcriptase inhibitors (RTIs) prevent the transcription of viral DNA from 
viral RNA, a step that occurs after virus entry and is necessary for replication. Conway et al.3 have reported that, 
under pre-exposure antiviral therapy, RTIs which they represented as reducing their SM’s cell infection rate ( β ) 
are more effective than protease inhibitors (reducing the virus production rate, p), at reducing the risk of HIV 
infection. By adding γ in their expression for the extinction probability, we can show that an antiviral reducing 
γ , which better captures the mode of action of a RTI, rather than β is even more effective at reducing the risk 
of infection for pre-exposure antiviral therapy, for the infection parameter sets explored. Irrespective of the 
parameters considered, reducing γ will always be as effective or more so in this respect. These findings (detailed 
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in Supplementary Material, Section S5) echo those reported herein for SARS-CoV-2 parameters, as to the equal 
or better performance of antivirals reducing γ , compared to p or β . The introduction of parameter γ to capture 
productive cell infection failure after an infectious virion has successfully entered a cell is an important consid-
eration when comparing antivirals based on their mode of action.

When the SM was used to simulate infections under various conditions and therapeutic efficacies, the infec-
tion outcomes at low antiviral efficacies separated into two clear groups: infection of none or very few cells; and 
infection of many or most cells. The proportion of infections resulting in nearly no cells consumed, presumed 
to be the result of infection extinction, indeed matched the infection extinction probability derived for our SM. 
For infections where many or most cells were consumed, presumed to be established infections, we derived a 
theoretical expression for the median fraction of cells consumed, and its dependence on the SM parameters. 
Antiviral therapy acting on a particular infection parameter reduced both the infection’s establishment probability 
and the number of cells consumed by presumed established infections. This finding had 2 important implications. 

Figure 12.  Visual representation for the different modes of virus production explored in Pearson et al.2. Two 
attributes are simultaneously varied for the SMs explored in Pearson et al.2: the timing of infectious virion 
released by infected cells and the total quantity of infectious virions released. Cumulative number of infectious 
virions released by an infectious cell (A) at a constant rate over its lifespan; or (B) as a single burst upon its 
death. Distributions explored for the total number of infectious virions released (burst size, B ) by a population 
of infected cells: (C) geometric; (D) Kronecker delta; or (E) Poisson. Pearson et al.2 defined continuous 
production to mean continuous release + geometrically distributed B (A+C); burst production to mean burst 
release + delta distributed B (B+D); and explored an alternative random burst model with burst release + 
Poisson distributed B (B+E). The vertical grey line represents the average burst size value B = 19 IV/cell . The 
infection extinction probability for the 3 burst size distributions (C,D,E), as a function of the probability that a 
single infectious virion productively infects at least one cell ( PV→ I ), given an average burst size of (F) 2 IV/cell ; 
or (G) 19 IV/cell.
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Firstly, since the infection’s establishment probability and the number of cells consumed by established infec-
tions depend differently on the SM’s parameters, different antiviral modes of action decreased one quantity more 
effectively than the other. Secondly, and perhaps more importantly, as antiviral efficacy increases, the fraction of 
cells consumed by established infections decreases, eventually reaching a point where the fraction consumed by 
established and extinct infections becomes indistinguishable. For example, at a drug efficacy that yields an equal 
probability of infection extinction, we found that an antiviral reducing β , compared to one reducing p, resulted in 
∼3× more cells consumed by so-called established infections. At that same efficacy, an antiviral reducing γ yielded 
both a lower probability of infection establishment, and resulted in fewer cells consumed overall. Since even 
an infection extinction probability of 99% will lead to infection establishment in one person out of a hundred, 
reducing the severity of this infection should be an important clinical consideration when comparing antivirals.

Infection severity often correlates, or is assumed to correlate, with peak or total viral  load49–52, this is not 
always the  case53,54, and different measures such as the degree of lung involvement can be better  indicators55,56. 
For example, Myers et al.55 stained whole-lung sections of IAV infected mice for influenza nucleoprotein to 
quantify the % active (antigen-positive) and inactive (lesioned and minimally antigen-positive) area. This quan-
tity is analogous to the fraction of cells consumed by infections tracked herein. Myers et al.55 showed that the 
measured % total lesioned (active + inactive) lung area nonlinearly correlates with the % weight loss, an indicator 
of disease severity. Looking at the probability that infections will consume more than some biologically critical 
number of cells, e.g. that identified as sufficient to trigger an immune response and its associated symptoms or 
minimally sufficient for transmission, could provide a more appropriate target against which to select optimal 
antiviral candidates.

To facilitate direct comparison of our work herein to past work by others, most of our results were based 
on assuming that the lifespan of infectious cells, the period during which an infected cell is releasing virus, is 
exponentially distributed (Erlang distributed with shape parameter nI = 1 ). But the lifespan of infectious cells for 
many different viruses has been shown in vitro to be inconsistent with an exponential distribution, and instead 
follow a more normal-like distribution ( nI >∼10). Yan et al.5 have shown previously that increasing nI leads to 
a decrease in the extinction probability. Herein we established that this happens because the probability that an 
infectious cell will randomly produce a very small total number of virions (burst size) becomes vanishingly small 
as nI increases. We showed that while nI does not affect the fraction of cells consumed by established infections, 
increasing nI decreases the probability of infection extinction by decreasing the likelihood of very small burst 
sizes, thus requiring higher antiviral efficacy to achieve the same risk reduction.

Previous work by Pearson et al.2, expanded in Conway et al.3, states that continuous virus production and 
release over a infected cell’s lifespan leads to a higher risk of infection extinction than when virus is released all 
at once as a burst upon an infected cell’s  death45–48. Herein we demonstrated that it is the burst size distribution 
(total number of virions released by infected cells), and not the mode of release (continuous vs all at once), that 
determines the probability of infection extinction. We explored why the mode or timing of the release (continu-
ous vs burst) does not imply a specific burst size distribution.

The SM introduced herein is general and, like the mean-field mathematical model on which it is based, it could 
be applicable to a wide range of different viruses. It does, however, make a number of simplifying assumptions 
that might limit the scope of its applicability. We list some of those below, and discuss how they might impact 
the findings reported herein.

Immune response and cell regeneration Our results, along with nearly all previous work mentioned herein 
which used SMs to study virus infection establishment versus extinction focused on in vivo rather than in vitro 
infections. More accurately, the parameters of these SMs were chosen so as to recapitulate in vivo infection kinet-
ics, but did not include cell regeneration nor an explicit immune response (except for Yan et al.5). For established 
infections, which consume a much higher number of cells, the immune response likely plays an important role 
in clearing the infection, and towards the end of the infection cell regeneration could begin to replenish the 
target cell population. Both could likely translate into fewer cells consumed by established infection such that 
the distinction in the fraction of cells consumed by extinct versus established infections could vanish at even 
lower antiviral efficacies.

Table 2.  Efficacy at which the establishment probability is 50% of its value without antivirals ( ε50).

Mode of action

Actual ε50 (relative to γ)

for nI = 1 for nI = 60

for an initial inoculum of V0 = 1 IV

Reducing γ 43% (0%) 49% (0%)

Reducing β 57% (14%) 62% (13%)

Reducing p 77% (34%) 82% (33%)

for an initial inoculum of V0 = 10 IV

Reducing γ 71% (0%) 77% (0%)

Reducing β 81% (10%) 85% (8%)

Reducing p 85% (14%) 86% (9%)
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Well-mixed assumption versus spatial inhomogeneity Our SM assumes that the virus and susceptible cells con-
stitute a well-mixed system: all cells are exposed to the same virus concentration. The assumption is reasonable for 
infection in a liquid medium, for viruses whose primary mode of dissemination is through cell-free dissemination 
to susceptible  cells27. But a number of viruses disseminate exclusively or primarily via direct, cell-to-cell contact, 
possibly via or as the cause of syncytia  formation57–60. Compared to cell-free infection, cell-to-cell infection can 
be more rapid, more likely to be successful due to transfer of multiple virus genomes, and can offer protection 
against extracellular defenses (e.g. neutralizing antibodies)61. The well-mixed assumption might also hold for a 
mixed population of cells with differing susceptibility for the virus, where our SM would represent the average 
susceptibility across all cell types. But the specific spatial arrangement of susceptible cells, or large inhomogeneity 
in the concentration of virus over the space covered by susceptible cells, could result in significant deviations of 
the infection kinetics from the idealized, well-mixed assumption. For example, in certain solid organs, tissues, 
or in vitro organoids where cells are organized as layers, as the infection progresses, susceptible cells from the 
upper layers die and detach, revealing fresh susceptible cells from lower layers, or causing differentiation of other 
cells into susceptible cells. Such complex interactions and geometries would require tailored modification of the 
SM presented herein, and detailed, often unavailable knowledge of the parameters required to describe these 
more complicated arrangements. For IAV infection within the human respiratory tract, we previously used a 
mathematical model to show how the rapid mucus escalator-induced advection of virions released from the lower 
respiratory tract upwards towards the nose and mouth, has a strong protective effect. By sweeping virus away 
from cells in lower sites towards those in upper sites, advection partly helped infection to establish more easily 
and proceed more rapidly in upper sites, while providing a high degree of protection to lower  sites62. It would 
be interesting to re-visit this past work in a stochastic context to compare it against the results presented herein.

Defective interfering and semi-infectious particles Our SM explicitly represents virion that successfully enter 
a cell but fail to cause an infection, but assumes this process leaves the cell in the same state as if entry had not 
occurred. Biologically, repeated virus failure post cell entry would likely trigger antiviral pathways within the 
cell, leaving it in a different state than its naive, susceptible state. Additionally, the accumulation of failed virions 
within a cell over a sufficiently short time could eventually add up to one functional productive infection (e.g., 
semi-infectious particles with an incomplete set of segmented genomes rescuing one  another40,41) or lead to 
defective interfering particle  production42.

Virion pleomorphism Our SM does not consider the impact of virus  pleomorphism63–66. For RSV, the pattern 
observed in vitro for the rate of loss of virion infectivity could be explained by the combined slow versus rapid 
loss of infectivity by two distinct virus populations, possibly filamentous versus spherical  particles67. For IAV 
and IAV pseudotyped with Ebola virus surface proteins, filamentous particles were observed in vitro to be less 
sensitive than spherical particles to neutralizing antibodies or fusion  inhibitors68. It is possible that representing 
the diverse population of individual virions as more or less identical virions whose average properties represent 
the average over all the subpopulations it contains provides a suitable approximation of this diversity. If two 
very distinct subpopulations exist, it is also possible that the most infectious population largely determines the 
infection kinetics which would then also be well represented based on a single homogeneous virus population.

Generally, it is unclear how important these various factors are to shaping the course of an infection, and thus 
the extent to which they need to be represented. Very simple models in the past have proven to be very effective at 
not only reproducing, but also predicting the course and outcome of infections both in vitro and in vivo33,62,69,70. 
This suggests that under physiologically relevant conditions, at least some of these factors can be safely neglected 
or implicitly represented. With regards to the specific results presented herein, the probability that the infection 
will become extinct depends on the first few infection events, and if the infection does become extinct very few 
cells will get consumed. Hence, it is reasonable to expect that the immune response and cell regeneration would 
not significantly affect the extinction probability or the fraction of cells consumed by extinct infections. Similarly, 
with so few virions produced by extinct infections, cell co-infection or re-infection is improbable, such that semi-
infectious and defective interfering particles would have a negligible impact, the dominant virus subpopulation 
would determine the outcome, only cells from upper layers of a tissue or organ would see the virus, and spatial 
inhomogeneity might not yet have developed. For established infections, undoubtedly at least some of these 
processes would significantly impact the overall fraction of cells consumed. If, however, they did so equally over 
all antiviral modes of action, these processes might only alter the precise fraction of cells consumed by each 
mode, and not the more general findings herein as to which mode of action constitutes the most suitable target.

Methods
Parameter values used to generate all figures
The following are the parameters used to generate each figure found within the manuscript.

Figures  4, 13, 14, 15 p = (11.2/24) IV/(cell · h) ,  Ncells = 4× 104 cells ,  R0 = 7.69 ,  τE = 24/5 h , 
τI = (24/0.595) h , c = (10/24) h−1 , nE = 1 , nI = 1 and β = [cR0/τI ]/[Ncells(p− R0/τI )]23. Also, γ = 1 cell/IV 
and s = 1mL.
Figure 5 As in Fig. 4 but with p → (1− ε)p , where ε = 0.79.
Figure 6 As in Fig. 5 but with ε = 0.82, 0.84, 0.86.
Figure 7 As in Fig. 5 but with ε = 0.86 , Ncells = 4× [103, 105, 107] cells and βNcells fixed.
Figure 8 As in Fig. 5 but with ε = 0.79, 0.82, 0.84, 0.86 , Ncells = 4× [104, 105, 106, 107] cells and βNcells fixed. 
Extrapolation of 95% bounds discussed in the text was done by performing linear regression of the log10 of 
the difference (95% bounds—median) in fraction of cells consumed presented in Fig 8B.
Figure 9 As in Fig. 4 but SM simulations with ε = 0.50, 0.60, 0.70, 0.75, 0.78, 0.80, 0.82, 0.83, 0.85.
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Figure 10 As in Fig. 4 but with an antiviral acting either to reduce β , p or γ , where ε = 0.86.
Figure 11 As in Fig. 4 but with nI = 1, 2, 7, 60.
Figure 12 B = 19 IV/cell.
Figure 17A As in Fig. 4 but with β → (1− ε)β , where ε = 0.81.

Figures 16 and 17B,C are generated using Eqs. (42) and (48), neither of which depend directly on infection 
parameters, but instead depend on T∗/Ncells and/or R0 whose value is specified thereon.

Details of the SM implementation
The SM is given by Eq. (1), where the changes in the SM variables are random whole numbers drawn at each 
time step, as follows:

• Eouti = Binomial(n = Eti , pE = �t · nE/τE) corresponds to the number of cells in the ith eclipse compartment 
( Ei ) that will transition to the (i + 1)th compartment over a time interval �t , given that there are Eti  cells in 
the ith compartment at time step t. Each of the Eti  cells in eclipse compartment i undergo an independent 
Bernoulli trial with two possible outcomes: either the cell transitions to the (i + 1)th compartment with suc-
cess probability pE = �t · nE/τE , or otherwise remains in the ith compartment. The time step, �t is chosen 
to be sufficiently small to ensure pE < 1 , as discussed below.

• Ioutj = Binomial(n = Itj , pI = �t · nI/τI ) is the number of cells in the jth infectious compartment ( Ij ) that 
transition to the (j + 1)th compartment over a time interval �t , given that there are Itj  cells in the jth compart-
ment at time step t, and the probability of transition pI = �t · nI/τI.

• Vprod = Poisson(� = �t · p
∑nI

j=1 I
t
j ) is the number of infectious virions newly produced into the supernatant 

over a time �t , given that there are 
∑nI

j=1 I
t
j  infectious cells at time step t, each producing infectious virions 

at a rate of p infectious virions per hour. The Poisson distributed random variable, Vprod is the number of 
events that occurred, given the expected number of occurrences over a time �t , namely � = �t · p

∑nI
j=1 I

t
j .

• Vdecay,V enter, otherwise = Trinomial(n = Vt , p1 = �t · c, p2 = �t · βTt/s, p3 = 1− p1 − p2) corresponds 
to the number of infectious virions in the supernatant at time t, Vt , that end up in each of 3 possible fates. 
Vdecay is the number of infectious virions that lose infectivity with probability p1 = �t · c , V enter are lost from 
the supernatant as they enter a target cell with probability p2 = �t · βTt/s , and otherwise infectious virions 
do neither and remain in the supernatant with probability p3 = 1− p1 − p2 . Each probability ( p1, p2, p3 ) can 
be considered constant over time interval �t , provided a sufficiently small time step is chosen, as discussed 
below.

• N inf = |{xi|xi ∈ U{a = 1, b = Tt}, 1 ≤ i ≤ V suc}| is the number of target cells that become infected 
( T → E1 ) over time �t , given that V enter infectious virions enter into target cells, out of which 
V suc = Binomial(n = V enter, pV = γ ) infectious virions ultimately lead to successful cell infection, given 
probability pV = γ . Random variable N inf  does not correspond to any named probability mass function. 
The N inf  expression simulates randomly placing V suc infectious virions into Tt cells chosen at random 
with replacement, {xi|xi ∈ U{a = 1, b = Tt}, 1 ≤ i ≤ V suc} , and counts the number of distinct cells that 
received one or more infectious virions, |{...}| . Computationally, it is implemented in python as len(numpy.
unique(numpy.random.choice(a=Tt,size=V suc,replace=True))).

The duration of the SM’s discrete time steps, �t , which sets the probability of event occurrences or the number 
of such events, is computed at each iteration step t as

where Pevents is the probability of occurrence of the most likely event, namely of virion loss due to cell entry 
( βTt/s ) or loss of infectivity (c), or transition of cells from one infected state to another ( nE/τE and nI/τI ). A 
value of Pevents = 0.05 (or 5%) is used, as it was found to be sufficiently small to provide accurate solutions (see 
“Numerical accuracy of the SM’s solutions” in Methods).

Some readers might prefer to see the SM expressed as  transitions2,5, namely

(11)
�t =

Pevents

max

{

βTt

s , c, nE
τE
, nI
τI

}
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One limitation of this representation is that it indicates that one virion that enters a cell and that is successful 
at causing an infection with rate γβ/s will cause the infection of one cell ( V + T ⇀ E1 ). In reality, in our SM, 
one successful virion does not necessarily cause the infection of one cell (see N inf  in Table 1) because one cell 
could receive two successful infectious virions which would only result in one rather than two new successful 
cell infections.

Our stochastic modelling approach is similar to standard applications of the τ-leaping  method71. One impor-
tant difference is that the τ-leaping method represents the number of events that will occur for each reaction 
as a Poisson random variable. Because there is no upper bound on a Poisson distributed random variable, this 
assumption can lead to negative populations of reactants when the number of events that cause the loss of a 
reactant are larger than the number of reactants  available72–74. To address this issue, variations of the τ-leaping 
method make use of finite range  binomial72,73 or  multinomial74 random variables, as was done herein.

Our SM expression for the number of target cells that become infected, N inf  , as a function of the number of 
virion entries that successfully lead to cell infection ( V suc ) is novel. It differs from previous work that assumed 
as many infected cells as successful virions entries ( N inf = V suc ) by instead correctly accounting for cases when 
more than one successful virions enter the same cell leading to a single cell infection ( N inf ≤ V suc ). In contrast, 
our theoretical expressions for the extinction probability, Eq. (2), and the median fraction of cells consumed by 
established infections, Eq. (40), assume N inf = V suc , as in previous work. Yet in cases where infection extinction 
and establishment are clearly distinct, the proportion of SM infections presumed extinct agrees with the theoreti-
cally predicted extinction probability, and the median fraction of cells consumed by SM infections presumed 
established agrees well with our theoretical expression. This is likely because the number of infectious virions V suc 
considered herein is sufficiently small compared to the number of cells Tt that the entry of more than one V suc 
into the same Tt cell occurs rarely and N inf = V suc largely holds for the parameters explored herein. Neverthe-
less, our SM’s expression for N inf  more accurately represents the underlying process, and its computational cost 
is negligible, and thus worth keeping.

The MFM was developed independently from the SM. As such, the MFM was not intended to be exactly the 
same as the mean of the SM equations. If one wanted to derive the mean of the SM equations, one would have to 
consider higher order moments of the SM  variables75–77. Using a simplified version of our SM, we derived second 
order moment equations, approximated third order moments, and found no significant disagreement between 
the MFM solution with and without second order moment terms (see Supplementary Material, Section S1).

Numerical accuracy of the SM’s solutions
SM simulation output presented in Results, for both extinct and established infections, are those associated 
with Figs. 5, 6, 7, 10, i.e. those showing the frequency distribution for the number of cells consumed by 106 SM 
simulated infections. The most important quantities discussed about these figures are the simulated fraction of 
extinct infections and median fraction of cells consumed by established infections. These can be compared to the 
theoretical extinction probability, PV→Extinction , and median fraction of cells consumed by established infections, 
1− T(∞)/Ncells . When extinction and establishment are clearly distinct, the absolute error of PV→Extinction and 
1− T(∞)/Ncells is of the order of 10−4 or 0.01% (see Table 3 and 4). Further, the absolute error of PV→Extinction 
is always within one standard deviation of the expected distribution for the fraction of extinct infections after 
106 SM simulations, 1/106 · Binomial(n = 106, p = PV→Extinction) (see Table 3). This indicates that the time step 
criteria (Eq. (11)) and the number of SM simulations were sufficient to provide good accuracy for our key results.

The numerical solution of the SM was further validated by replacing the SM’s random variables, e.g. Eouti  , by 
their expected value, e.g. Eouti = Eti ·�t · nE/τE , and comparing the solution against that obtained for the MFM 
in Eq. (1) with a standard numerical ODE solver. The solutions were found to be in agreement over the wide 
range of parameter values explored (not shown).

MFM using the expected value of the SM’s random variables
One way of defining a MFM is by replacing the random variables of the SM by their expected values, listed in 
Table 5. This is trivial for the random variables that are drawn from well-defined probability distributions. But 
it is not for N inf  , which is determined by simulating the process of randomly placing V suc infectious virions into 
Tt cells chosen at random with replacement, {xi|xi ∈ U{a = 1, b = Tt}, 1 ≤ i ≤ V suc} , and counting the number 
of distinct cells that received one or more infectious virions, |{...}|.

(12)



20

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17243  | https://doi.org/10.1038/s41598-023-44180-w

www.nature.com/scientificreports/

Consider then en , the expected number of empty cells after placing n infectious virions into Tt cells. After 
placing n− 1 infectious virions into Tt cells, there is on average en−1 empty cells by definition. There is then a 
en−1/T

t probability to place the last infectious virion into an empty cell. It follows that

By recursion and since trivially e0 = Tt,

The expected number of N inf  cells after placing V suc infectious virions into Tt cells is therefore represented as

When there are far fewer successful virion entry events than there are target cells ( V suc ≪ Tt ), the above expres-
sion for the expected value of N inf  equals V suc.

Probability that an infectious virion succeeds at causing a productive cell infection
Let us derive the probability that an infectious virion is successful at causing a productive cell infection, PV→ I , 
in a population of fully susceptible, uninfected cells ( T = Ncells).

In a time step �t , the probability that an infectious virion neither loses infectivity nor enters a cell is 
(1−�tc −�tβNcells/s) , the probability that an infectious virion enters a cell is �tβNcells/s and the probability 
that an infectious virion post cell entry will be successful at causing a cell infection is γ . The probability that an 
infectious virion is successful at causing a productive cell infection in time t = k�t is then given by the fol-
lowing expression,

More generally, the probability that this happens in any time t = k�t where 0 ≤ t ≤ tincub and tincub = n�t is 
the incubation time, is then expressed as

(13)

en =
en−1

Tt
(en−1 − 1)+

(

1−
en−1

Tt

)

en−1

en =
e2n−1

Tt
−

en−1

Tt
+ en−1 −

e2n−1

Tt

en = en−1

(

Tt − 1

Tt

)

(14)en = Tt

(

Tt − 1

Tt

)n

(15)Tt

[

1−
(

Tt − 1

Tt

)V suc]

(16)(1−�tc −�tβNcells/s)
k−1(�tβNcells/s)γ

Table 3.  Absolute errors for the extinction probability. † Standard deviation = 

1/106 ·
√

106 · PTheoretical
V→Extinction ·

(

1− PTheoretical
V→Extinction

)

Figures PTheoretical
V→Extinction PSimulated

V→Extinction Standard deviation† Absolute error

5 0.848170 0.848227 0.000359 0.000057

6(A) 0.884467 0.884348 0.000320 0.000119

6(B) 0.917389 0.917172 0.000275 0.000213

7(B) 0.961389 0.961308 0.000193 0.000081

7(C) 0.961389 0.961223 0.000193 0.000166

10(A) 0.963306 0.963198 0.000188 0.000108

Table 4.  Absolute errors for the median fraction of cells consumed by established infections.

Figures [1− T(∞)/Ncells]
Theoretical
Established, median [1− T(∞)/Ncells]

Simulated
Established, median

Absolute error

5 0.796818 0.796850 0.000032

6(A) 0.675769 0.675850 0.000081

6(B) 0.533028 0.533325 0.000297

7(B) 0.284271 0.284442 0.000171

7(C) 0.284271 0.284187 0.000084

10(A) 0.716323 0.716375 0.000052
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In our SM, �t is set according to Eq. (11). Let us assume that �t is sufficiently small that we can take the limit 
of Eq. (17) as n → ∞ (i.e. �t → 0 ), namely,

As tincub → ∞ , Eq. (18) is then given by the following expression,

Fig. 13 shows that the frequency of success of an infectious virion to cause a productive cell infection in a popula-
tion of uninfected cells, generated from 105 SM simulations, is in agreement with Eq. (19), over a wide range of 
infection parameters. This means that our earlier oassumption was reasonable that �t is sufficiently small that 
we can take the limit as �t → 0.

Probability that an infectious cell produces m infectious virions
Let us derive the probability that an infectious cell produces m infectious virions over its lifespan ( PI→mV).

Assuming that successive infectious virion productions are independent events that happen under constant 
rate p, then the probability that an infectious cell produces m infectious virions over its lifespan t is given by 
Poisson(m|� = t p).

The negative binomial (NB) distribution represents the probability that there are k successes in a sequence of 
independent and identically distributed Bernoulli trials with probability of success p before a specified number 
of failures r occurs, namely,

The probability that an infectious cell transition to the next compartment is given by 
Binomial(1|n = 1, pI = �tnI/τI ) . Therefore the probability that an infectious cell transition to the next compart-
ment for nI time steps and does not for n− nI time steps is then given by NB(nI |r = n− nI , pI = �t nI/τI ) . It is 
possible to show that the continuous analogue of this discrete probability distribution is the Erlang distribution 

(17)

(18)

[

γβNcells/s

c + βNcells/s

][

1− lim
n→∞

(

1−
tincub(c + βNcells/s)

n

)n]

=
[

γβNcells/s

c + βNcells/s

]

[

1− e−tincub(c+βNcells/s)
]

(19)PV→ I =
γβNcells/s

c + βNcells/s
=

γ

1+ c/(βNcells/s)

(20)NB(k|r, p) =
(

k + r − 1

k

)

(1− p)rpk

Table 5.  Expected value of the random variables used by the SM.

Random variable Expected value

Eouti Eti ·�tnE/τE where i = 1, 2, ..., nE

Ioutj Itj ·�tnI/τI where j = 1, 2, ..., nI

Vprod �t · p
∑nI

j=1 I
t
j

Vdecay,V enter, otherwise V
t ·�tc,Vt ·�tβTt/s,Vt · (1−�tc −�tβTt/s)

N inf
Tt

[

1− [(Tt − 1)/Tt ]V suc ] for Tt ≥ 1 and 0 for Tt < 1

where the expected value of V suc is V enter · γ
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( Erlang(t|k = nI , � = nI/τI ) ). As a result, we make use of this probability density function to express the prob-
ability that the infectious lifespan has duration t.

The probability that an infectious cell produces m infectious virions over its lifespan, i.e. that the burst size 
of an infected cell is m, can then be derived by integrating over time t, the joint probability distribution that 
an infectious cell produces m infectious virions given a lifespan of duration t and that an infectious cell has a 
lifespan of duration t, namely,

where B = pτI  is the average burst size. When nI = 1 , PI→mV = NB(m|r = 1, pB = B/(1+ B)) =
Geom(m|p = 1/(1+ B)) where Geom represents the geometric distribution. When nI → ∞ , 
PI→mV = NB(m|r = nI , pB = B/(nI + B)) = Poisson(m|� = B).

Figure 14 shows that the normalized histogram of the burst size, generated from 105 SM simulations, is in 
agreement with Eq. (21), over a wide range of infection parameters.

Extinction probability
Following Pearson et al.2, let us derive the extinction probability of an infection. The extinction probability of 
an infection with initially one infectious virion ( PV→Extinction ) can be written as

since the infection can become extinct if the initial infectious virion fails to cause a productive cell infection with 
probability 1− PV→ I or if it does cause a productive cell infection with probability PV→ I but that cell infection 
then leads to extinction with probability PI→Extinction.

Likewise, the extinction probability of an infection with initially one infectious cell ( PI→Extinction ) can be 
expressed as

since the initial infectious cell will produce some number m of infectious virions over its lifespan with probability 
PI→mV and each one of these produced infectious virions can be seen as an independent infection event that 
can lead to extinction with probability PV→Extinction.

Substituting our derived expression for PI→mV (Eq. 21) into Eq. (23) yields

The following binomial series can be used to simplify Eq. (24),

(21)

PI→mV =
∫ ∞

0
Poisson(m|� = pt) · Erlang(t|k = nI , � = nI/τI )dt = NB(m|r = nI , pB = B/(nI + B))

(22)PV→Extinction = (1− PV→ I )+ PV→ I · PI→Extinction

(23)PI→Extinction =
∞
∑

m=0

PI→mV · (PV→Extinction)
m

(24)

PI→Extinction =
∞
∑

m=0

NB(m|r = nI , pB = B/(nI + B)) · (PV→Extinction)
m

PI→Extinction =
∞
∑

m=0

(

m+ nI − 1

m

)[

1−
B

nI + B

]nI[ B

nI + B

]m

· (PV→Extinction)
m

PI→Extinction =
[

nI

nI + B

]nI ∞
∑

m=0

(

m+ nI − 1

m

)[

B

nI + B
· PV→Extinction

]m

Figure 13.  Probability that an infectious virion is successful at causing a productive cell infection. Frequency 
of success of an infectious virion to cause a productive cell infection in a population of uninfected cells for 105 
SM simulations (red scatter) compared to PV→ I the derived expression for the probability of success of an 
infectious virion to cause a productive cell infection in a population of uninfected cells (black curve, Eq. (19)) 
while either varying (A) c, (B) γ or (C) βNcells/s . Unless otherwise specified, the parameters were the same as in 
Fig. 4.
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Let us derive some related expressions,

Eq. (24) can then be simplified to

Substituting Eq. (28), our derived expression for PV→ I (Eq. (19)) into Eq. (22) yields

(25)
1

(1− x)s
=

∑

k

(

s + k − 1

k

)

xk

(26)x:=
B

nI + B
· PV→Extinction

(27)
=⇒ 1− x =

nI + B(1− PV→Extinction)

nI + B

=⇒
1

(1− x)nI
=

[

nI + B

nI + B(1− PV→Extinction)

]nI

(28)

PI→Extinction =
[

nI

nI + B

]nI[ nI + B

nI + B(1− PV→Extinction)

]nI

=
[

nI

nI + B(1− PV→Extinction)

]nI

=
[

B(1− PV→Extinction)

nI
+ 1

]−nI

Figure 14.  Probability that an infectious cell will produce m infectious virions. Normalized histogram of the 
burst size, i.e. the total number of infectious virions produced by one infectious cell over its lifespan, for 105 
SM simulations (blue x), compared to the derived expression for the probability mass function of the burst size 
distribution (orange circle, Eq. (21)) while either varying (A–C) τI , (D–F) p or (G–I) nI . The black lines show 
the average burst size values B = pτI . Unless otherwise specified, the parameters were the same as in Fig. 4.



24

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17243  | https://doi.org/10.1038/s41598-023-44180-w

www.nature.com/scientificreports/

This expression does not seem to have an analytical solution for PV→Extinction but a solution can be found 
numerically by finding the roots of the expression on the right-hand side of Eq. (30) using scipy.optimize.
fsolve. Figure 15 shows that the frequency of extinction given an infection initiated with only one infectious 
virion, generated from 105 SM simulations, is in agreement with the probability of extinction given an infection 
initiated with only one infectious virion, over a wide range of infection parameters. The extinction probability 
given any number of infectious virions V0 and infectious cells I0 is given by (PV→Extinction)

V0 · (PI→Extinction)
I0 . 

It is important to note that, as  others2,5, we also make the assumption in this derivation that T = Ncells is constant.
When nI = 1 , Eq. (29) simplifies to

In this case, PV→Extinction = (1− PV→ I )+ 1/B is a solution to the above expression as,

PV→Extinction = (1− PV→ I )+ 1/B  i s  e q u i v a l e n t  t o  E q .  ( 1 5 )  i n  Pe a r s o n  e t   a l . 2 . 
PV→Extinction = (1− PV→ I )+ 1/B can also be written in terms of the basic reproductive number 
R0 = B · PV→ I (see Eq. (7)), i.e. PV→Extinction = 1− (R0 − 1)/B . Also, PV→Establishment or 1− PV→Extinction 
is then given by PV→ I − 1/B or (R0 − 1)/B.

When nI → ∞ , PI→mV = Poisson(m|� = B) , therefore, we obtain,

which is equivalent to Eq. (26) in Pearson et al.2.

Expression for the fraction of cells consumed by infections
As it happens, the median fraction of cells consumed by established infections in the SM approximately cor-
responds to the fraction of cells consumed in the deterministic MFM for a given parameter set. We can use the 
latter to obtain an analytical expression for the median fraction of cells infected by our SM to understand how 
each SM parameter affects this quantity.

So let us derive the fraction of cells consumed in the MFM for an infection starting with a number of infec-
tious virions V(0).  Following78, we have the following relations from Eq. (1),

Substituting these relations into Eq. (1) for V̇  , we obtain

Integrating Eq. (35) from 0 to +∞ and using the fact that Ei(0) = Ei(∞) = Ij(0) = Ij(∞) = V(∞) = 0 for 
i = 1, 2, ..., nE and j = 1, 2, ..., nI , it follows that,

(29)PV→Extinction = (1− PV→ I )+ PV→ I

[

B(1− PV→Extinction)

nI
+ 1

]−nI

(30)

PV→Extinction =
[

1−
γβNcells/s

c + βNcells/s

]

+
γβNcells/s

c + βNcells/s

[

B(1− PV→Extinction)

nI
+ 1

]−nI

PV→Extinction = 1−
γ

c/(βNcells/s)+ 1
+

γ

c/(βNcells/s)+ 1

[

B(1− PV→Extinction)

nI
+ 1

]−nI

0 = 1−
[1+ c/(βNcells/s)]

γ
[1− PV→Extinction] −

[

B(1− PV→Extinction)

nI
+ 1

]−nI

(31)PV→Extinction = (1− PV→ I )+ PV→ I

[

1

1+ B(1− PV→Extinction)

]

(1− PV→ I )+ 1/B = (1− PV→ I )+ PV→ I

[

1

1+ B[1− (1− PV→ I + 1/B)]

]

(1− PV→ I )+ 1/B = (1− PV→ I )+ PV→ I

[

1

B · PV→ I

]

(1− PV→ I )+ 1/B = (1− PV→ I )+ 1/B

∴ LHS = RHS

(32)PV→Extinction = (1− PV→ I )+ PV→ I ·
∞
∑

m=0

Poisson(m|� = B) · (PV→Extinction)
m

(33)Ṫ +
nE
�

i=1

Ėi +
k

�

j=1

İj = −nI Ik/τI =⇒ Ik = −(τI/nI )



Ṫ +
nE
�

i=1

Ėi +
k

�

j=1

İj





(34)
d

dt
ln(T) =

Ṫ

T
= −γβV/s =⇒

1

γβ/s

d

dt
ln(T) = −V

(35)V̇ = −(pτI/nI )



nI

�

Ṫ +
nE
�

i=1

Ėi

�

+
nI
�

k=1

k
�

j=1

İj



+
c

γβ/s

d

dt
ln(T)+ Ṫ/γ
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Dividing by T(0) = Ncells we have

Introducing a new quantity we call the critical fraction of cells uninfected, T∗/Ncells = [c/(βNcells/s)]/[γ pτI − 1] , 
into Eq. (37) yields

Eq. (38) is of the form z = w exp(w) . The Lambert W function is the function that gives the inverse relation, i.e. 
W(z) = w . Therefore, we have the following,

where here we make use of W0 the upper branch of the Lambert W function. The upper branch is used because 
T(∞)/T∗ < 1 since T(∞) is always reached after T∗ and therefore is always smaller.

(36)−V(0) = −pτI {T(∞)− T(0)} +
c

γβ/s
{ln[T(∞)] − ln[T(0)]} + (1/γ ){T(∞)− T(0)}

(37)

−V(0)/Ncells = (1/γ − pτI )[T(∞)/Ncells − 1] +
c

γβNcells/s
ln(T(∞)/Ncells)

−V(0)/Ncells + 1/γ − pτI = (1/γ − pτI )T(∞)/Ncells +
c

γβNcells/s
ln(T(∞)/Ncells)

−γV(0)/Ncells + 1− γ pτI = (1− γ pτI )T(∞)/Ncells +
c

βNcells/s
ln(T(∞)/Ncells)

−
γβ/s · V(0)

c
−

(βNcells/s) · (γ pτI − 1)

c
= −

(βNcells/s) · (γ pτI − 1)

c
T(∞)/Ncells + ln(T(∞)/Ncells)

(38)

−
γβ/s · V(0)

c
−

1

T∗/Ncells
= −

T(∞)/Ncells

T∗/Ncells
+ ln(T(∞)/Ncells)

e−[γβ/s·V(0)]/ce−1/(T∗/Ncells) = T(∞)/Ncells · e−(T(∞)/Ncells)/(T
∗/Ncells)

−
e−1/(T∗/Ncells)

T∗/Ncells
e−[γβ/s·V(0)]/c = −

T(∞)/Ncells

T∗/Ncells
· e−(T(∞)/Ncells)/(T

∗/Ncells)

(39)

−
T(∞)/Ncells

T∗/Ncells
= W0

(

−
e−1/(T∗/Ncells)

T∗/Ncells
e−[γβ/s·V(0)]/c

)

T(∞)/Ncells = −T∗/Ncells ·W0

(

−
e−1/(T∗/Ncells)

T∗/Ncells
e−[γβ/s·V(0)]/c

)

Figure 15.  Extinction probability given an infection initiated with only one infectious virion. Frequency of 
failure of an infection initiated with only one infectious virion to cause more than 0.01% of cells to be infected 
by the end for 105 SM simulations (red scatter) compared to PV→Extinction the derived expression for the 
extinction probability given an infection initiated with only one infectious virion (black curve, Eq. (30)) while 
either varying (A) τI , (B) p, (C) nI , (D) c, (E) γ or (F) βNcells/s . Unless otherwise specified, the parameters were 
the same as in Fig. 4.
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The fraction of cells consumed by the infection, 1− T(∞)/Ncells , is then given by

If instead there was initially a number of infectious cells but no infectious virions ( I1(0)  = 0 , V(0) = 0 ) then 
Eq. (36) would be

which is equivalent to Eq. (36) where V(0) is replaced with pτI I1(0) . This means that Eq. (40) would be the same 
but with V(0) replaced with pτI I1(0).

For V(0) such that [γβ/s · V(0)]/c ≈ 0 , Eq. (40) simplifies to

The Maclaurin series of W0(x) is W0(x) = x − x2 + 3x3/2− · · · ≈ x . It follows that, when T∗/Ncells ≪ 1 , Eq. 
(42) simplifies to

Figure 16 shows that the fraction of cells consumed by the infection, 1− T(∞)/Ncells , is simply a strictly 
decreasing function of T∗/Ncells and that, when T∗/Ncells ≪ 1 , 1− T(∞)/Ncells ≈ 1− e−1/(T∗/Ncells) . But what 
does T∗/Ncells represent? At the start of an infection, all cells are uninfected, T(0) = Ncells , and the reproductive 
number, R(0), i.e. the number of successful secondary infections caused by an infected cell over its lifespan, 
corresponds to the basic reproductive number ( R0 ), given by Eq. (7), where R0 > 1 for an infection that has a 
non-zero establishment probability. As the infection progresses and fewer uninfected cells remain, each infec-
tious virion has fewer opportunities to cause a successful cell infection and R(t) decreases.

Let us derive an expression for the reproductive number R(t) as a function of the fraction of cells uninfected 
T(t)/Ncells for a given basic reproductive number R0 (Eq. (7)). To begin, using Eq. (7) and the left-hand side of 
Eq. (10), we have the following relation,

The left-hand side of Eq. (10) can be rearranged to

Substituting Eq. (44) into Eq. (45), we obtain

The reproductive number can also be written as

(40)1− T(∞)/Ncells = 1+ T∗/Ncells ·W0

(

−
e−1/(T∗/Ncells)

T∗/Ncells
e−[γβ/s·V(0)]/c

)

(41)0 = −pτI {T(∞)− T(0)− I1(0)} +
c

γβ/s
{ln[T(∞)] − ln[T(0)]} + (1/γ ){T(∞)− T(0)}

(42)1− T(∞)/Ncells = 1+ T∗/Ncells ·W0

(

−
e−1/(T∗/Ncells)

T∗/Ncells

)

(43)
1− T(∞)/Ncells ≈ 1+ T∗/Ncells · −

e−1/(T∗/Ncells)

T∗/Ncells

1− T(∞)/Ncells ≈ 1− e−1/(T∗/Ncells)

(44)

1

R0

pτI · γβNcells/s

c + βNcells/s
=

pτI · γβT∗/s

c + βT∗/s

1

R0

Ncells

c/(β/s)+ Ncells
=

T∗

c/(β/s)+ T∗

Ncells[c/(β/s)] + NcellsT
∗ = R0[c/(β/s)]T∗ + R0NcellsT

∗

c/(β/s) · (Ncells − R0T
∗) = NcellsT

∗(R0 − 1)

c/(β/s) =
NcellsT

∗(R0 − 1)

Ncells − R0T∗

(45)
γ pτI =

c + βT∗/s

βT∗/s

γ pτI =
c/(β/s)+ T∗

T∗

(46)

γ pτI =
1

T∗

[

NcellsT
∗(R0 − 1)

Ncells − R0T∗ + T∗
]

γ pτI =
Ncells(R0 − 1)

Ncells − R0T∗ + 1

γ pτI =
R0(Ncells − T∗)

Ncells − R0T∗
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Substituting Eqs. (44) and (45) into Eq. (47), we then have

As an infection progresses from T(0) = Ncells where R(t = 0) = R0 , eventually the number of uninfected cells 
reaches a critical value, T(t) = T∗ , such that

(47)
R(t) =

pτI · γβT(t)/s
c + βT(t)/s

R(t) =
γ pτI · T(t)

c/(β/s)+ T(t)

(48)

R(t) =
R0(Ncells−T∗)
Ncells−R0T∗ · T(t)

NcellsT
∗(R0−1)

Ncells−R0T∗ + T(t)

R(t) =
R0T(t) · (Ncells − T∗)

NcellsT∗(R0 − 1)+ T(t) · (Ncells − R0T∗)

R(t) =
R0 · T(t)/Ncells · (1− T∗/Ncells)

T∗/Ncells · (R0 − 1)+ T(t)/Ncells · (1− R0 · T∗/Ncells)

Figure 16.  Fraction of cells consumed by infections in the MFM. The fraction of cells consumed by infection in 
the MFM ( 1− T(∞)/Ncells , Eq. (42), blue solid line) as a function of the fraction of cells uninfected when the 
reproductive number R(t) = 1 ( T∗/Ncells ). The black dashed line is 1− exp[−1/(T∗/Ncells)].

Figure 17.  Exploring the critical fraction of uninfected cells, T∗/Ncells . (A) MFM time courses for the 
fraction of uninfected (black) and infectious (red) cells, for an infection initiated with 10 infectious virions 
under antiviral therapy reducing the virus entry rate, β → (1− ε)β , at efficacy ε = 0.81 , which yields an 
establishment probability ( PV→Establishment = 48% ) that is ∼50% of its value without  antivirals23. The point 
(t,T∗/Ncells) is represented by a triangle; the time when T = T∗ by a dashed line; and T = T(∞) by an × on the 
right vertical axis. The parameters are provided in Methods, but notably nI = 1 . (B,C) The reproductive number, 
R(t), as a function of the fraction of cells that remain uninfected, T(t), over the course of an infection (time is 
implicit), based on Eq. (48) when either R0 = 2.2 and T∗/Ncells is varied (B); or T∗/Ncells = 0.4 and R0 is varied 
(C). The start of the infection is represented by a circle; the critical point where T = T∗ and R = 1 by a triangle; 
and the end of the infection where T = T(∞) as given by Eq. (42) by an ×.
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When the number of uninfected cells remaining T(t) equals T∗ , then by definition R(t) = 1 marking the infec-
tious cell population peak, as shown in Fig. 17(A). Thereafter, the infectious cell population declines and the 
number of cells that remain uninfected approaches its final value, T(∞) . When the initial inoculum consists of 
one or a few infectious virions, the fraction of cells consumed by infections in the MFM or by established infec-
tions in the SM, 1− T(∞)/Ncells , can be represented by a strictly decreasing function of T∗/Ncells , Eq. (42). This 
makes sense because if the infection parameters are such that fewer cells need to be consumed by the infection 
to reach R(t) = 1 (larger T∗ ), then fewer cells will have been consumed by the time the infection ends (larger 
T(∞) ), as shown in Fig. 17(B). This theoretical expression for the fraction of cells consumed is not, however, 
simply a function of R0 . Figure 17(C) shows how an infection can start with a higher R0 but R(t) can decrease 
more rapidly as the infection progresses such that R(t) = 1 with the same fraction of uninfected cells ( T∗/Ncells ), 
ultimately resulting in the same fraction of cells consumed, 1− T(∞)/Ncells.

Generalizing impact of antiviral reducing γ versus one reducing β or p
Impact on the establishment probability
γ vs β The establishment probability, or 1− (extinction probability) (Eq. (8)), for an infection initiated with a 
single infectious virion is given by

While an antiviral reducing β decreases both the numerator and denominator of PV→ I (Eq. (5)), one reducing 
γ decreases only the numerator. Therefore, at equal efficacy, an antiviral reducing γ decreases PV→ I more than 
one reducing β . If PV→ I decreases monotonically as PV→Establishment decreases, an antiviral causing a greater 
decrease in PV→ I will cause an equal or greater decrease in PV→Establishment.

Let us show that PV→ I is a monotonically increasing function of PV→Establishment . Eq. (50) can be rewritten as

where we define x ≡ PV→Establishment for convenience. Taking the derivative of the above with respect to x yields

Using the binomial theorem, Eq. (52) can be written as

(49)R(t) = 1 ≡
pτI · γ

1+ c/(βT∗/s)

T∗

Ncells
=

c/(βNcells/s)

γ pτI − 1
.

(50)PV→Establishment = PV→ I − PV→ I

[

B · PV→Establishment

nI
+ 1

]−nI

(51)PV→ I =
PV→Establishment

1−
[

B·PV→Establishment
nI

+ 1
]−nI

=
x

1−
[

B·x
nI

+ 1
]−nI

(52)

∂PV→ I

∂x
=

∂

∂x
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B·x
nI

+ 1
�−nI
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Since nI ≥ 1 , we can expand the sum at least for k = 0 and k = 1 , namely,

Since (B · x/nI )+ 1 ∈ [1,B] , ∂PV→ I
∂x = ∂PV→ I

∂PV→Establishment
≥ 0 ∀(x,B, nI ) . This means that PV→ I is a monotoni-

cally increasing function of PV→Establishment . Since an antiviral reducing γ causes a greater decrease in PV→ I 
than one reducing β , at equal efficacy an antiviral reducing γ will decrease PV→Establishment at least as much or 
more so than one reducing β.

γ vs p The establishment probability, or 1− (extinction probability) (Eq. (8)), for an infection initiated with 
a single infectious virion in the presence of an antiviral reducing γ is given by

because γ is in the numerator of PV→ I , whereas an antiviral reducing p is given by

because p is in B = pτI but does not appear in PV→ I , such that

Since ε ∈ (0, 1] , an antiviral reducing γ will always decrease the establishment probability ( PV→Establishment ) at 
least as much or more so than an antiviral reducing p.

Impact on the fraction of cells consumed by established infections
The median fraction of cells consumed by established infections, Eq. (40), decreases monotonically as you decrease 
the argument of W0 by reducing either the term [γ (β/s)/c · V(0)] or the term Ncells/T

∗ = (β/s)/c · [γ pτI − 1] 
or both.

γ versus β At a given efficacy, an antiviral reducing γ or β decreases the first term by the same amount, but 
one reducing γ will decreases Ncells/T

∗ more than one reducing β . Therefore, an antiviral reducing γ will always 
decrease the fraction of cells consumed at least as much or more so than an antiviral reducing β.

γ versus p At a given efficacy, an antiviral reducing γ or p decreases Ncells/T
∗ by the same amount, but one 

reducing γ will also reduce the first term whereas one reducing p has no effect on the first term. Therefore, an 
antiviral reducing γ will always decrease the fraction of cells consumed at least as much or more so than an 
antiviral reducing p.

Data availability
There are no primary data in the paper. The code for the mean-field model (MFM) and the stochastic model 
(SM) is freely available on GitHub (https:// github. com/ cquir/ vir- inf- stoch).
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