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Inherently interpretable 
position‑aware convolutional motif 
kernel networks for biological 
sequencing data
Jonas C. Ditz 1*, Bernhard Reuter 1,2 & Nico Pfeifer 1,2*

Artificial neural networks show promising performance in detecting correlations within data that 
are associated with specific outcomes. However, the black-box nature of such models can hinder the 
knowledge advancement in research fields by obscuring the decision process and preventing scientist 
to fully conceptualize predicted outcomes. Furthermore, domain experts like healthcare providers 
need explainable predictions to assess whether a predicted outcome can be trusted in high stakes 
scenarios and to help them integrating a model into their own routine. Therefore, interpretable 
models play a crucial role for the incorporation of machine learning into high stakes scenarios like 
healthcare. In this paper we introduce Convolutional Motif Kernel Networks, a neural network 
architecture that involves learning a feature representation within a subspace of the reproducing 
kernel Hilbert space of the position-aware motif kernel function. The resulting model enables 
to directly interpret and evaluate prediction outcomes by providing a biologically and medically 
meaningful explanation without the need for additional post-hoc analysis. We show that our model 
is able to robustly learn on small datasets and reaches state-of-the-art performance on relevant 
healthcare prediction tasks. Our proposed method can be utilized on DNA and protein sequences. 
Furthermore, we show that the proposed method learns biologically meaningful concepts directly 
from data using an end-to-end learning scheme.

Biological sequences contain valuable information for a wide variety of biological processes. While this property 
makes them crucial for advances in related research fields, it also provides the potential to improve diagnosis and 
treatment decisions in healthcare systems. For this reason, a large amount of machine learning approaches that 
solve learning tasks on biological sequences were developed over the last years. Among others, these approaches 
include the prediction of splice sites1 and translation initiation sites2, predicting binding affinity between proteins 
and DNA/RNA3,4, drug resistance prediction5, or the denoising of biological sequence data6. However, trained 
models can only be safely incorporated into medical routines if their prediction outcomes can be thoroughly 
interpreted and understood even by domain experts, e.g., healthcare providers like medical practitioners, without 
strong knowledge in the foundations of machine learning. Kernel methods and statistical models provide the 
possibility to interpret results within the data’s domain, hence, allowing domain experts to judge outcomes using 
their own expertise. Yet, scalability issues in terms of data size limit their utility considering the rapid increase 
of available data in medical and biological research. On the other hand, gradient-based learning approaches like 
neural networks can handle huge data pools with relative ease but are normally developed as black-box models. 
Although there are model-agnostic techniques to interpret these models, e.g., saliency maps7 or Shapley additive 
explanations (SHAP)8, recent work by Rudin9 advises the use of inherently interpretable models for high stakes 
scenarios over post-hoc explaining black-box models. One problem of post-hoc ML explanation models identi-
fied by Rudin is their unfaithfulness regarding the original model’s computation, which can result in misleading 
explanations. Sixt and colleagues showed this unfaithfulness for attribution methods by proving that most meth-
ods ignored later layers of a model when computing explanations10. Furthermore, Bordt and colleagues showed 
the limitations of post-hoc explanations in adversarial contexts11. Lipton warned about the danger of optimizing 
post-hoc methods to produce plausible but misleading explanations12. In high stakes scenarios like healthcare, 
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decisions made on misleading or wrong explanations can cause dangerous situations with the potential to further 
harm patients or other vulnerable groups.

In recent years, several efforts were published to combine kernel functions and neural networks13–16. Combin-
ing these two approaches enhances neural networks with the interpretability and robustness of kernel methods. 
On the other hand, it allows to extend learning within a reproducing kernel Hilbert space (RKHS) to problems 
with massive numbers of data points. Recently, Chen and colleagues introduced these efforts into data mining 
on biological sequences by developing convolutional kernel networks based on a continuous relaxation of the 
mismatch kernel17. Although these models show promising performance, the choice of kernel resulted in the 
necessity of a post-hoc model for interpretation. Another limitation results from the fact that the mismatch kernel 
restricts considered k-mer occurrences to a position-independent representation18,19. In many medical tasks, 
however, positional and compositional variability provide key information. One kernel network approach that 
utilizes positional information is the recurrent kernel network (RKN) proposed by Chen et al.20. Another recent 
approach to incorporate positional information was proposed by Mialon et al.22. They utilizes a fixed matrix to 
introduce positional information. While these architectures showed promising performance capabilities, the 
chosen architectures resulted once again in black-box models with the need for post-hoc interpretation.

The oligo kernel proposed by Meinicke and colleagues is able to model positional variability and can addition-
ally provide traditional monomer-based representations as well as position-independent k-mer representations 
as limiting cases21. Furthermore, the oligo kernel allows for intuitive and simple interpretation of k-mer relevance 
and positional variability. However, the oligo kernel cannot be directly incorporated into a convolutional net-
work architecture and does not take into account information provided by compositional variability of motifs. 
While k-mers are short sequences with fixed letters at each position, motifs are short sequence patterns that can 
represent more than one possible letter at each position. The above mentioned limitations motivated our work 
presented here.

This work is structured in the following way. “Methods” section introduces the position-aware motif kernel 
function and details how to incorporate the position-aware motif kernel into a convolutional kernel layer and 
how to interpret a trained CMKN model. “Experiments” section provides details regarding the conducted experi-
ments on synthetic and real-world data and the results. Finally, “Discussion” section provides a discussion of 
presented prediction and interpretation results and “Conclusion” section completes this work with a conclusion.

In summary, our manuscript provides the following contributions:

•	 We extend convolutional kernel network models for biological sequences to incorporate positional informa-
tion and make them inherently interpretable, which removes the necessity for post-hoc explanation models. 
The new models are called convolutional motif kernel networks (CMKNs).

•	 This extension is achieved by introducing a new kernel function, called position-aware motif kernel, that 
quantifies the position dependent similarity of motif occurrences.

•	 We use one synthetic and two real-world datasets to show how our method can be used as a research tool to 
gain insight into biological sequence data and how CMKNs can provide local interpretation that can help 
domain experts, e.g., healthcare providers, to quickly interpret and validate prediction outcomes of a trained 
CMKN model with their domain expertise.

Methods
In the following section, we will introduce our new kernel function and show how this kernel can be used to 
create inherently interpretable kernel networks.

Position‑aware motif kernel
We introduce a new kernel function that incorporates the positional uncertainty of the oligo kernel21 but is 
defined for arbitrary sequence motifs. Furthermore, our kernel function can be used to construct a convolutional 
kernel layer as described by Mairal16. Our kernel function is based on two main ideas: First, we introduce a 
mapping of sequence positions onto the unit circle, which allows us to represent the position comparison term 
by a linear operation followed by a non-linear activation function. Second, we introduce a k-mer comparison 
term. This extension enables the kernel function to deal with inexact k-mer matching, which capacitates our 
kernel function to handle arbitrary sequence motifs. We call our new kernel function position-aware motif 
kernel (PAM).

The first part of our position-aware motif kernel compares sequence positions. In prior work, e.g., Meinicke 
et al.21 or Mialon et al.22, a quadratic term is usually employed to measure the similarity of positions. We utilize 
a linear comparison term instead. First, all positions are mapped onto the upper half of the unit circle to create 
unit ℓ2-norm vectors: p̃ =

(
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The second part of our position-aware motif kernel compares sequence motifs. For biological sequences, a 
motif describes a nucleotide or amino acid pattern of a certain length. Sequence motifs can be written in form 
of a normalized position frequency matrix (nPFM), which is a matrix in R|A|×k

+  with |A| being the size of the 
alphabet over which the motif is created and k being the length of the motif. An nPFM has to fulfill the addi-
tional constraint that each column has unit ℓ2-norm (see Supplement for more details). For two motifs ω and ω′ 
of length k given as flattened nPFMs, i.e., the columns are concatenated to convert the matrix into a vector, we 
define the following motif comparison kernel function:

This function will become one if the two motifs match exactly and will approach zero with increasing differ-
ence of the two motifs. The parameter α determines how fast the function approaches zero and, hence, specifies 
the influence of inexact matching motifs.

We define our position-aware motif kernel by forming the product kernel using the functions introduced in 
Eqs. (1) and (2) and aggregating the kernel evaluation of all motif-position pairs with a sum. In other words, the 
position-aware motif kernel for pairs of sequences x and x′ over an alphabet A is given by:

with

Here, |x| and |x′| are the lengths of the respective sequences, ωp is the motif of length k starting at position p 
in sequence x represented as a flattened nPFM, and ωq is defined analogously to ωp but for sequence x′ . The 

constant C =

√

π2σ 2

2αβ  results from the derivation of the motif kernel matrix elements as the inner product of two 
sequence representatives φx ,φx′ in the feature space of all motifs as detailed in the Supplement.

Extracting a feasible kernel layer using Nyström’s method
Mairal et al. showed that a variant of the Nyström method23,24 can be used to incorporate learning within a 
reproducing kernel Hilbert space (RKHS) into neural networks15,16. We use the same approach to construct 
a finite-dimensional subspace of the RKHS H over motif-position pairs that is implicitly defined by K0 and 
incorporate learning within this subspace into a neural network architecture.

Consider a set of n anchor points z1, . . . , zn , where each anchor point is a motif-position pair zi =
(

ωzi , pzi
)

 . 
We define an n-dimensional subspace E of H that is spanned by a set of anchor points, i.e.

where φzi denotes the projection of each anchor point into the RKHS H . Utilizing the kernel trick, a motif-
position pair can be projected onto E without explicitly calculating the images of the anchor points φz1 , . . . ,φzn . 
This natural parametrization is given by16

Here, KZZ = (K0(zi , zj))i=1,...,n;j=1,...,n is the Gram matrix formed over the anchor points, K− 1
2

ZZ  is the (pseudo)-
inverse square root of the Gram matrix, and KZ((ω, p)) = (K0(z1, (ω, p)), . . . ,K0(zn, (ω, p)))

T . We follow the 
procedure proposed in prior work16,17 to initialize anchor points. First, we sample a set of m >> n motif-position 
pairs from the training data. Afterwards, we perform k-means clustering with euclidean distance metric using 
k-means++ initialization to get n cluster centers of the sampled set. After convergence, we enforce the nPFM 
constraints onto the cluster centers. With initialized anchor points, CMKN models can be trained by a simple 
end-to-end learning scheme. A schematic overview over a CMKN model for DNA input together with a visu-
alization of the information flow within the network is shown in Fig. 1.

Interpreting a CMKN model
The main intuition behind the position-aware motif kernel is to detect similarities between motifs, even if they 
occur at a certain distance from each other and even if the nPFM underlying the motif is different to a certain 
degree. In this way, our approach extends previous approaches like the oligo kernel21 and the weighted degree 
kernel with shifts25, which only evaluated exact k-mer matches. However, our kernel is based on a concept that 
we call motif functions which are extensions of the oligo functions introduced by Meinicke et al.21 (see Supple-
ment for details). A motif function represents the nPFM and position(s) of occurrence of the corresponding 
motif with a smoothing of the position to account for positional uncertainty. Apart from providing a biologically 
meaningful feature representation, the use of a kernel based on motif functions allows for a direct interpretation 
of a trained CMKN model without the need for post-hoc methods. If the CMKN model consists only of linear 
fully-connected layers after the kernel layer, as strictly applied throughout this study, important sequence posi-
tions and corresponding motifs can be directly inferred from the learned weights and anchor points, since this 
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ensures that only linear combinations of the learned feature representations are considered. The importance of 
a sequence position for a certain class can be assessed by calculating the mean positive weight of the edges that 
connect the position with the output state that corresponds to the class. The importance ι of position p for class 
c can thereby be expressed as:

Here, Np denotes the set of neurons contributing to the importance of position p, N (n) denotes the set of neurons 
from the next layer connected by an edge with positive weight to neuron n ∈ Np , wn,m denotes the weight of the 
edge connecting neuron n with neuron m ∈ N (n) , and N (O) denotes the set of |c| neurons oc , each representing a 
single class, in the output layer. Furthermore, the motif associated with the class at that position is retrieved by 
identifying all learned motifs with positive weights and calculating the weighted mean motif using the learned 
weights. This procedure is similar to inferring feature importances from the primal representation using the 
learned parameters of a SVM. Said utilization of the primal representation is possible for linear kernels and 
most string kernels21. The importance of each amino acid at each position of the motif can be directly accessed 
by sorting the rows of each column of the associated nPFM in decreasing order. Additionally, motif functions 
enhance CMKN models with the ability to compute local interpretations, i.e., an explanation of prediction results 
for single inputs within the data’s domain. For an input sequence and a learned motif-position pair, we can esti-
mate the importance of that pair by calculating the ℓ2-norm of the corresponding motif function. To assess the 
class that a model associates with an important position, the class-specific motifs that were learned by a model 
at that position can be retrieved and ranked by the ℓ2-norm of the motif functions on the input sequence. The 
motif with the highest ℓ2-norm determines which class a model assigns to the position. We show an exemplary 
visualization for domain experts of this procedure in Fig. 3b.

Experiments
We used synthetic data to evaluate CMKN’s ability to recover meaningful sequence patterns. Furthermore, we 
evaluated the performance capability of our proposed method on two different prediction tasks: antiretroviral 
drug resistance prediction and splice site recognition.

Recovering meaningful patterns in synthetic data
In order to assess whether CMKN models can reliably recover distinct biological patterns from sequences, we 
created a synthetic dataset containing 1000 randomly generated DNA sequences of length 100. The set was 
equally split into negative and positive sequences, with a distinct motif embedded into each class of sequences 
at a specific position (see Fig. 2a for the embedded motifs). For negative sequences, the motif was embedded at 
position 20 with a positional uncertainty of ± 5 positions. For positive sequences, the motif was embedded at 
position 80 with a positional uncertainty of ± 5 positions. The compositional variability shown in Fig. 2a can be 
understood in a way that one-third of the 5-mers embedded into negative sequences had a thymine at position 2 
while two-third of the k-mers had a guanine. This is equivalent for the other motif positions with compositional 
variability. By creating a synthetic dataset with this procedure, we made sure that the data contains positional 
and compositional variability that are important for the prediction task. We trained a CMKN model using a 
motif length of 5 and a positional uncertainty parameter of 4. For the kernel layer, we chose 50 anchor points. 
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Figure 1.   Schematic overview of an CMKN model. Each motif-position pair of the input is projected onto the 
subspace of the RKHS by the kernel layer. Afterwards, the projected input is classified using one or several linear 
fully-connected layers.
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The other kernel hyperparameters were set to α = 1 and β = 1000 . The model was trained for 50 epochs using 
the binary cross-entropy with logits loss function.

Figure 2 shows the results of our experiment with the synthetic dataset. We recovered the positional feature 
importance values as well as the learned motifs at position 20 and 80 using the procedure described in “Interpret-
ing a CMKN model” section. As clearly visible on the left side, CMKN is able to recover the two embedded motifs 
with high similarity using simple end-to-end learning without post-hoc model optimization. Furthermore, the 
right side of Fig. 2 shows that CMKN is able to detect the relevant areas of biological sequences.

Prediction of antiretroviral drug resistance
When choosing a personalized treatment combination for HIV-infected people, it is crucial to know the resist-
ance profile of the viral variants against available drugs. It has been shown that the genetic sequence of a virus 
can be used to predict resistance against certain antiretroviral drugs5. We performed resistance prediction for 
drugs representing the three most commonly used antiretroviral drug classes against HIV infections: Nucleoside 
reverse-transcriptase inhibitors (NRTIs), non-nucleoside reverse-transcriptase inhibitors (NNRTIs), and pro-
tease inhibitors (PIs). This prediction task was chosen for evaluation of the proposed method, since it remains 
an highly important problem in the treatment of HIV infections and the acquired immune deficiency syndrome 
(AIDS) and is often considered as a role model for precision medicine.

Amino acid sequences of virus protein variants with corresponding drug resistance information were 
extracted from Stanford University’s HIV drug resistance database (HIVdb)26,27. An overview of the available 
data for each of the drugs included in the evaluation can be found in the Supplement. The network architecture 
used for HIV drug resistance prediction consists of a single convolutional motif kernel layer followed by two 
fully-connected layers. The first fully-connected layer projected the flattened output of the kernel layer onto 200 
nodes and the second fully-connected layer had two output states, one for the susceptible class and one for the 
resistant class. The motif length and the hyperparameter α of the kernel function were both fixed to 1 based on 
prior biological knowledge (for details see Supplement material). The scaling hyperparameter β was fixed to |x|

2

10  
with |x| = 99 for PI datasets and |x| = 240 for NRTI/NNRTI datasets. This compensates for the transformation 
of sequence positions (for details see Supplement Material). The number of anchor points and the positional 
uncertainty parameter σ were optimized using a grid search (for details see Supplement Material). Due to the 
limited number of available samples, each model was trained using a fivefold stratified cross-validation. The data 
splits for each fold were fixed across models to ensure the same training environment for each hyperparameter 
combination. Training success was evaluated using the performance measures accuracy, F1 score, and area under 
the receiver operating characteristic curve (auROC). Due to the fact that some datasets were highly unbalanced, 
we also included the Matthew’s correlation coefficient (MCC)28 in the performance assessment.

Mean performances achieved for each of the three investigated drug classes can be found in Table 1. Our 
method was able to achieve high accuracy, F1 score, and auROC values for each drug class. Even though the 
classification problem is highly imbalanced for some of the tested drugs, our model is still able to achieve a high 
Matthew’s correlation coefficient (MCC) value with mean MCC performance exceeding 0.75 for each of the three 
investigated drug classes. We compared CMKN’s performance to previously used models for HIV drug resist-
ance prediction: SVMs with polynomial kernel5 and random forest (RF) classifiers29. Furthermore, we included a 
SVM utilizing the oligo kernel and the CKNseq model17 into our analysis. Additionally, we performed an ablation 
test by replacing the kernel layer with a standard convolutional layer to investigate the influence of our kernel 
architecture onto prediction performance (denoted by CNN in Table 1). The results for all models can be found 
in Table 1. Our method either outperformed the competitors or achieved similar performance.

Figure 2.   Evaluation of the interpretation capabilities of CMKN using synthetic data. (a) The matrix shows the 
embedded motifs (left column) and the motifs learned by CMKN (right column). The first row shows the motif 
at position 20 which was only embedded into negative sequences. The second row shows the motif at position 80 
which was only embedded into positive sequences. (b) Positional feature importance of CMKN on the synthetic 
data. Each bar shows the derivation from the mean positional feature importance for the corresponding 
sequence position. Red bars indicate importance for the positive class and blue bars indicate importance for the 
negative class.
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Utilizing CMKN’s interpretation capabilities to identify resistance mutation positions and motifs
Apart from assessing CMKN’s prediction performance, we investigated how well our models were able to learn 
biologically meaningful patterns from drug resistance data. For each sequence position, we calculated the posi-
tion importance for each class as described in “Interpreting a CMKN model” section and identified peaks 
with a sliding window approach, i.e., the mean importance of a window of length 11 around each position was 
calculated and subtracted from the position importance. We selected the 10 highest peaks identified using this 
sliding window approach. For each peak position, the associated mean motif (of length one) as well as the two 
most important amino acids of this mean motif were retrieved using the approach described in “Interpreting 
a CMKN model” section. To get position importance and mean motifs for one of the three investigated drug 
classes (PIs, NRTIs, and NNRTIs), we averaged the importance values as well as the mean motifs over all models 
that belong to drugs of the same drug class (8 models for PIs, 6 models for NRTIs, and 3 models for NNRTIs). 
Figure 3a displays the top ten position of the resistant and susceptible class together with the top two amino 
acids of the corresponding mean motif for each of the three investigated drug classes. The results indicate that 
CMKN models are able to learn biologically meaningful patterns from real-world datasets. The most important 
positions identified by CMKN models correspond mainly to known drug resistance mutation (DRM) positions 
while the corresponding learned motifs are focused on DRMs. This result is consistent for all three tested drug 
types. However, CMKN models provide more than a global interpretation. Figure 3b shows the result of CMKN’s 
local interpretation capabilities (as described in “Interpreting a CMKN model” section) for the model trained 
on nelfinavir (NFV) data and three randomly selected isolates. First we identified the ten most important posi-
tions learned by the model. Afterwards, we retrieved the resistant and susceptible motifs for each position from 
the trained model. Using the motif functions, we were able to identify which positions the model indicated to 
be informative for the susceptible class and which positions were indicated to be informative for the resistant 
class using the procedure described in “Interpreting a CMKN model” section. This local interpretation shows 
biologically meaningful patterns and can be used by domain experts to verify a prediction made by the model. 
For a more detailed discussion of the visualization results, see “Discussion” section.

Splice site prediction
The recognition of splice sites is an important task in healthcare, since it can uncover genetic variants and dif-
ferences in protein composition in individual patients. It consists of two classification problems: distinguishing 
decoys from true targets for acceptor sites and for donor sites.

We used two benchmarks to assess performance of our model on the splice site recognition task: NN26933 
and DGSplicer34. Both benchmarks provide test sets and are highly imbalanced. Details on training and test sets 
for both benchmarks can be found in the Supplement. For splice site recognition, we used the same architecture 
that was used for the HIV drug resistance prediction. The hyperparameter α was again fixed to 1. We similarly 
fixed the scaling parameter to β =

|x|2

10  with |x| = 90 for acceptor sequences and |x| = 15 for donor sequences on 
the NN269 benchmark and |x| = 36 for acceptor sequences and |x| = 18 for donor sequences on the DGSplicer 
benchmark. The number of anchor points, the motif length k, and the positional uncertainty parameter were 
optimized using a grid search with 5-fold stratified cross-validation on the training data (details can be found in 

Table 1.   Mean performance and standard derivation of prediction models for three different HIV drug 
classes: PIs, NRTIs, NNRTIs. Models include polynomial kernel SVMs ( SVMpoly ), oligo kernel SVMs 
( SVMoligo ), random forests (RF), convolutional neural networks (CNN), convolutional kernel networks 
( CKNseq ), and convolutional motif kernel networks (CMKN). Highest values are displayed in bold.

Drug class Model Accuracy F1 score auROC MCC

PI

SVMpoly 0.90 ± 0.04 0.83 ± 0.09 0.95 ± 0.03 0.75 ± 0.10

SVMoligo 0.92 ± 0.03 0.86 ± 0.09 0.97 ± 0.03 0.81 ± 0.09

RF 0.92 ± 0.04 0.85 ± 0.13 0.97 ± 0.03 0.79 ± 0.13

CNN 0.91 ± 0.3 0.84 ± 0.11 0.94 ± 0.05 0.77 ± 0.11

CKNseq 0.84 ± 0.05 0.72 ± 0.12 0.88 ± 0.05 0.60 ± 0.11

CMKN 0.92 ± 0.03 0.87 ± 0.09 0.96 ± 0.03 0.81 ± 0.10

NRTI

SVMpoly 0.86 ± 0.06 0.82 ± 0.09 0.90 ± 0.05 0.70 ± 0.12

SVMoligo 0.88 ± 0.05 0.85 ± 0.09 0.94 ± 0.03 0.75 ± 0.10

RF 0.88 ± 0.06 0.84 ± 0.12 0.94 ± 0.04 0.74 ± 0.15

CNN 0.88 ± 0.05 0.85 ± 0.09 0.93 ± 0.04 0.74 ± 0.12

CKNseq 0.79 ± 0.06 0.73 ± 0.12 0.85 ± 0.05 0.54 ± 0.13

CMKN 0.89 ± 0.05 0.86 ± 0.09 0.93 ± 0.05 0.76 ± 0.11

NNRTI

SVMpoly 0.82 ± 0.06 0.76 ± 0.11 0.84 ± 0.06 0.63 ± 0.14

SVMoligo 0.89 ± 0.05 0.86 ± 0.11 0.94 ± 0.05 0.79 ± 0.12

RF 0.88 ± 0.05 0.85 ± 0.09 0.93 ± 0.07 0.75 ± 0.12

CNN 0.89 ± 0.04 0.86 ± 0.08 0.94 ± 0.06 0.78 ± 0.10

CKNseq 0.73 ± 0.06 0.63 ± 0.16 0.78 ± 0.08 0.42 ± 0.15

CMKN 0.91 ± 0.03 0.89 ± 0.06 0.95 ± 0.05 0.81 ± 0.08
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the Supplement). The model with the best hyperparameter combination was retrained on the whole training set 
and evaluated using the test set. Training success was evaluated using the area under the precision-recall curve 
(auPRC), to account for class imbalance, and the auROC to enable comparison with previously published models.

We compared our method to several methods that were previously applied on splice site recognition. These 
included higher order Markov Chain (MC) classifiers, SVMs with the locality improved kernel (LIK), the 
weighted degree kernel (WD), and the weighted degree kernel with shifts (WDS) published in30, a method 
combining higher order Markov Chains and SVMs with polynomial kernel (MC-SVM) published in31, and a 
CNN architecture called SpliceRover32. On the NN269 benchmark, our method performed comparable to other 
methods in terms of auROC and outperformed almost all competitors in terms of auPRC (see Table 2). On the 
DGSplicer benchmark, our method performed comparable to other methods in terms of auROC, while substan-
tially outperforming all competitors in terms of auPRC (see Table 2). An evaluation of CMKN’s interpretation 
on the splice site prediction task can be found in the Supplement.

Discussion
In this work, we introduced convolutional motif kernel networks (CMKNs), a convolutional network architecture 
that allows for end-to-end learning within a subspace of our proposed position-aware motif kernel’s RKHS.

Figure 3.   (a) (Global Interpretation): CMKNs can be used for data mining on biological sequences. The 
ten most important positions learned by the model, together with the top two contributing amino acids, are 
displayed. The height of the bar plot at each position indicates the normalized feature importance of that 
position, i.e., the mean position feature importance was subtracted from the feature importance of the specific 
position. Higher bars indicate more important positions. The importance of each sequence position was 
calculated as described in “Interpreting a CMKN model” section and peaks were identified using a sliding 
window approach with a window length of 11. Afterwards, the model’s learned motifs associated with the 
ten highest peaks were calculated (see “Interpreting a CMKN model” section) and the two amino acids with 
the highest contribution to these motifs were selected. Positions displayed in red (blue) are associated with 
the resistant (susceptible) class. (b) (Local Interpretation): We created an exemplary visualization of CMKN’s 
explanation capabilities. Prediction results of the nelfinavir (NFV) model for three randomly chosen input 
sequences are visualized by showing the learned top ten positions together with the amino acid occurring at 
the respective position in the input. For each position, the motif functions of the learned motifs are evaluated 
to identify the one with the highest ℓ2-norm on the input (see “Interpreting a CMKN model” section). If the 
corresponding motif is a learned resistance (susceptibility) associated motif, the position-amino-acid pair 
is highlighted in red (blue). The height of the bars above each position corresponds to the ℓ2-norm of the 
corresponding susceptible (blue) and resistant (red) motif functions (scaled between 0 and 1). For each isolate, 
the true and predicted label is displayed.
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By combining a convolutional network architecture with a kernel function, our model is able to perform 
robust end-to-end learning on relatively small datasets as was shown on data from Standford’s HIVdb. Our model 
was able to generalize to validation data with only a few hundred training samples even in highly unbalanced 
scenarios. However, due to the fact that our model is based on a standard convolutional network architecture, 
CMKNs can easily be used on datasets with several hundreds of thousands of samples, as shown on the splice 
site prediction benchmarks. This allows to utilize our proposed kernel function on very large datasets, something 
that would be notoriously hard using standard kernel methods like SVMs, since the calculation of a large Gram 
matrix for our position-aware motif kernel is computationally very demanding.

We included accuracy and auROC as performance measures in our evaluation, since both measures are 
often used in the ML literature. However, on imbalanced data their informative value is decreased due to a bias 
towards the majority class35 as can be seen by considering the auROC vs. auPRC performances on the DGSplicer 
benchmark in Table 2. Therefore, we included measures that provide better insights on imbalanced data with few 
positives: F1 and MCC for HIV drug resistance prediction and auPRC for splice site prediction. Considering F1, 
MCC, and auPRC, our model performed similar or better compared to all other models.

Another advantage of introducing kernel function evaluation into a neural architecture is the possibility to 
overcome the black-box nature of neural networks. Since learning within our proposed kernel layer admits a pro-
jection onto a subspace of the RKHS of our position-aware motif kernel, each output node of the kernel layer is 
associated with a position-motif pair. This allows for a biological interpretation of the learned weights associated 
with each node of the kernel layer. With these global interpretation capabilities, our model can be used as a tool 
for data mining on biological sequence data. We showed on HIV drug resistance data that our model is able to 
learn biologically meaningful patterns using standard end-to-end learning methods (see Fig. 3a). The majority of 
the ten most important positions correspond to known DRM positions (nine for PI drugs, eight for NRTI drugs, 
seven for NNRTI drugs). Furthermore, the top amino acids in the learned resistant motifs reflect known DRMs 
while the top amino acids in the learned susceptible motifs either reflect the wildtype or none DRMs. There 
are three exceptions where the susceptible motif features amino acids that lead to an increased drug resistance. 
These exceptions are leucine (L) and valine (V) at position 50 for PI drugs, valine (V) at position 184 for NRTI 
drug, and aspartic acid (D) at position 215 for NRTI drugs. However, these exceptions appear to occur due to 
the averaging of motifs over all drugs for a specific drug class. While all of the four mentioned mutations cause 
an increase resistance against a subset of drugs36–38, they are also a cause of increased susceptibility or have no 
effect for other drugs26,39,40. Valine at position 50 reduces susceptibility to fosamprenavir (FPV), lopinavir (LPV), 
and darunavir (DRV) but increases susceptibility to tipranavir (TPV). Leucine at position 50 confers high-level 
resistance to atazanavir (ATV) but increases susceptibility to all other PI drugs. For NRTI drugs, valine at posi-
tion 184 reduces susceptibility to lamivudine (3TC) but increases susceptibility to zidovudine (AZT), stavudine 
(d4T), and tenofovir (TDF). At position 215, a mutation to aspartic acid is a so-called thymidine analog mutation 
that reduces susceptibility to AZT and d4T but has no effect on susceptibility to all other NRTI drugs.

Apart from the data mining capabilities of our proposed CMKN model, the motif functions enrich our model 
with the capability to provide local interpretations for prediction results within the data’s domain. Figure 3b 
shows an example of the visualization capabilities of our CMKN model using nelfinavir (NFV) data, one of the 
PI drugs. The figure was created with the following steps. First, the trained NFV model was used to build the 
susceptible and resistant motifs for each of the ten most informative resistance positions learned for the NFV 
drug, as described in “Interpreting a CMKN model” and “Utilizing CMKN’s interpretation capabilities to identify 
resistance mutation positions and motifs” sections. Afterwards, we assessed for each position if the model relates 
the position to the susceptible or resistant calss, as described in “Interpreting a CMKN model” section. For the 
first input, which was correctly classified as susceptible, the visualization shows that the model associated sus-
ceptible motifs with each of the positions except for position 63 and 88. However, a domain expert can quickly 
verify that the model falsely classified that the amino acid asparagine (N) at position 88 indicates resistance, since 
asparagine corresponds to the wildtype and is therefore in accordance with a susceptible isolate. Furthermore, 

Table 2.   Test performance on splice site benchmarks. The displayed methods include higher order Markov 
Chain (MC) classifiers30, a combination of higher order Markov Chains and SVMs with polynomial kernel 
(MC-SVM)31, SVMs with the locality improved kernel (LIK)30, SVMs with the weighted degree kernel (WD)30, 
SVMs with the weighted degree kernel with shifts (WDS)30, SpliceRover32, and our CMKN. Highest numbers 
are shown in bold. Dashes indicate missing values in the original manuscripts.

Model

NN269 DGSplicer

Acceptor Donor Acceptor Donor

auROC auPRC auROC auPRC auROC auPRC auROC auPRC

MC 0.97 0.88 0.98 0.92 0.97 0.31 0.98 0.42

MC-SVM 0.97 0.88 0.98 0.90 0.95 – 0.95 –

LIK 0.98 0.92 0.98 0.93 – – – –

WD 0.98 0.93 0.99 0.93 0.98 0.32 0.98 0.40

WDS 0.99 0.94 0.98 0.93 0.97 0.29 0.97 0.36

SpliceRover 0.99 – 0.98 – – – – –

CMKN 0.97 0.94 0.98 0.96 0.97 0.65 0.98 0.65



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17216  | https://doi.org/10.1038/s41598-023-44175-7

www.nature.com/scientificreports/

there is no experimental evidence supporting that position 63 is associated with a resistance causing mutation. 
Using this knowledge, a domain expert can make an educated decision that the prediction is correct. For the 
correctly classified resistant input, the model associates resistant motifs with positions 63, 71, 90, and, again 
falsely, with position 88. Since a mutation to methionine (M) at position 90 causes a strong resistance against 
NFV36,41–43, a domain expert could again directly validate the prediction result. The interpretation capabilities 
gain importance in case of a wrongly classified input as shown in the bottom part of Fig. 3b. Here a domain 
expert would see that a susceptibility to NFV was predicted while three positions, 10, 84, and 88, are associated 
with resistant motifs. We again have the previously described, apparently systematic, error at position 88, but a 
mutation to valine (V) at position 84 causes a moderate resistance against NFV44. Additionally, a mutation to 
phenylalanine (F) at position 10 is known to be associated with reduced in vitro susceptibility to NFV36,45. Thus, 
the visualization provides the domain expert with all information needed to treat the prediction outcome with 
the adequate caution. This shows that utilizing the proposed kernel formulation in our model’s architecture, 
together with the proposed motif functions, can provide a visualization of a trained model’s output that helps 
domain experts to validate the predictions.

Conclusion
Our convolutional motif kernel network architecture provides inherently interpretable end-to-end learning 
on biological sequence data and achieves state-of-the-art performance on relevant healthcare prediction tasks, 
namely predicting antiretroviral drug resistance of HIV isolates and distinguishing decoys from real splice sites.

We show that CMKN is able to learn biologically meaningful motif and position patterns on synthetic and 
real-world datasets. CMKN’s global interpretation can foster data mining and knowledge advancement on bio-
logical sequence data. On the other hand, CMKN’s local interpretation can be utilized by domain experts to 
judge the validity of a prediction.

Possible future improvements include investigating a combination of different motif kernel layers to com-
bine different motif lengths and extend the architecture to utilize meaningful combinations of motifs. Another 
improvement that we want to explore in future work is the extension of the kernel formulation to multi-layer 
networks while securing the interpretation capabilities.

Data availability
Source code, pre-processing scripts, and experimental scripts are available on GitHub at https://​github.​com/​
jditz/​CMKN. HIV drug resistance data can be found online on https://​hivdb.​stanf​ord.​edu/​pages/​genop​heno.​
datas​et.​html. The NN269 benchmark can be downloaded from the George Manson University (https://​cs.​gmu.​
edu/​~ashehu/​sites/​defau​lt/​files/​tools/​EFFECT_​2013/​data.​html). The DGSplicer benchmark was provided by the 
original author, Prof. Chung-Chin Lu (https://​icann​wiki.​org/​Chung-​Chin_​Lu).
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