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Drift–diffusion modeling reveals 
that masked faces are preconceived 
as unfriendly
Martijn J. Mulder 1*, Franziska Prummer 2, David Terburg 1 & J. Leon Kenemans 1

During the COVID-19 pandemic, the use of face masks has become a daily routine. Studies have 
shown that face masks increase the ambiguity of facial expressions which not only affects (the 
development of) emotion recognition, but also interferes with social interaction and judgement. 
To disambiguate facial expressions, we rely on perceptual (stimulus-driven) as well as preconceptual 
(top-down) processes. However, it is unknown which of these two mechanisms accounts for the 
misinterpretation of masked expressions. To investigate this, we asked participants (N = 136) to decide 
whether ambiguous (morphed) facial expressions, with or without a mask, were perceived as friendly 
or unfriendly. To test for the independent effects of perceptual and preconceptual biases we fitted a 
drift–diffusion model (DDM) to the behavioral data of each participant. Results show that face masks 
induce a clear loss of information leading to a slight perceptual bias towards friendly choices, but 
also a clear preconceptual bias towards unfriendly choices for masked faces. These results suggest 
that, although face masks can increase the perceptual friendliness of faces, people have the prior 
preconception to interpret masked faces as unfriendly.

During the COVID-19 Pandemic, wearing a face mask has become part of our daily life as it restricts the spread 
of the SARS-CoV-2  virus1,2. Since facial expressions play an important role in our social  communication3–6, wear-
ing such a mask might also affect social conduct. For example, when we accidently step on someone’s toes in the 
supermarket, apologizing with a friendly smile might not be sufficient to save the situation. Indeed, recent studies 
show that facial masks affect face perception, recognition and  identification7–14,14–16, interfere with social interac-
tion and social  judgments7,13,14 and might even hamper the development of emotion recognition in  children12,17.

Importantly, face masks not only reduce the amount of sensory information, but potentially also influence 
the classification of facial expression in a more systematically biased way by adding perceptual information (e.g., 
masks could make people look more angry or sad), and/or evoking preconceptions about obscured emotional 
expressions. In other words, the detrimental effects face masks have on our social  interactions7,13,14 can stem 
from perceptual aspects of emotion recognition, and potentially from pre-existing biases driven by previously 
held negative connotations associated with facial masks. Given the general social importance of facial emotion 
recognition it is vital to disentangle such perceptual from preconceptional biases. Especially since face masks 
have become part of our daily routine, awareness of how this can impact our social communication might help 
to counter the potential negative consequences.

Evidence showing misinterpretation of emotional expressions due to face masks lies in agreement with previ-
ous research into the effects of occlusion of the lower part of the face in several emotional expressions (e.g.18–21). 
This especially holds for the identification of happy expressions, for which people rely more on the mouth-region; 
in contrast, for identifying angry expressions, the eye-region seems to be the most prominent diagnostic  cue21–26. 
However, most of the studies on the effects of facial masks used facial stimuli with full prototypical emotional 
expressions (e.g., happy, angry, surprise, fear, sadness, disgust), ignoring the fact that emotional expressions 
during our daily life are often less intense and not profoundly demarcated. As such, facial expressions are often 
ambiguous, making their interpretation more susceptible to a perceptual (stimulus driven) or preconceptual 
(top-down)  bias21,27–34. Given this ambiguity of emotional expressions in daily life, the question arises how facial 
masks affect the interpretation of facial expressions. For example, the occlusion of a moderately friendly smile 
might result in an interpretation of the expression based on the eyes only, which might especially be problem-
atic when the smile is not completely sincere and only used as a social gesture or even used to mask negative 
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 feelings35,36. In this sense occlusion of the mouth results in a loss of sensory information which may result in a 
perceptual (stimulus-driven) bias away from smile-driven  friendliness37,38.

On the other hand, as already introduced above, masks may also add (unintended) perceptual information. 
For instance, although wearing a facial mask during the Covid-19 pandemic is mostly  accepted9, facial masks 
can still elicit a negative association due to occlusion of important parts of the  face9,39–43, which might in turn 
result in a tendency to interpret an ambiguous emotional expression as a negative, unfriendly appearance. Such 
contextual (goal-directed) effects have proven to affect the interpretation of emotional expression as well, result-
ing in a preconceptual (top-down) bias27,28,38.

In sum, both the perceptual (stimulus-driven) and the preconceptual (top-down) perspectives, predict that 
masks will elicit a stronger tendency (bias) to classify facial expressions more often as negative (e.g., unfriendly). 
To investigate whether facial masks elicit such perceptual and/or preconceptual biases in the interpretation of 
ambiguous emotional expressions, we conducted an experiment in which participants were asked whether 
ambiguous happy or angry expressions, with and without facial masks, are perceived as friendly or unfriendly.

Perceptual and preconceptual biases are hard to separate, as both biases result in faster and more choices 
for a favored alternative. To distinguish between a possible perceptual or a preconceptual bias, we use the drift 
diffusion model (DDM)44–46. The drift–diffusion model allows to decompose the underlying choice process and 
quantify a possible perceptual or preconceptual bias by utilizing both accuracy and reaction time  data46–48. The 
model has been successful applied to distinguish between preconceptual and perceptual biases in various social 
and motivational decision-making paradigms (e.g.46,49–52) as well as in studies investigating biases in fundamental 
perceptual processes (e.g.47,53–57). The DDM assumes that, during a perceptual choice, noisy sensory evidence 
accumulates until a decision threshold is hit (Fig. 1B; for reviews see refs.45,48,58–61). For instance, when a facial 
mask affects the uptake of friendly information (e.g., smile) at the stimulus level, the accumulation process will 
change in favor for the unfriendly alternative, resulting in a perceptual bias, with faster and more ‘unfriendly’ 
choices (see Fig. 1C). This process is thus sensitive to stimulus-driven biases, but at the same time the starting-
point of evidence accumulation can differ based on top-down priors. For example, a preconception towards 
the unfriendly choice may lead to a lower decision threshold for the unfriendly option, positioning it closer to 
the starting point. This asymmetric positioning between the two decision thresholds is equivalent to an asym-
metric positioning of the starting point and results in a choice bias, generating more and faster responses for 
the unfriendly alternative as less evidence is required to meet the unfriendly decision threshold (see Fig. 1D).

Even when these biases result in similar behavioral changes, drift–diffusion modelling will allow us to dis-
entangle them and answer the question whether the face-mask driven impairments in the interpretation of 
ambiguous facial expressions are due to perceptual and/or preconceptual biases.

To test for a possible perceptual or preconceptual bias, we fitted the DDM to participants’ performance on 
judging emotionally ambiguous faces, with and without mask, on friendliness. Overall, we expect lower drift-
rates for masked facial expressions, reflecting less sensory information to make the correct decision, resulting 
in slower and more error prone choices. In addition, our methodology allows to disentangle a perceptual from 
a preconceptual bias in the assessment of the friendliness of masked and unmasked ambiguous facial expres-
sions. We expect that if such a preconceptual bias is indeed present when assessing masked faces, the distance 
between the start and end point of the accumulation process will be smaller for the unfriendly compared to 
friendly alternative, due to the negative connotations typically associated with face  masks40,42,43. Furthermore, 
we will test whether facial masks induce a perceptual (stimulus-driven) bias due to the occlusion of the mouth 
region and possibly due to the diagnostic cues in the visual features of the mask itself.

Results
Below we will first report the effects of stimulus emotion and mask on choice and response time data. Next, we 
will disentangle perceptual and preconceptual biases using DDM analyses that explain the descriptive results in 
terms of parameter changes.

Descriptive results
To quantify the effect of facial mask on the interpretation of ambiguous facial expressions, a logistic function 
was fit on the choice data (Eq. 1; Fig. 2A). For both masked and unmasked ambiguous facial expressions, the 
proportion unfriendly choices increased as a function of stimulus emotion (from happy to angry: see Fig. 2A). 
For masked faces, there was a small, but significant negative choice bias (β0) reflecting a tendency to choose for 
friendly more often  (b0mdn = − 0.22, one-sample Wilcoxon signed-rank test for  b0mdn = 0, V = 2793, P < 0.01). No 
significant bias was found for unmasked faces. Sensitivity (b1) to the stimulus was significantly lower for masked 
 (b1mdn = 6.47) vs unmasked  (b1mdn = 10.91) facial expressions (Wilcoxon signed-rank test, W = 9151, P < 0.01).

We tested for significant effects in response times using a 2 (masked vs. unmasked) × 2 (happy vs. angry) × 3 
(stimulus emotion) repeated measures analysis of variance (ANOVA). For response times, there was a significant 
main effect of emotional ambiguity of the facial expression, with increasing response times for lower ambiguity 
levels (stimulus emotion − 10 and 10), symmetrical around zero intensity, F(1,135) = 366.4, P < 0.01. The main 
effect of mask was significant as well, with slower response times for masked stimuli, F(5,675) = 290.5, P < 0.01. 
In addition, there was a significant interaction effect between the stimulus emotion of the facial expression and 
mask, indicating that the effect of mask was not equally distributed across ambiguity levels, F(5,675) = 44.1, 
P < 0.01. More specifically, the difference between response times for masked and no-masked facial expression 
became smaller for the high (− 10, 10) ambiguity levels (see Fig. 2B). Furthermore, post-hoc t-test show signifi-
cant slower response times for masked happy than for masked angry facial expressions with a low (− 60 vs 60) 
or moderate (− 40 vs 40) ambiguity in stimulus emotion (both ts(135) > 5.4, P < 0.01). No such difference was 
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found for the facial stimuli without a mask. Instead, participants were slower for angry vs happy facial expres-
sions without a mask, with high emotional ambiguity (10, vs − 10), t(135) = 3.82, P < 0.01.

Overall, these results of the analyses of choice and response times show that there are small, asymmetrical 
effects of a facial mask on interpretation of ambiguous emotional expressions. To further quantify these effects, 
we fitted the DDM to the data allowing us to decompose the effects in the underlying choice parameters.

DDM analyses
The RT results in Fig. 2 partly suggest a bias towards unfriendly choices for masked stimuli, showing faster choices 
for easy (60) and moderate (40) angry masked faces. In contrast, the psychometric data reflect a general loss of 
sensitivity combined with an unexpected bias to friendly choices in the mask condition. These contradictory 
findings suggest that facial masks might affect the interpretation of ambiguous emotional faces via different 
underlying mechanisms. To identify whether bias effects are driven by a preconceptual (top-down) or perceptual 
(stimulus-driven) process, the diffusion model was fitted to both the RT and choice data simultaneously, allowing 
to disentangle these different types of bias.

For the diffusion-model fits (see the methods section for model selection and Fig. 4 for goodness-of-fit) 
we found that facial masks lead to a reduced slope for the increasing emotional change (mean(SD) v-slope-
mask = − 1.78(1.1), Wilcoxon signed-rank test, V > 9294, P < 0.001; see Table 1 and Fig. 3A), relative to the slope of 
the unmasked facial expressions (mean(SD) v0 = 5.68(0.11) ). This indicates that drift-rate increases less steeply 
for the emotional change of masked facial expressions compared to unmasked ones.
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Figure 1.  Ambiguous facial stimuli and model predictions. (A) Average non-binary happy and angry faces 
were created by morphing the (average) male and female  AKDEF62 faces. Next, emotionally ambiguous faces 
were created by morphing the happy face towards the angry face in 41 incremental steps of 2.5% each. Six faces 
were used, each with a different angry/happy ratio. Stimulus emotion was defined by the difference in the terms 
of the ratio (Angry—Happy). (B) The DDM (Drift Diffusion Model) represents decisions as an accumulation of 
noisy sensory evidence over time (drift rate v), which starts at starting point (z) and ends at one of the decision 
thresholds (a or -a). These decision thresholds are collapsing, meaning that they get closer together as the 
deadline for making a decision approaches, allowing to model the increasing sense of urgency that individuals 
experience as they approach a decision deadline. Non-decision time (Ter) is the time for processes other than 
the decision process, such as sensory encoding and execution of the response (grey boxes). (C) Perceptual bias 
is driven by a shift in the drift-rate criterion (vc), which determines the point at which the perceptual evidence 
of the facial expression is classified as either unfriendly or friendly. Due to the ‘unfriendliness’ of the mask, the 
drift-rate criterion will shift in favor of the unfriendly alternative, resulting in a biased accumulation process 
towards the unfriendly (v0 + vmask) and away from the friendly alternative (v0 − vmask). (D) Preconceptual bias 
is driven by a shift in starting point (z), reflecting asymmetric distances to the decision thresholds. Due to an 
initial unfriendly preconception about the mask, the participant expects that the unfriendly alternative will be 
the correct one, resulting in a starting-point closer to the unfriendly decision threshold (z0 + zmask). In contrast 
to a shift in the drift-rate criterion, where the stimulus is evaluated differently (1C), a shift in the starting-point 
does not affect the evaluation process, but rather affects how much evidence is needed for each response. Gray 
and red dots represent unbiased and biased responses respectively.
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To test for a perceptual bias, we fitted an additional parameter (vcmask) to capture a possible change in the 
drift-rate criterion  (vc0) due to the facial masks. We found a significant negative effect of mask, showing a percep-
tual bias towards the friendly alternative (mean(SD) vcmask = − 0.28(0.53), Wilcoxon signed-rank test, V > 2107, 
P < 0.001; see Table 1 and Fig. 3B) for masked facial expressions, relative to unmasked facial expression with 
mean(SD) vc0 = 0.17(0.36).

In addition to a perceptual bias, we tested for a preconceptual bias by adding an additional parameter (zmask) to 
the model that captures possible shifts in the starting-point (z0). We found that masks increased the starting-point 
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Figure 2.  Descriptive data. (A) Psychometric functions of the pooled data across participants for masked (blue) 
and unmasked (red) ambiguous facial expressions. The proportion of unfriendly choices is plotted as a function 
of stimulus emotion. (B) Group averages of median response times (in seconds) as a function of stimulus 
emotion, for masked (blue) and unmasked (red) ambiguous facial expressions.

Table 1.  Mean(SD) parameter values for the  fullvc,z model. All parameter values were significantly 
different from zero (one-sample Wilcoxon signed-rank test, all Vs > 1561, ps < 0.01); a = decision threshold; 
tau = collapsing rate; Ter = non-decision time; vc = bias in drift-rate (drift-rate criterion); v-slope = slope of the 
linear relationship between drift-rate and stimulus emotion; z = starting-point.

a tau Ter vc v-slope z

Unmasked 0 1.08 (0.23) 1.29 (0.5) 380 (61) 0.17 (0.36) 5.68 (0.11) − 0.06 (0.08)

Effect of mask mask 14 (26) − 0.28 (0.53) − 1.78 (1.10) 0.10 (0.11)
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Figure 3.  Effects of facial masks on the amount of available perceptual information (v-slope) and bias 
parameters (vc and z). (A) The presence of facial masks affects the relationship between the stimulus emotion 
and the drift-rate, resulting in a less pronounced increase in evidence accumulation with each increase in 
stimulus emotion (v-slopemask). (B) Effect of facial masks on drift-rate criterion (left: vcmask) and starting point 
(right: zmask) relative to unmasked facial expressions. Values > 0 indicate a bias towards the unfriendly alternative, 
while values < 0 indicate a bias towards the friendly alternative.
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of the decision process with mean(SD) zmask = 0.10(0.11) (Wilcoxon signed-rank test, V > 8331, P < 0.001) relative 
to the unmasked condition (z0 = − 0.06(0.08)). This additional shift in the starting-point of the accumulation 
process indicates a significant preconceptual bias towards the unfriendly alternative for masked facial expres-
sions (see Table 1 and Fig. 3B).

In addition to drift-rate slope (v), starting point (z) and drift-rate criterion (vc), we tested whether masks 
affected the early sensory processes prior to the accumulation process, represented by non-decision time 
(Ter; see Fig. 1). Facial masks increased non-decision time with mean(SD) Termask = 14(26) ms relative to the 
unmasked facial expressions (mean(SD) Ter0 = 380(61) ms), resulting in slower non-decision times for masked 
facial expressions.

In sum, our descriptive analyses suggest that masked compared to unmasked faces are judged as more friendly, 
but that judging masked friendly faces takes more time. Our DDM analyses show that masking a face results 
in a loss of sensory information and in an unfriendly preconception towards facial expressions. In contrast, we 
found a friendly perceptual bias as well. This suggests that, although diagnostic cues in masked faces bias our 
participants towards friendliness via a stimulus-driven process, our participants also have the preconception 
that masked faces are unfriendly.

Discussion
To investigate whether face masks induce a perceptual or preconceptual bias in the interpretation of ambiguous 
facial expressions, participants performed a task in which they had to decide whether ambiguous facial expres-
sions, with or without a mask, were perceived as friendly or unfriendly. We fitted a drift–diffusion model (DDM) 
to their performance data to test for the independent effects of perceptual and preconceptual biases in these 
decisions. As expected, the analyses of descriptive data showed a lower sensitivity for the masked emotional 
expressions, generally resulting in slower and less correct responses for the masked compared to the unmasked 
facial expressions. This was also supported by our Drift Diffusion Model (DDM) analysis. Here, we found that 
mask had a decreasing effect on the strength of the relationship between stimulus emotion and drift rate for 
masked faces (v-slopemask), suggesting that less information was available during the decision process. These 
effects are in line with studies showing that covering the mouth decreases the amount of available information 
to correctly recognize and identify an emotional  expression7–14,14–16,18–21.

In addition, quantification of choice data using the psychometric function shows a small but significant bias 
toward friendly faces for masked but not for unmasked facial expressions. This is unexpected, since the mouth is 
often considered to be more important in the recognition of happy facial expressions compared to the recogni-
tion of angry facial  expressions21–26. As such, based on perceptual processes alone, we expected that wearing a 
facial mask would especially hamper the identification of happy facial expressions, resulting in a bias away from 
the friendly choices for masked stimuli. Instead, the small perceptual bias towards friendly choices suggests that 
covering the mouth with a facial mask has a larger effect on the misinterpretation of angry than happy facial 
expressions, which seems to be particularly the case for expressions with a high emotional ambiguity (i.e., − 10 
and 10; see Fig. 2A). In contrast, analyses of average response times show slower response times for happy than 
for angry masked facial expressions with low (− 60 vs 60) or moderate (− 40 vs 40) emotional ambiguity. These 
contradictory findings in the descriptive data underscore the importance to fit a computational model to the data 
that considers both choice and response time data, allowing us to disentangle the underlying biasing mechanisms.

To measure possible systematic perceptual (stimulus driven) or preconceptual (top-down) biases in the inter-
pretation of masked and unmasked facial expressions, we fitted the drift–diffusion model to each participant’s 
choice and response time data. Results show that facial masks affect both the perceptual and preconceptual 
processes, in opposite direction, with a preconceptual bias towards unfriendly and a perceptual bias towards 
friendly choices.

As expected, we found a small but significant shift in the starting point towards the unfriendly alternative 
for masked faces, relative to the unmasked condition. This bias in starting point suggests that participants start 
the decision process with asymmetrical decision thresholds (i.e., smaller for unfriendly vs friendly, in masked 
choices), resulting in faster and more choices for the unfriendly alternative. Such a lower threshold might indicate 
a top-down preconception in which the alternatives already have a different representation for masked versus 
unmasked stimuli, prior to the initial choice. This might be due to the somewhat threatening connotation of the 
mask, providing a context which might bias the interpretation of ambiguous facial  expressions27,28.

In addition to the preconceptual (top-down) bias observed for masked faces, we identified a perceptual (stim-
ulus-driven) bias favoring friendly sensory information for masked faces, relative to the unmasked condition. One 
explanation for this unexpected perceptual bias may be related to diagnostic features of the mask itself. Studies 
investigating the impact of the emotional intensity of the facial expression show that happy expressions are more 
easily detected, even at low  intensities63 and  resolutions64. Given the difference in the detectability of happy vs 
angry at a low emotional intensity, it might be the case that the low-level visual features of the mask are closer to 
a happy than an angry mouth expression. This might particularly be the case for early perceptual processes that 
are primarily affected by low-level visual  features38,65,66 in which the mask-features might result in a surrogate 
smile for the face, biasing the effect away from unfriendliness. As such, the drift-rates might be biased towards 
sensory evidence in favor for the friendly alternative for masked faces, due to the asymmetry in happy/angry 
sensitivity, where the effect of happy-information in the mask itself is stronger than the angry diagnostic features 
in the eyes of masked faces. Furthermore, it has been shown that low spatial frequencies of facial expressions are 
faster and earlier processed in the information stream, compared to high spatial  frequencies38,65,67,68. In light of 
this explanation, our choices might be biased first by the outstanding low-level spatial features (stimulus-driven), 
while the semantic (top-down) categorization based on the (asymmetric) decision thresholds is processed later 
in  time65,66. Conceptually, the classic view of the DDM states that starting point effects are determined prior 
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to the decision process. However, it is possible that the bias resulting from the asymmetric decision thresholds 
becomes more prominent in a later stage of the decision process.

Note that, in addition to the biasing effects of facial masks, both the baseline starting point (z0) and drift-rate 
criterion (vc0) demonstrated a slight but significant shift opposite to the effects of the masked condition (see 
Table 1). The negative initial starting point values could imply that our participants have the preconception that 
emotionally ambiguous faces are friendly, but this positive bias could also reflect a reversed effect on faces when 
the mask is not visible, resulting in a more positive connotation than usual. On the other hand, the positive drift-
rate criterion towards unfriendly choices for unmasked faces might suggest that emotionality is not symmetrically 
distributed across the morphed dimension between happy and angry facial stimuli. This asymmetry seems in 
turn to disappear after adding a mask to the faces, suggesting that this asymmetry is driven by the mouth region. 
Future research that includes a condition with a mouth that is covered, but not by a mask, can resolve this issue 
by showing whether the perceptual bias towards friendliness is due to the additive effect of the mask, or due to 
the reduction of asymmetry in ambiguity by covering the mouth.

Several limitations must be noted in interpreting our findings. One limitation is the inconsistency observed 
in the model selection process. While both AIC and BIC were used for model-selection, their values point to 
different winning models. The fullvc,z model with both a variable starting point (z) and drift-rate criterion (vc), 
for instance, yielded the lowest average AIC. Furthermore, this model was the most suitable one for the largest 
fraction of participants (32%). Conversely, the average BIC was lowest for the model that only had the variable 
drift-rate criterion (vc), implying a better fit by this metric. Despite the lower average BIC values for the vc-only 
(reducedvc) model, it is noteworthy that for more than half of the participants (54%) the null model fitted their 
data at best. This discrepancy in criteria suggests a certain degree of uncertainty in the model selection and calls 
for careful interpretation of the models’ outcomes. Given the substantial variability in model selection among 
participants, a reasonable argument could be made for fitting the fullvc,z model as it would capture all effects, 
including null effects, thus also accounting for participants who did not exhibit any biasing results. However, it’s 
important to acknowledge that the effects of the facial masks on the starting point were relatively small, which 
could potentially be attributed to overfitting of the model. Although our model comparison approach is aimed 
to address this possible issue, the divergence in AIC and BIC results highlights the need for further investigation.

In sum, we investigated whether face masks induce a loss of information and perceptual or preconceptual 
biases, participants were asked to decide whether masked or unmasked ambiguous facial expressions were 
perceived as friendly or unfriendly. Results show that wearing a face mask causes a loss in sensory information 
and a preconceptual bias towards unfriendly but a perceptual (stimulus-driven) bias towards friendly choices 
for masked faces. These results suggest that people have a prior top-down tendency to interpret facial masks as 
unfriendly, regardless of the friendly (stimulus-driven) effects of the facial mask itself.

Methods
Participants
Participants (n = 145, mean(std) age = 22.3(4.4), 109 female) were invited via online media or Utrecht Univer-
sity’s Sona Systems (https:// www. sona- syste ms. com/) to participate in an online experiment in exchange for 
course credit. Nine participants were excluded based on insufficient performance on the task (see descriptive 
analyses below). Informed consent was obtained from all participants. The experiment was approved by and 
was in accordance with the guidelines and ethical standards of the the Ethics Committee of Utrecht University 
(EC-FETC18-129).

Materials and Stimuli
Face stimuli were adapted from the Averaged Karolinska Directed Emotional Faces  (AKDEF62). First, to con-
trol for possible sex differences in facial  expressions69,70, we created an angry and a happy non-binary face by 
morphing the average (resp. angry and happy) male and female faces to each other using WinMorph (version 
3.01). Next, emotionally ambiguous faces were created by morphing the happy face towards the angry face in 
41 incremental steps of 2.5% each. From this range of morphed non-binary facial stimuli with different angry/
happy ratios, eight ambiguous expressions were chosen. For each face, a masked version was created, by adding 
surgical mask to each face using Adobe Photoshop (version 22.2). A normal surgical mask was chosen, as these 
were seen commonly in public at the time of data collection. The color of the masks was adjusted to resemble 
the black-and-white coloring of the images of the faces. The edges of the mask were softened to incorporate it 
more naturally into the image.

Six of the facial expressions with ratios (angry/happy%) of 80/20%, 70/30%, 55/45%, 45/55%, 30/70% and 
20/80%, with and without a mask, were used as main stimuli (see Fig. 1B). Two facial expressions (60/40% and 
40/60%), with and without a mask served as filler trials to add more variance to the stimuli, reducing predict-
ability of the six main facial stimuli. Stimulus emotion was expressed as the difference between the percentage 
happy and angry facial expressions (assuming 50/50 to have 0% evidence for either a happy or angry expression 
and thus full ambiguity) resulting in 6 (signed) emotion levels of − 60%, − 40%, − 10% for happy and 10%, 40% 
and 60% for angry facial expressions.

Procedure
A two-alternative forced (2AFC) choice task was set up and hosted on Gorilla Experiment Builder (www. goril 
la. sc)71. After consent was given, general demographic information was collected after which the participant 
was assigned to one of the two (counterbalanced) versions of the 2AFC-task. In the 2AFC-task, participants 
were asked to respond as quickly as possible to decide whether the facial expression was perceived as friendly 
or unfriendly, for a total of 608 trials. These trials consist of 96 trials (48 masked) for each of the six stimulus 

https://www.sona-systems.com/
http://www.gorilla.sc
http://www.gorilla.sc
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emotions (− 60%, − 40%, − 10%, 10%, 40%, 60%) and 32 (16 masked) filler-trials (stimulus emotions − 20% and 
20%). To keep the participants engaged, the experiment was divided into 8 blocks of 76 trials each. Each block 
contained a random alternation of all possible conditions (mask x stimulus emotion).

Each trial started with a fixation cross that was presented for a randomly chosen duration between 600 and 
1200 ms to prevent anticipatory responses to the stimulus. Next, the stimulus was shown on the screen, during 
which the participant was required to respond with the ‘C’- or ‘M’-key to indicate their choice. Stimulus display 
was terminated after a button press or a time-out of 2300 ms. Choice associations with these responses (‘friendly’ 
or ‘unfriendly’) were counterbalanced between participants. We chose to use the labels friendly and unfriendly 
since the created images were not fully ‘angry’ or ‘happy’. For example, the ambiguous facial expression with 10% 
stimulus emotion might not be perceived as angry perse, but still has a mild ‘unfriendly’ expression. Subsequently, 
the participant’s response feedback was shown for 400 ms (a green check for correct and a red cross for false 
responses). Whenever a response was made throughout the fixation cross period, an icon with the words “too 
fast” appeared. If subjects did not make a response within the given response time (2300 ms), the word “miss” 
was shown. Missed trials were excluded from analyses as response times of > 2300 ms fell well beyond the upper 
bound of the interquartile range of RTs across the group (1228 ms).

Analyses
Descriptive data
For each participant, response times were log transformed, after which for each condition response times were 
removed that were three standard deviations away from the average response time (on average, 4.7% of the 
data). Next, median response times were calculated for each condition separately. A 2 (masked vs. unmasked) × 2 
(happy vs. angry) × 3 (stimulus emotion) repeated measures ANOVA was used to test for effects of mask, choice 
and emotion on response times.

To quantify effects of mask and stimulus emotion on choice performance, a logistic function (see Eq. 1) was 
fit onto the choice data for each participant.

This function included two terms, an emotion-dependent term that reflected sensitivity to the stimulus and 
an emotion-independent term that reflected a choice bias towards either ‘friendly’ or ‘unfriendly’ choices. Non-
parametric Wilcoxon t-tests were used to test for a difference in sensitivity (b1) between masked and unmasked 
faces and for a possible choice bias (b0) in the masked and unmasked conditions. Based on these initial analyses, 
nine participants were excluded based on a significantly large deviance between empirical data and the fit of the 
psychometric function (all nine deviances > 310; X2(df ’s < 280) < 242.2, P = 0.05).

DDM analysis
In order to examine a possible perceptual or preconceptual bias in the behavioral data, we fitted the drift–diffu-
sion model  (DDM44; see Fig. 1B) to each participant’s choice and response time data simultaneously using the 
pyDDM Python  package72. Our aim was to determine which model parameters could account for a potential 
choice bias for masked facial expressions. Consequently, we performed model selection using four models to each 
participant’s data: (1) a null model, (2) a  reducedvc model including a perceptual bias (Fig. 1C), (3) a  reducedz 
model incorporating a preconceptual bias (Fig. 1D), and (4) a  fullvc,z model that integrates both preconceptual 
and perceptual biases (see  also49–51,53,55–57). Models were fitted to the data employing maximum likelihood estima-
tion. Furthermore, we calculated the Akaike Information Criterion (AIC) and the more conservative Bayesian 
Information Criterion (BIC) to select the model exhibiting the best goodness-of-fit, as indicated by the lowest 
AIC or BIC value.

For the null model, we assumed a linear relationship between drift-rate and stimulus emotion k (with values 
− 60, − 40, − 10, 10, 40, 60). The drift-rate incorporated an intercept (vc0), a slope (v-slope0), and an additional 
term (v-slopemask) to capture the effect of facial masks. Consequently, the drift-rate was defined as follows:

where C = 1 for masked and C = 0 for unmasked facial expressions. To capture possible changes in early sensory 
and late motor processes, we fitted non-decision time effect Ter0 with an additional term Termask for masked faces. 
Non-decision time Ter was defined as:

where C = 1 for masked and C = 0 for unmasked facial expressions.
In addition to drift and non-decision time parameters, we included a starting point z0 and an exponentially 

collapsing decision threshold (a, with tau reflecting the rate of collapse). The collapsing decision threshold was 
added to the model to account for urgency effects due to the decision  deadline55–57,57,73–75. Both z0 and a were 
fixed across the masked and unmasked conditions. Variability parameters (sz, st0 and sv) were not fitted and set 
to zero as fitting these parameters can bias the estimations of the main  parameters76–78. However, since variability 
in starting-point (sz) can account for fast-errors, which in turn can explain the (opposite) effects of the mask on 
choice and RT data, we repeated our model-selection procedure with sz added to each model (see Supplementary 
Material). Adding sz to the four models did not change the outcome of our model-selection procedure. Neither 
did it change the outcome of starting-point differences (see Table S1).

(1)punfriendly =
1

1+ e−(β0+β1S)

(2)υ = υc0 + k ·
(

υ − slope0 + C · υ − slopemask

)

(3)Ter = Ter0 + C · Termask
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The reducedvc model, which incorporates perceptual bias, extends the null model by including an additional 
drift-rate term, vcmask in Eq. 2 to account for a possible bias on the drift-rate criterion (intercept vc0). In this case, 
drift rate (v) is defined as follows:

where k is stimulus emotion and C = 1 for masked and C = 0 for unmasked facial expressions.
The reducedz model, which incorporates preconceptual bias, extends the null model by including an additional 

starting-point term zmask to account for possible bias on the starting point of the accumulation process, relative 
to the unmasked condition (z0). As such, starting point was defined as:

where C = 1 for masked and C = 0 for unmasked facial expressions.
Finally, the fullvc,z model included all parameters of the null model with both additional terms vcmask and zmask 

to account for a possible perceptual and preconceptual bias respectively.
Model selection shows that the  fullvc,z model outperforms the null and  reducedvc and z models, which is 

reflected in both the average AIC values and the proportion of participants for whom this model was the best 
fit (see Table 2). For BIC values, the picture is less distinct: Here, average BIC values are lowest for the  reducedvc 
perceptual bias, but with a slight difference compared to the  reducedz preconceptual bias model (difference 
 reducedvc – z = 0.21). Notably, for a large faction of participants (54%) the null model seems to be the best model 
describing their behavioral data. Given the substantial variability in model selection among participants and the 
better fit of the  fullvc,z model according to the less conservative AIC, we decided to continue our analyses using 
the  fullvc,z model to capture the individual differences in parameter values (see Fig. 4 for a visual representation 
of the Goodness of fit).

Finally, a one sample Wilcoxon signed-rank tests was used to test whether the additional bias effects zmask and 
vcmask were significantly different from zero.

(4)υ = υc0 + C · υcmask + k ·
(

υ − slope0 + C · υ − slopemask

)

(5)z = z0 + C · zmask

Table 2.  Average criteria values and the percentage of participants (n%) for which the model had the lowest 
criteria. Lower criteria values indicate a better fit. AIC Akaike information criterium, BIC Bayesian information 
criterium. Lowest values are in bold.

Null reducedvc reducedz Fullvc,z
Mean AIC (n%) − 166.34 (21%) − 172.21 (24%) − 172.42 (23%) − 174.55 (32%)

Mean BIC (n%) − 131.88 (54%) − 133.66 (18%) − 133.45 (22%) − 131.49 (5%)
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Figure 4.  Goodness of fit of the fullvc,z model. The graph shows empirical (x-axis) and predicted (y-axis) 
data for unmasked (top row) and masked (bottom row) facial stimuli. Predicted data was generated for each 
participant separately using the individual fullvc,z model parameters. Choice data was plotted together with the 
quantiles (5th, 10th, 30th, 50th, 70th, 90th) of the RT distributions using RTs for unfriendly (black) and friendly 
(white) responses on happy and angry facial expressions (collapsed over intensity levels). The plot shows that the 
predicted values of choice data and RT quantiles are close to the empirical values for most datapoints, suggesting 
that the model fit the data reasonably well.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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