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Functional mutation, splice, 
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Cardiovascular disease (CVD) is caused by a multitude of complex and largely heritable conditions. 
Identifying key genes and understanding their susceptibility to CVD in the human genome can assist 
in early diagnosis and personalized treatment of the relevant patients. Heart failure (HF) is among 
those CVD phenotypes that has a high rate of mortality. In this study, we investigated genes primarily 
associated with HF and other CVDs. Achieving the goals of this study, we built a cohort of thirty-five 
consented patients, and sequenced their serum-based samples. We have generated and processed 
whole genome sequence (WGS) data, and performed functional mutation, splice, variant distribution, 
and divergence analysis to understand the relationships between each mutation type and its impact. 
Our variant and prevalence analysis found FLNA, CST3, LGALS3, and HBA1 linked to many enrichment 
pathways. Functional mutation analysis uncovered ACE, MME, LGALS3, NR3C2, PIK3C2A, CALD1, 
TEK, and TRPV1 to be notable and potentially significant genes. We discovered intron, 5ʹ Flank, 3ʹ 
UTR, and 3ʹ Flank mutations to be the most common among HF and other CVD genes. Missense 
mutations were less common among HF and other CVD genes but had more of a functional impact. 
We reported HBA1, FADD, NPPC, ADRB2, ADBR1, MYH6, and PLN to be consequential based on our 
divergence analysis.
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Cardiovascular disease (CVD) is the leading cause of death and mortality internationally, with as many as 
655,000 deaths per-year1,2. In 2015, there were approximately 422.7 million cases of CVD and 17.92 million 
deaths  reported3. CVD include primary pathologies such as heart failure (HF), cardiac arrhythmias, venous 
thromboembolism, cerebrovascular and peripheral arterial disease, coronary heart disease (CHD), coronary 
artery disease (CAD), and atheromatous vascular disease (AVD)4,5. The most common causes of CVD mortal-
ity include but are not limited to ischemic and nonischemic HF and  stroke3. Hence, one of the focuses of life 
science involves investigating genetic epidemiology of CVD. Due to the complex nature, risk factors, inherent 
genetic makeup, and progression of CVD, personalized treatment is believed to be  essential6. Precision medicine 
involves integrating clinical and multi-omics/genomics data for predictive and personalized medicine within a 
diverse CVD  population7. It focuses on analyzing genetic composition of patients to identify the key biomarkers 
and increase understanding of the pathophysiology of  CVD8.

CVD is a complex, partially heritable condition, encompassing a range of conditions from CHD to myocardial 
 infarction9. By utilizing high-quality sequenced DNA of transcribed genes, we can be better informed of a CVD 
patient’s inherent genetic makeup and factors that may contribute to increased susceptibility for  CVD10. Whole-
Genome-Sequencing (WGS) has been proven to be one of the most recommended techniques to sequence DNA 
and capture all genetic variations. Various WGS based studies have focused on investigating mutated genes 
with altered  expression11–13, and discovered underlying genetic etiology in CVD  patients14,15. State of the art 
studies have supported the claim that performing variant analysis will assist in understanding of the complex 
pathophysiology of CVD progression through the application of multiple  biomarkers16–18. However, we are still 
in the early stages of developing a comprehensive database of genetic biomarkers for CVD to assist in predictive 
analysis and deep  phenotyping19–22. Previously, we have explored and discussed diverse genomic strategies that 
investigate genes linked to AF, HF, and other  CVDs23. In this study, we aimed to investigate genes primarily 
associated with HF and other CVDs by analyzing genetic variants that correlate with CVD  phenotype24.

Material and methods
Achieving the goals of this study, we analyzed electronic health records (EHR) received from EPIC health system 
to build a cohort of thirty-five patients with CVD (Fig. 1). Our selection criteria mainly included adult and aging 
CVD patients with HF phenotype. In addition, we collected information centered on their age, gender, ethnicity, 
medical details, and demographics. We identified 21 male and 14 female individuals (60% male and 40% female 
population) aged between 24 and 94 years (details are attached in supplementary material S6). These patients 
were clinically diagnosed with CVD and CMS/HCC HF, as well as cardiomyopathy, hypertension, obesity, type 2 
diabetes mellitus, asthma, high cholesterol, hernia, chronic kidney, joint pain, myalgia, dizziness and giddiness, 
osteopenia of multiple sites, chest pain, and osteoarthritis. We collected blood samples from these CVD patients 
and extracted DNA. We have utilized our in-house developed applications to support patient consenting, sample 
collection, data management, and EHR extraction, transfer, loading (ETL) and  analysis25,26. Written informed 
consent was obtained from all subjects. All procedures performed in studies involving human participants 
were in accordance with the ethical standards of the institution and with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards. All human samples were used in accordance with relevant 
guidelines and regulations, and all experimental protocols were approved by the Institutional Review Board 
(IRB) at UConn Health.

We performed high-throughput WGS of collected blood samples, and processed sequence data for quality 
checking (QC) and variant discovery (QC report is attached in supplementary material S7). We utilized our 
in-house built pipeline (JWES) for WGS data processing, management, visualization (Circos plots), and gene-
variant discovery, annotation, prediction, and  genotyping27. JWES mainly utilizes the Burrows-Wheeler Aligner 
(BWA, version 0.7.17) for mapping sequence data against the reference human  genome28, and Genome Analysis 
Toolkit (GATK, version 3.8) for the variant  discovery29. We performed variant calling of the whole genome 
using JWES for all subjects but focused on targeted HF and other CVD genes for further analyses. Utilizing 
significant results of differentially regulated genes from our previous expression and enrichment  analysis30 that 
were validated through our gene-disease-variant  database31, we generated a list of forty-one HF and twenty-three 
other CVD genes (Supplementary material S1). We calculated pLI scores for these genes using The Genome 
Aggregation Database (gnomAD) to better contextualize these mutation’s effects on disease (Supplementary 
Tables S8, S9)32.
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We conducted functional mutation, splice, variant distribution, and divergence analysis to understand 
the relationships between each mutation type and its impact. We utilized Scale-Invariant Feature Transform 
(SIFT)33–35, Polymorphism Phenotyping v2 (PolyPhen-2)36, and  MutationAssessor37 to classify the biological 
and functional impacts of the variant data. SIFT supported in analyzing the impact of coding variants on the 
function of protein and identify variants that have a causal relationship to the manifestation of HF and other 
 CVDs34. PolyPhen-2 garnered a wide breadth of information about the substitution site of the coding variant 
and identified the specific gene sequences and structural features of the substitution site. It analyzed single-
nucleotide polymorphism (SNP) substitutions and predicted the functional impact of the mutations. Then, 
MutationAssessor differentiated between specificity scores to account for functional shifts between subfamilies, 
proteins, and conserved  patterns38,39. Scores from SIFT, PolyPhen-2, and MutationAssessor are included in our 
supplementary material S1.

Figure 1.  Study design. Overall research methodology includes four major steps: (1) EHR extraction and CVD 
cohort building; (2) Whole Genome Sequencing (WGS); (3) WGS data quality check and analysis; and (4) 
Functional mutation analysis to identify mutation types and their functional impact. A more detailed overview 
of our methodology is highlighted in the right panel. Different approaches grouped within the same major steps 
utilize identical colors.
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We preformed splice mutation analysis and a Jensen-Shannon Divergence (JSD)-based Method (JS-MA) for 
the measurement and variant distribution  analysis40. We reported our findings on RNA, silent, 3ʹ UTR, 3ʹ Flank, 5ʹ 
UTR, 5ʹ Flank, intron, truncating, splice, and missense mutations for genes associated with HF and other CVDs. 
We analyzed RNA, truncating, missense, 3ʹ UTR, and 5ʹ UTR mutations to study the structural consequences 
of the cellular proteome. These mutations affect the functionality of the protein produced and can lead to a gain 
or loss of  function41–45. Mutations in RNA can lead to changes in the sequence of nucleotides, which can affect 
the structure and function of the RNA molecule and subsequently impact molecular  processes41. RNA-based 
mutations include but are not limited to point, nonsense, silent and  missense41. We observed the suppression 
or overexpression of a gene by investigating 3ʹ Flank and 5ʹ Flank  mutations43. By examining intro and splice 
mutations, we gained a better understanding of the effect that they can have on RNA splicing process resulting 
in a decrease efficiency of mRNA  translation46–48.

Utilizing JS-MA, we conducted a genome-wide search for complex gene-disease interactions, helping us 
better understand the effects that gene mutations can have on a phenotypic  state40. Divergence analysis involved 
comparing each gene’s distribution of mutations to a weighted average of all genes in that disease type. Variance 
from this distribution indicates an overrepresented mutation type among HF and CVD patients. We calculated 
Jensen-Shannon Divergence (JSD) scores to evaluate the similarity between the two distributions. The JSD score 
measured the variance associated with two distributions and provided a statistical quantification on the influence 
of specific mutations on disease  types40. A JSD score closer to ‘1’ indicates the highest variance denoting a unique 
mutation profile with greater impact. We identified notable and potentially significant genes based on whether 
the HF and other CVD genes met a certain threshold using their calculated JSD scores. We compared proportion 
distributions of unique genes and a weighted average distribution of all genes within the disease type. To ensure 
the validity of our results, we tried to account for confounding variables and found that the biological variables 
such as age of onset of HF, severity of disease, alcoholic cardiomyopathy and different aetiologias can be ruled 
out as they did not have any significant impact on the outcome of our  study49–51.

Ethical approval and consent to participate
Informed consent was obtained from all subjects. All human samples were used in accordance with relevant 
guidelines and regulations, and all experimental protocols were approved by the Institutional Review Board.

Results
Our variant analysis started with examining the variant distribution and prevalence of HF and CVD genes to bet-
ter understand the frequency of these genetic variants. We generated Circos plots and observed a total of 229,963 
variants for HF genes (Fig. 2A). For CVD genes, we visualized a total of 389,761 variants (Fig. 2B). The outer circle 
of the plot represents patient sample IDs, while the inner circle represents genes. Figure 2A has more HF genes 
along the inner circle compared to Fig. 2B which has fewer other CVD genes. Next, we conducted functional 
mutation analysis to evaluate the effects of disease-causing alleles for HF and other CVDs. We detected consistent 
distribution of mutation types for the mapped genes. These mutations included Missense, Splice, Truncating, 
Intron, 5’ Flank, 5’ UTR, 3’ Flank, 3’ UTR, Silent, and RNA-driven mutations for HF (Table 1) and other CVDs 
(Table 2). We generated lollipop plots for HF and other CVD genes to visualize the functional impact for each 
mutation type (Figs. 3 and 4). Currently, there are 373 datasets and a total of 162,055 mutations referenced in 
cBioPortal. These datasets referenced do not encompass all variants that we reported in our prevalence analy-
sis. Due to this limitation, some genes were not annotated and visualized. These genes include CDKN2B-AS1, 
HOTAIR, LSINCT5, RP11-451G4.2, and TUSC7. Missense mutations had higher functional impacts and were 
more likely to be ‘possibly or probably damaging.’ We measured the effect of mutations using a score assigned to 
predict whether an amino acid substitution affects protein function. SIFT scores varied from 0.0 to 1.0. Muta-
tions ranging from 0.0 to 0.5 were considered “deleterious” while those ranging from 0.5 to 1.0 were “tolerated/
benign.” Additionally, scores regarded as "deleterious low confidence" were less likely to have a phenotypic effect 
than "deleterious" while "tolerated low confidence" were more likely to have a phenotypic effect than ’tolerated’35.

Functional impact scores from PolyPhen-2 ranged from 0.0 to 1.0 with values closer to 1.0 being ‘possibly 
or probably damaging’ and those closer to 0 being ‘benign36.’ The AGTR1, AQP2, EDNRA, EPO, NPPC, PLN, 
and TNF genes had no missense mutations and provided no further information regarding functional impact 
for the mutations. ACE had the highest number of missense mutations: twelve mutations in total. Five of those 
missense mutations were found to have some negative impact on the function of the protein. NR3C2 had the 
highest number with a total of 2,057 intron mutations. PIK3C2A was the only gene with an RNA-based mutation. 
Aside from the RNA mutation, the rarest mutation type was truncating mutations. AMPD1, KNG1, MYBPC3, and 
NPPA were found to have a truncating mutation. Splice and 5ʹ UTR were also found to be less common. Genes 
such as CORIN, MMP2, MYBPC3, NOS3, and PIK3C2A had more specific functional protein domains (Pfam 
domains), on average, compared to the other HF genes. From the genes investigated in our study, we found the 
ACE, MME, LGALS3, NR3C2, and PIK3C2A genes to be more significant based on various criteria such as the 
largest number of mutations mapped, rare mutation types, and highest number of mutations with functional 
impact. Previous literature has already linked or hypothesized ACE, MME, LGALS3, NR3C2, and PIK3C2A to 
be significant genes and potential biomarkers for  CVDs52–56. Further research must be conducted to solidify 
these claims and increase confidence regarding the significance of these genes. We reported different types of 
mutations and their impact on all HF genes in Supplementary material S2.

For other CVD genes, CALD1, TEK, TRPV1, ATP2A2, and SMUG1 were discovered to be more significant 
based on the same criteria which includes genes with the highest number of mutations mapped, rare mutation 
types, and the largest number of mutations with functional impact. CALD1, TEK, and TRPV1 all had the highest 
number of missense mutations, with eight missense mutations each. In the CALD1 gene, the breakdown was one 
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tolerated low confidence and benign, two deleterious and benign, two deleterious low confidence and benign, 
one deleterious and possibly damaging, one tolerated and benign, and one deleterious and probably damaging; 
hence, six of the eight mutations had some negative functional impact on the protein. In the TEK gene, the 
breakdown was five tolerated and benign, one tolerated and probably damaging, one deleterious and possibly 
damaging, and one deleterious and benign; hence, three of the eight mutations had some negative functional 
impact on the protein. In the TRPV1 gene, the breakdown was seven tolerated and benign and one deleterious 
and benign; hence, only one of the eight mutations had some negative functional impact on the protein. CALD1, 
TEK, and TRPV1 were found to be the most significant of the investigated genes as they have the largest number 
of functional mutations. CALD1 and TEK also had the highest number of mutations mapped in total. Other 
CVD genes mutations including ATP2A2 and SMUG1 were discovered to have rare mutation types. We reported 
no missense mutations for multiple genes, therefore no further information regarding functional impact scores 
could be found. These genes included ATP2A2, CD34, CD40LG, DDX41, FADD, FGF2, FLNA, HBA1, KANTR, 

Table 1.  Functional mutation analysis of genes associated with heart failure disease. Tabulated information 
includes, gene name, missense, splice, truncating, intron, 5ʹ flank, 5ʹ UTR, 3ʹ flank, 3ʹ UTR, silent, RNA, total 
and failed mutations.

Gene Name Missense Splice Truncating Intron 5ʹ Flank 5ʹ  UTR 3ʹ Flank 3ʹ UTR Silent RNA Total Failed Mutations

ACE 12 4 0 120 24 N/A 66 6 15 N/A 247 60

ADM 1 0 0 3 28 N/A 16 2 1 N/A 51 29

ADRB1 5 0 0 N/A 30 2 31 8 5 N/A 81 1779

ADRB2 5 0 0 N/A 38 3 29 2 4 N/A 81 1866

AGTR1 0 0 0 257 40 1 31 12 2 N/A 343 479

AGT 3 0 0 67 37 N/A 24 2 2 N/A 135 718

AMPD1 4 1 1 103 9 N/A N/A N/A 1 N/A 119 78

ANKRD1 3 0 0 31 15 1 29 2 N/A 81 61

AQP2 0 1 0 28 25 1 8 17 2 N/A 82 85

CDKN2B-AS1 X X X X X X X X X X X X

CORIN 5 2 0 1234 17 N/A 2 9 6 N/A 1275 404

CRP 1 0 0 2 32 N/A 8 5 2 N/A 50 291

CST3 2 0 0 16 33 2 67 6 2 N/A 128 254

EDN1 1 0 0 33 32 N/A 38 3 1 N/A 108 1320

EDNRA 0 0 0 296 34 3 21 8 2 N/A 364 438

EPO 0 0 0 9 25 3 15 4 N/A N/A 56 124

HOTAIR X X X X X X X X X X X X

HSPB7 1 0 0 19 66 3 46 19 4 N/A 158 14

IL6 2 0 0 22 15 N/A 31 1 N/A 71 95

KNG1 3 1 1 15 N/A 2 2 1 4 N/A 29 307

LGALS3 4 1 0 83 61 1 N/A N/A N/A N/A 150 474

LSINCT5 X X X X X X X X X X X X

MME 3 3 0 953 63 1 1 18 2 N/A 1044 1096

MMP2 1 1 0 456 68 2 N/A 9 9 N/A 546 741

MYBPC3 9 1 1 72 11 N/A N/A N/A 10 N/A 104 84

MYH6 3 1 0 74 N/A N/A N/A N/A 11 N/A 89 51

MYH7 4 5 0 105 35 N/A 29 1 16 N/A 195 231

NOS3 7 0 0 143 39 1 1 2 6 N/A 199 116

NPPA 3 0 1 16 25 N/A N/A 4 N/A N/A 49 52

NPPB 2 0 0 5 28 N/A 40 N/A 1 N/A 76 244

NPPC 0 0 0 1 23 N/A 36 N/A N/A N/A 60 457

NPR1 5 0 0 53 13 3 37 N/A 1 N/A 112 151

NR3C2 3 2 0 2057 27 1 2 6 5 N/A 2103 1079

PIK3C2A 1 1 0 423 37 2 29 4 5 1 503 326

PLN 0 0 0 49 N/A N/A N/A 9 N/A N/A 58 46

REN 1 1 0 108 34 3 N/A N/A 2 N/A 149 150

RP11-451G4.2 X X X X X X X X X X X X

TNF 0 0 0 7 15 N/A N/A 2 N/A N/A 24 780

TUSC7 X X X X X X X X X X X X

UTS2 3 0 0 30 37 N/A 19 N/A 1 N/A 90 806

VCL 2 0 0 522 42 1 N/A 5 7 N/A 579 875
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Table 2.  Functional mutation analysis of genes associated with other cardiovascular diseases. Tabulated 
information includes, gene name, missense, splice, truncating, intron, 5ʹ flank, 5ʹ UTR, 3ʹ flank, 3ʹ UTR, silent, 
RNA, total and failed mutations.

Gene name Missense Splice Truncating Intron 5ʹ UTR 5ʹ Flank 3ʹ UTR 3ʹ Flank Silent RNA Total Failed Mutation

ATP2A2 0 2 0 270 6 11 14 24 3 0 330 478

CALD1 8 0 0 1100 1 66 7 26 2 0 1210 492

CD34 1 1 0 109 N/A 30 39 1 1 0 182 701

CD40LG 0 0 0 32 N/A 18 9 N/A 2 0 61 56

DDX41 0 2 0 17 N/A 4 2 N/A 1 0 26 13

ENO2 1 1 0 51 1 N/A 8 N/A 1 0 63 79

FADD 0 0 0 9 2 36 3 20 N/A 0 70 706

FGF23 2 0 0 68 N/A 33 5 17 N/A 0 125 451

FGF2 0 0 0 394 N/A 37 N/A N/A 3 0 434 694

FLNA 2 6 0 82 N/A N/A 2 10 11 0 113 73

GJB6 1 0 0 88 3 42 4 36 1 0 175 2133

GLMN 3 1 0 172 N/A 1 1 4 N/A 0 182 96

HBA1 0 0 0 2 N/A 12 1 15 N/A 0 30 28

KANTR 0 0 0 145 4 17 7 20 1 3 197 165

LEMD3 2 3 0 271 N/A 19 4 19 4 0 322 525

MB 0 0 0 95 1 39 4 49 2 0 190 738

PDPN 1 0 0 203 1 35 20 1 2 0 263 351

SLC2A1 0 1 0 216 2 N/A 5 30 7 0 261 230

TAC1 0 0 0 36 N/A 24 5 38 N/A 0 103 2518

TEK 8 1 0 1120 N/A 46 8 69 9 0 1261 518

TRPV1 8 0 1 207 3 68 7 38 5 0 337 256

SMUG1 1 1 1 61 1 17 4 26 N/A 0 112 433

ZBTB8OS 0 0 0 197 N/A N/A 12 23 1 0 233 205

Figure 3.  Functional mutation analysis of heart failure (HF) genes. Lollipop graphs of ACE, ADM, ADRB1, 
ADRB2, AGTR1, AGT, AMPD1, ANKRD1, AQP2, CORIN, CRP, CST3, EDN1, EDNRA, EPO, HSPB7, IL6, 
KNG1, LGALS3, MME, MMP2, MYBPC3, MYH6, MYH7, NOS3, NPPA, NPPB, NPPC, NPR1, NR3C2, 
PIK3C2A, PLN, REN, TNF, UTS2, and VCL. Green represents Missense mutations; black represents Truncating 
mutations; brown represents Inframe mutations; and purple represents Fusion mutations.
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MB, SLC2A1, TAC1, and ZBTB8OS. Previous literature has linked CALD1, TEK, TRPV1, ATP2A2, and SMUG1 
to CVDs, supporting the findings from our functional mutation  analysis57–61. Further research must be conducted 
to solidify these claims regarding the significance of these genes. We reported different types of mutations and 
their impact on all CVD genes in Supplementary material S3.

Next, our splice mutation analysis uncovered mutation frequencies for the list of significant mutated genes 
generated after performing high-throughput WGS and utilizing JWES for WGS data processing and gene-variant 
 discovery27. We were able to analyze the percentages of each mutation (missense, splice, truncating, intron, 5ʹ 
flank, 5ʹ UTR, 3ʹ flank, 3ʹ UTR, silent and RNA) in comparison to each other (Fig. 5). We reported that intron, 5ʹ 
Flank and 3ʹ Flank mutations were present in high frequencies in genes associated with HF (Fig. 5A) and other 
CVDs (Fig. 5B). NR3C2 had the highest number of intron mutations with a total of 2,057. PIK3C2A was the 
only gene with an RNA-based mutation. Aside from the RNA mutation, the rarest mutation type was truncating 
mutations. AMPD1, KNG1, MYBPC3, and NPPA were found to have a truncating mutation. Splice and 5ʹ UTR 
were also less common or rarer mutation types (Fig. 5A). Among the genes associated with other CVDs, TEK 
had the highest number of intron mutations, with a total of 1,120. RNA mutations were the rarest in CVD genes 
as well, with KANTR being the only gene possessing RNA mutations. Truncating mutations were also very rare. 
TRPV1 and SMUG1 possessed truncating mutations (Fig. 5B).

We implemented JS-MA and the computed JSD scores highlighted the variance for all genes in relation to the 
disease (HF or other CVDs). The JSD scores for both HF and other CVD genes ranged from 0.09 to 0.49 with 
the diameter of each circle representing the score (Fig. 6). For the genes associated with HF, we observed five 
genes to be highly variant compared to others. These included NPPC, ADRB2, ADRB1, MYH6 and PLN with 
JSD scores of 0.489, 0.474, 0.473, 0.453, and 0.449 respectively. NR3C2, CRP, CORIN, NPPB, KNG1, and ADM 
had moderate JSD for HF (Fig. 6A). For genes associated with other CVDs, we identified one gene, HBA1, to be 
extremely significant with a JSD of 0.493. We found FADD to have the second highest variance with a score of 
0.425. Other genes with moderate JSD included ENO2, GLMN, FLNA, CD40LG, FGF2, TAC1, CD34, DDX41, 

Figure 4.  Functional mutation analysis of other cardiovascular disease (CVDs) genes. Lollipop graphs of: 
ATP2A2, CALD1, CD34, CD40LG, DDX41, ENO2, FADD, FGF23, FGF2, FLNA, GJB6, GLMN, HBA1, KANTR, 
LEMD3, MB, PDPN, SLC2A1, SMUG1, TAC1, TEK, TRPV1, and ZBTB8OS. Green represents Missense 
mutations; black represents truncating mutations; brown represents inframe mutations; and purple represents 
fusion mutations.
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ZBTB8OS, SLC2A1, CALD1, TEK, and PDPN (Fig. 6B). We found the following genes to have the highest vari-
ance: HBA1, FADD, NPPC, ADRB2, ADRB1, MYH6, and PLN. The exact JSD scores for all genes can be found 
in Supplementary material S1. Processed variant data of genes associated with HF and other CVDs are attached 
in the supplementary material (S4, S5, and S10).

We utilized a variety of analyses to identify notable genes including variant and prevalent analysis, functional 
mutation analysis, splice, and divergence analysis. Next, we performed comparative analysis to identify which 
genes were found to be notable and potentially significant in more than one method of analyses. The HBA1 
gene had a high JSD score and was observed in multiple enrichment pathways using our variant analysis and 
prevalence analysis. Hemoglobin subunit alpha 1 is involved in controlling pathways such as oxygen-carbon 
dioxide exchange in erythrocytes as well as cellular response to  stimuli62. Mutations in HBA1 have been found 
to be associated with multiple CVDs including but not limited to  CAD62. Loss of function in HBA1 can lead 
to Hemoglobin H disease, more commonly known as Alpha-thalassemia62. We found LGALS3 reported in our 
variant as well as functional mutation analysis. LGALS3 codes for Galectin-3 (Gal-3), a protein that plays an 
important role in cell proliferation, adhesion, differentiation, and apoptosis. Recent studies have linked Gal-3 
levels to organ health and increase in Gal-3 levels have been associated with fibrotic and inflammatory  diseases63. 
CALD1 and TEK were found to be highly significant based on our functional mutation analysis and had moderate 
JSD scores. CALD1 is a protein coding gene that affects myosin in the smooth muscle. Mutations in CALD1 have 
been associated with CVDs including but not limited to  cardiomyopathy64. TEK is involved in many biological 
pathways such as influencing the growth of blood vessels. Mutations in this gene can lead to abnormal formation 
of blood vessels and the  heart65. From the HF and other CVD genes, HBA1, LGALS3, and TEK had the strongest 
evidence of being significant and linking to CVDs based on the multiple analyses conducted as well as previous 
literature.

Comparing the results between HF and other CVD genes, we discovered many trends and distribution of 
mutation types and variations to be similar for both HF and other CVD genes (Fig. 2A,B). Most lollipop plots 
for HF and other CVDs had only one type of Pfam domain mapped for the corresponding gene (Figs. 3, 4). 
For HF genes, eleven genes in total (CORIN, MME, MMP2, MYBPC3, MYH6, MYH7, NOS3, NPR1, NR3C2, 
PIK3C2A, and REN) had two or more Pfam domains mapped (Fig. 3). For other CVD genes, the following 
seven genes were discovered to have two or more Pfam domains: ATP2A2, LEMD3, ENO2, FADD, TEK, TRPv1, 
FLNA (Fig. 4). HF genes, on average, had more Pfam domains that were able to be mapped. The most common 
mutation type for both HF and other CVDs was intron mutations with the least common being RNA, silent, 
and truncating mutation types. One major difference was that HF genes had an overall greater number of 
mutation types including RNA and truncating, both of which were not found in the other CVD genes (Fig. 5A,B). 

Figure 5.  Splice mutation analysis of genes associated with heart failure (HF) and other cardiovascular disease 
(CVDs). Figure reports findings on missense, splice, truncating, intron, 5ʹ flank, 5ʹ UTR, 3ʹ flank, 3ʹ UTR, silent 
and RNA mutations for genes associated with HF (A) and other CVDs (B).
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Understanding the common trends and variations in mutation distributions for HF and other CVDs can reveal 
similarities between the pathophysiology of multiple diseases and highlight the importance of further research 
to understand the relationship between HF and other CVD genes.

Figure 6.  Jensen-Shannon divergence-based (JSD) statistical analysis and variant distribution analysis of genes 
associated with heart failure (HF) and other cardiovascular diseases (CVDs). Figure reports JSD scores of genes 
associated with HF (A) and other CVDs (B).
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Discussion
LGALS3 codes for Gal-3 and recent studies have linked Gal-3 levels to organ health as well as fibrotic and 
inflammatory  diseases63. LGALS3 had four missense mutations; the mutation mapped to P64H had a high 
functional impact (deleterious and probably damaging were SIFT and PolyPhen-2 scores), and the other two 
missense mutations were mapped to T98P and R183K; both mutations had low functional impact. Our analysis 
suggests LGALS3 could also be linked to CVDs in addition to fibrotic diseases. Further studies are needed to 
confirm this relationship. A previous trial linked MME with CVDs and found HF patients had less chances of 
being hospitalized if treated with an angiotensin receptor neprilysin  inhibitor66. Although the remaining genes 
(CST3, NR3C2, PIK32CA, TNF, and VCL) had low functional impact for mutations, PIK32CA was also significant 
since it was the only gene out of thirty-six HF genes that produced a lollipop graph with an RNA mutation type. 
Additionally, we found NPPC, ADRB2, ADBR1, MYH6 and PLN genes to have high variance based on JS-MA.

When conducting mutation analysis, our study was able to generate functional mutation scores for LEMD3 
and SMUG1; for the other genes, no functional mutation information could be found, as there were no missense 
mutations present. LEMD3 had one mutation mapped with a high functional impact (deleterious and possibly 
damaging for the SIFT and PolyPhen-2 scores) and one mutation with low functional impact. Mutations in 
LEMD3 have been linked to various conditions such as Buschke–Ollendorff67 and our study suggests the gene 
can have further links to CVDs. Less gene expression of SMUG1 has been linked to breast  cancer68. SMUG1 
had one mutation with low functional impact, which suggests further research should be conducted to assess its 
association with CVDs as well. We found HBA1 and FADD were found to be extremely significant using JS-MA. 
Mutations in HBA1 have been found to be associated with multiple CVDs including but not limited to  CAD64. 
While mutations in FADD have been associated with post-ischemic HF, further studies are needed to study if 
FADD can be used in gene therapy for HF  treatment65. Further research is needed for LEMD3, SMUG1, HBA1, 
FLNA, ZBTB8OS, and SLC2A1 since they were found significant in multiple analyses conducted.

Additional genes from our variant and functional mutation analysis were reported to be significant. From 
the HF genes, ACE was found to have the largest number of missense mutations with a high functional impact; 
in the CVD genes, CALD1, TEK, and TRPV1 genes had the largest number of mutations with high functional 
impact. Future studies are needed to be better informed and targeted towards certain genes for mutation analysis 
and disease-specific variants. Findings from our functional mutation analysis warrant further study of the gene-
disease causal relationships involving HF and CVD genes, especially ACE, CALD1, TEK, and TRPV1. Significant 
genes noted in our current study were also supported by findings from our previous RNA-seq driven gene 
differential expression and pathway enrichment analysis. Genes such as FADD, HBA1 and LGALS3 were found 
to be differentially expressed in HF  patients30. While CALD1, TEK, and TRPV1 showed low expression in HF 
patients compared to healthy  controls30. Most of our biological findings for significant genes are thus validated 
by previous gene-disease annotation, phenotyping as well as mRNA abundance  analysis30. We found ADRB1, 
ADRB2, and NPPC to have great variance and significance based on JS-MA from our previous variant analysis 
from a separate ensemble of CVD  patients69. Thus, supporting our claim that these genes have significant or 
altered expression in CVD patients. Additionally, we observed that ACE and CALD1 were highly associated 
with CVDs and played a major role in disease prediction based on our Artificial Intelligence (AI) and Machine 
Learning (ML) driven  analysis70.

There were some limitations to using the cBioPortal Mutation Mapper. The total amount of mutations 
discovered by our previous study for each significant HF and other CVD gene were not all able to be mapped 
onto the lollipop  graphs26,27. There were a significant number of mutations that failed to be annotated due 
to insufficient information in the reference database. Results showed that seven HF genes studied possessed 
mutations whose functional impacts could not be tracked due limitations of the software; the same was true 
for thirteen CVD genes. The cBioPortal software was unable to support this information since the mutations 
discovered were novel and the database has not been updated yet. These limitations prevented a complete lollipop 
plot of mutation distributions from being generated for each HF and CVD gene. However, based on the numerous 
mutations that were mapped, significant patterns were discovered. Another limitation of our study was the 
sample size utilized that can limit the generalization of our findings. To partially address this limitation, we have 
conducted an additional whole genome and variant analysis on an alternative group of consented CVD patients 
to support and validate our  findings53. Additionally, we plan on expanding our cohort in the future to include 
diverse individuals based on race, ethnicity, and socioeconomic factors to better highlight the importance and 
frequency of mutations linked to frequently studied HF and CVD genes.

Our methodology involved using JWES for WGS data processing and utilizing GATK for the identification 
of point mutations. Moving forward, the inclusion of other variation types including copy number variations 
(CNV), structural variants (SV), and short tandem repeats (STR) may increase or decrease the significance 
of genes depending on a variety of factors. Unlike SNPs which are variations of single nucleotide in a specific 
genome location, STRs are variations of the number of repeating DNA sequences. A previous study found that 
SNPs are considered a viable replacement for STRs to detect the structure of a  population71. SVs are defined as 
a DNA region of about one kilobase (kb) and can include inversions or insertions and deletions, also known as 
 CNVs72. While SNPs affect splicing or transcription and are present in coding or non-coding regions, CNVs 
are defined as sequence variants that can be as large as several megabases (Mbs) in size. CNVs have been linked 
to the pathogenesis of complex diseases; studies reveal that when associations exist between CNVs and SNPs, 
the coexistence frequency, and the type of CNV can lead to an overestimation or underestimation of the gene 
significance. The application of a joint analysis of CNVs and SNPs may address these current limitations and 
provide more accuracy in identifying significant genes moving  forward70.

To study chronic diseases such as CVDs with complex pathophysiology, conducting multiple analyses with 
over-compassing methodologies is essential. The overall goal of the study was to conduct a combination of 
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variant distribution and prevalence, functional mutation, splice mutation and divergence analysis to identify the 
significant impact of these mutations on the pathology of CVDs. Our results reinforce the established relationship 
between significant genes highlighted in previous literature and their impact on CVDs. Further research can 
be conducted to validate our claims regarding potentially significant genes by widening the sample size of 
consented patients to estimate trends within a population. This is a goal we hope to accomplish in the future. It is 
of paramount importance to fully understand the genetic basis of diseases, especially common ones, distinguish 
the genes which predispose an individual to medical conditions, and how rare genetic variations play a role in 
disease  manifestation74. Further inquiry into these genes may foster the development of novel clinical tools that 
will improve personalized medical treatment for HF and other CVD patients. Once the individual’s genetic 
makeup is considered, medical providers will be able to formulate a more personalized treatment  plan75. Several 
studies have successfully employed integrative multi-omics approaches to investigate novel mechanisms and 
plasma biomarkers associated with cardiovascular diseases, ultimately speeding up the identification of new 
therapeutic targets and  pathways76. These studies serve as evidence that sophisticated integration techniques 
can yield dependable biological signals across various molecular levels and  phenotypes76.

Our research underscores the critical need for an integrative approach that combines gene variant data with 
clinical information. We employed a multifaceted analysis, including functional mutation, splice variant, variant 
distribution, and divergence analysis, to discern the significance and prevalence of variants linked to well-studied 
genes associated with HF and CVD. Our variant analysis revealed the significance of additional genes, such as 
ACE, CALD1, TEK, and TRPV1. Among HF and other CVD genes, we observed that mutations in introns, the 
5’ flank, 3’ UTR, and 3’ flank regions were the most prevalent. Although missense mutations were infrequent, 
they were more likely to exert a functional impact. By employing JS-MA, we pinpointed NPPC, ADRB2, ADBR1, 
MYH6, PLN, HBA1, and FADD as the genes exhibiting the highest degree of variability. Previously, we have 
examined state-of-the art genomic approaches to identify and investigate genes associated with atrial fibrillation 
(AF) and HF  susceptibility23. We found multiple genes such as PLN77, MYH677, NPPA77, and MYH778 to be 
significant, all of which were discovered to be notable in this study as well. The wide range of patients from 
various ages, ethnicities, demographics, and geographic locations as well as the variety of methods from these 
previous studies contributes to a randomized sample  size23.

We expanded our research regarding these significant genes by exploring the clinical relevance of gene 
expression by leveraging RNA-seq  data30,79. Our analysis focused on discerning the disparities between healthy 
and afflicted conditions, aiming to gain insights into the underlying disease pathology. We performed age and 
gender-based analyses to further understand shared and unique expressions across different ethnic and racial 
 profiles30,79. Our previous and current studies have uncovered ACE to be a critical gene in CVD etiology and 
progression across all age groups. These findings hold significant importance for future research endeavors, as 
they indicate the opportunity to delve deeper into these genes opening a novel avenue that emphasizes a more 
personalized approach to therapy and treatment. The findings from previous studies corroborate our current 
results in this study. In conjunction, the variety of analyses performed including variant and prevalent analysis, 
functional mutation analysis, splice, and divergence analysis identified similar patterns and notable genes which 
suggests other confounding risk factors are not significant enough to overturn the conclusions reached in our 
study.

A multitude of genomic and statistical studies have similarly utilized phenotypic attributes such as gender, 
age, ethnicity, and diagnoses to determine gene causality in disease  advancement49–51. While the age at which 
patients developed HF, severity of disease, alcoholic cardiomyopathy, different aetiologies of their HF, treatments 
received are important risk factors, recent approaches now focus on the heritability component that supports the 
clinical manifestation of the  disease50,51. In this study, we utilized a cohort of only adult and aging CVD patients 
with HF phenotype. The data centered on age, gender, ethnicity, medical details, and demographics and added 
controls as the sample size was targeted and specific utilizing the restriction method designed to mitigate the 
effects of other confounding  factors80. Our claims are supported by cutting-edge research, leading us to conclude 
that these confounding risk factors can be ruled out from the context of our study and have little relevance to 
our overall findings. In the future, we hope to expand our cohort of our healthy controls and patient cohorts to 
investigate and solidify the association between significant genes and the development of HF and CVDs.

For cardiovascular genomic medicine to become both predictive and preventive, it is crucial to accurately 
assess the risk of associated disease, properly report the variants, and implement clinical management to 
prevent or reduce the disease. Currently, multi-omics data are not available in formats that are useful for the 
AI/ML analysis. In the future, AI/ML-ready genomic data sets should be more widely available to integrate AI/
ML algorithms in predictive analysis. ML can help identify a predictive response and model clinical data for 
association of genetic variants to treatment outcomes in HF and other  CVDs75. We can process large volumes 
of clinical and variant data to identify biomarkers or gene sets associated with chronic diseases and improve 
diagnosis. With greater availability of AI/ML-ready datasets, the genomic data can be analyzed on a deeper level, 
with implications both in predictive analysis as well as deep  phenotyping81. Additionally, growing evidence now 
suggests that there might be a direct link between infectious oral diseases and CVDs. The proposed mechanisms 
that explain the correlation between these two diseases consist of predisposing and precipitating aspects such 
as genetic and environmental factors, medications, and the individual’s  microbiome82, Further studies have 
suggested that maladaptive inflammatory reactivity, which may be influenced by SNPs in pathway genes, could 
act as pleiotropic genes and effect the link between oral infections and  CVDs83,84.
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Conclusion
Our study emphasizes the importance of an integrative approach with gene variant and clinical data and 
utilizes functional mutation, splice, variant distribution, and divergence analysis to identify the significance 
and prevalence of variants associated with commonly investigated HF and CVD genes. Our variant analysis 
uncovered additional genes to be significant including ACE, CALD1, TEK, and TRPV1. We discovered intron, 
5ʹ Flank, 3ʹ UTR, and 3ʹ Flank mutations to be the most common among HF and other CVD genes. Missense 
mutations were rare but more likely to have functional impact. We implemented JS-MA and identified NPPC, 
ADRB2, ADBR1, MYH6, PLN, HBA1, and FADD genes to have the highest variance. The identification of the 
functional impact of these mutations will help us understand CVD progression and pathophysiology. Further 
studies are needed to determine if the genes with notable mutations can be used as potential biomarkers to 
improve early diagnosis and disease prediction.

Data availability
Processed variant data of genes associated with HF and other CVDs are attached in the supplementary mate-
rial. All the source code reproducing the experiments of this study are available at GitHub, following web links: 
JWES <https:// github. com/ drzee shana hmed/ JWES- Varia nt>, and JSD-Variant-Distribution-Analysis <https:// 
github. com/ drzee shana hmed/ JSD- Varia nt- Distr ibuti on- Analy sis>.
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