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The use of data‑based species distribution models (SDMs) has increased significantly in recent years. 
However, studies of determining the minimum requirements of occurrence sites from ecological 
monitoring datasets used in species distribution modelling remain insufficient. Therefore, this study 
proposed a framework to determine the threshold of minimum occurrence sites for SDMs by assessing 
compliance with Benford’s law. The compliance test verified that the national‑scale freshwater fish 
monitoring dataset was natural and reliable. Results derived from true skill statistics (TSS) determined 
the minimum number of occurrence sites for reliable species distribution modelling was 20 with a 
TSS value of 0.793 and an overall accuracy of 0.804. The Benford compliance test has shown to be a 
useful tool for swift and efficient evaluation of the reliability of species occurrence datasets, or the 
determination of the threshold of occurrence sites before species distribution modelling. Further 
studies regarding the evaluation of this method’s transferability to other species and validation using 
SDM performance are required. Overall, the framework proposed in this study demonstrates that 
Benford compliance test applied to species monitoring datasets can be used to derive a universal and 
model‑independent minimum occurrence threshold for SDMs.

Species distribution models (SDMs) generate relationships between abiotic and biotic factors and species occur-
rence records to predict the probability of species  presence1–3. Over the last several decades, SDMs have been 
widely used in various  applications1 4,5, including species  conservation6, climate change impact  assessment7,8, 
invasive species  management9,10, and  paleoecology5.

SDM users generally collate species occurrence data from ecological monitoring datasets that pass quality 
assurance and quality control procedures conducted during the dataset construction  phase11,12. These procedures 
usually focus on defining rules to ensure the integrity of the  dataset13 or detecting and correcting errors within the 
 dataset12,14. In addition, sufficient occurrence sites (or sample sizes) are recommended for SDMs, since the model 
performance deteriorates when the number of occurrence sites is too  low15–18. Previous studies have attempted 
to determine the minimum number of occurrence sites (e.g., 5 sites to 200 sites) by evaluating model accuracy 
(e.g., Pearson’s r, area under the receiver operating characteristic curve, weighted kappa, etc.)3,15,17–19. However, 
these thresholds are specific and model-dependent19,20, and should be verified using independent  data21,22. Thus, 
a more generalized procedure is required to determine the reliability of a dataset and the minimum amount of 
occurrence data for SDM applications.

Hence, this study aimed to develop a novel methodology using Benford’s law as a universal and model-
independent criterion to identify the minimum number of occurrence sites required for SDMs from species 
occurrence datasets. As a case study, the reliability of a national freshwater fish monitoring dataset, which was 
collected for 13 consecutive years throughout South Korea, was evaluated (Fig. 1a).
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Figure 1.  Methodologies used in this study: (a) Monitoring data of freshwater fish (details are available in 
Table S1) in South Korea were collected (Han, Nakdong, Geum, Yeongsan, and Seomjin river watersheds, 
represented by their first letter; H, N, G, Y, and S, respectively); (b) Compliance of whole fish dataset (white 
bars) with Benford’s law (solid line) evaluated by the coefficient of determination  (R2); (c) Compliance of single 
fish dataset with Benford’s law evaluated by the interquartile range (IQR) method; and (d) Determination of the 
minimum number (threshold) of occurrence sites (blue circle) using true skill statistics (TSS). The maps were 
generated using ArcGIS Pro (ESRI, ver. 3.1; https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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Benford’s law
Benford’s law was discovered by Simon  Newcomb23 and justified by Frank  Benford24; it refers to a phenomenon 
in which the distribution of leading (non-zero) digits from a dataset that occurs naturally (or untampered) 
complies with a logarithm equation (Eq. 1)25,26:

where P is the expected frequency (or probability) of the first digit (li). The expected frequency for each digit is 
presented in Fig. 1b.

In practice, Benford’s law is frequently applied as a standard when evaluating digit distributions. It is assumed 
that the dataset will not comply with Benford’s law if the numbers are not natural and influenced by human 
 choice26. Compliance with Benford’s law is determined through goodness-of-fit tests by comparing the frequency 
of digits that appear in the  dataset27. The most popular and widespread use of this law is in fraud detection, 
including data fabrication and  falsification25,28,29. In the field of environmental science, Benford’s law has been 
applied to secure the reliability or identify anomalies in datasets, which include stream  flows27,  earthquakes30, 
tropical  cyclones31, ecosystem  naturalness32, health/disease report 33,  ecotoxicity26, and phytoplankton cells in 
 colonies34 and  abundance35.

Results and discussions
Evaluating the reliability of the fish monitoring dataset
In this study, Benford’s law was applied to evaluate the reliability of the entire fish monitoring dataset (Table S1). 
The frequency of the first digits extracted from the total dataset complied well with Benford’s law, yielding a 
coefficient of determination  (R2) of 0.994 (Fig. 1b). Considering that R2 > 0.85 is generally accepted as high 
 credibility36,37, it confirms that the national freshwater fish monitoring dataset is highly reliable. In general, com-
pliance with Benford’s law indicates that the dataset is authentic and  natural26,27,31. Thus, the national freshwater 
fish monitoring dataset sufficiently represents the occurrence of freshwater fish in South Korea.

Datasets that do not comply with Benford’s law generally result from insufficient data quantity (or incomplete 
datasets), excessive rounding of data, and data  errors27. For instance, Polidori and  Hage38 applied Benford’s law 
to evaluate the accuracy of elevation, slope, and stream order from a digital elevation model and found large 
errors in elevation. Moreover, Noleto–Filho et al.39 demonstrated that the compliance assessment of a Brazilian 
fishing dataset with Benford’s law could identify the cause of unreliability. These findings suggest that Benford’s 
law can be used as a solid criterion for evaluating the reliability of monitoring  datasets40.

Determining the threshold of fish occurrence sites
Benford’s law was also applied to determine the minimum number of fish occurrence sites required for species 
distribution modelling (Table S2). The interquartile range (IQR) method (Fig. 1c) showed that the species with 
R2 < 0.698 did not comply with Benford’s law in which 8 species failed among the 148 species tested (Fig. 2). 
Moreover, true skill statistics (TSS) was used to determine the threshold of minimum occurrence sites for 
complying with Benford’s law (Fig. 1d), since a reliable threshold can be produced by maximizing the sum 
of sensitivity and specificity (equivalent to maximizing the TSS value) than other methods (e.g., maximizing 
overall accuracy, maximizing kappa value, using the mean predicted value, etc.)41. The maximum TSS value 
of 0.793 was derived at 20 occurrence sites, with an overall accuracy of 0.804 (Fig. 2). Since TSS surpassed the 
criterion of 0.642,43, the threshold was shown to effectively discriminate compliance with Benford’s law for each 

(1)P(li) = log10(1+
1

li
), li ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}
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Figure 2.  Determination of the minimum fish occurrence site threshold (blue line) using TSS. Compliance 
(viz., passed or failed) of the single fish dataset with Benford’s law, evaluated by the IQR method, is denoted 
in white and red circles, respectively. The maximum TSS value (0.793), with an overall accuracy of 0.804, was 
yielded when the minimum number was set at 20 sites.
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fish species according to the number of occurrence sites. As suggested in Szabo et al.40, one of the advantages of 
Benford’s law is the efficient and swift evaluation process, since modelling each species individually with SDMs 
entails a higher cost. These findings suggest that Benford’s law can be used as a universal tool for determining 
the minimum number of fish occurrence sites since it is independent of SDMs.

As demonstrated in this study, Benford’s law can be utilized to evaluate the reliability of species monitoring 
datasets. However, the results obtained from the compliance test provide limited ecological  information40. For 
instance, a species monitoring dataset can be determined to be reliable, but information on species richness or 
biodiversity is not identified. Meanwhile, failing the compliance test implies additional or detailed investigation 
is required to ensure the reliability of using the dataset. Thus, Benford compliance test can be used as a screen-
ing process to evaluate the reliability of species monitoring or larger ecological  datasets40, or to determine the 
threshold of occurrence sites before developing SDMs.

Further studies of applying this approach to SDMs and validating the threshold of species occurrence with 
model accuracy are required. Concurrently, datasets from various regions and other groups of organisms (e.g., 
amphibians, avians, invertebrates, etc.) should be tested for transferability of the approach, because the freshwater 
fish dataset was the only available dataset with detailed monitoring records that were collectable for this study.

Conclusions
This study demonstrated that Benford compliance test based on species occurrence datasets can provide a 
universal and model-independent criterion for determining the minimum occurrence threshold for species 
distribution modelling. A national-scale freshwater fish monitoring dataset was verified to comply with Benford’s 
law, indicating that the fish monitoring dataset was reliable and natural. Through the TSS, 20 was determined as 
the minimum occurrence threshold for modelling the distribution of freshwater fish from this dataset. Further 
studies of testing species occurrence datasets of other groups of organisms or regions are required to verify the 
transferability of this method. Also, future studies should evaluate the performance of this approach by compar-
ing SDM accuracy divided by the threshold of species occurrence.

Methods
Data collection
The freshwater fish ecological monitoring data from 2008 to 2020 were collected from the Water Environment 
Information System (https:// water. nier. go. kr; initially accessed on June 05, 2017, and updated on August 03, 
2021). Along with the species occurrence results, the attributes regarding the monitoring program were included 
in the dataset. In addition, all survey stations were assigned to one of the 5 basins (Han, Nakdong, Geum, Seom-
jin, and Yeongsan River Basins) according to the classification available in WAMIS (https:// wamis go. kr accessed 
on August 03, 2021.). Details of the collected data and their statistics are listed in Table S1. Among the 159 fish 
species initially listed, 11 were excluded from the analysis due to non-occurrence. Data archiving and statistical 
analysis were conducted using MS Excel 2019 (Microsoft Corporation, Redmond, WA, USA).

Evaluating compliance with Benford’s law for species occurrence dataset
Benford’s law was applied by extracting the leading (or first) digit from the collected dataset. Subsequently, the 
frequency (0–9) of each digit (1–9) was calculated followed by a compliance test. The whole dataset used the 
entire dataset (W in Table S1), while each fish species used a species-specific dataset, respectively (S in Table S1). 
The coefficient of determination  (R2) was derived by the regression analysis of the first digit frequency from the 
species monitoring dataset (i.e., whole dataset, datasets of each fish species) and Benford’s law (Fig. 1b). In addi-
tion, the occurrence data of freshwater fish in the 5 basins was integrated in the compliance tests assuming that 
SDM users generally use the largest range of available occurrence  data44.

Compliance with Benford’s law was determined using the IQR (interquartile range) method (Fig. 1c). The  R2 
was classified into pass (R2 ≥ threshold of compliance) and fail (R2 < threshold of compliance) according to the 
following equations (Fig. 1c; Eqs. 2, 3):

where Q3 is the upper 25% quartile of  R2s and Q1 is the lower 25% quartile of  R2s acquired from the regression 
analysis of each species. Meanwhile, q is the coefficient that determines the threshold location, where a common 
value of 1.5 was applied in this  study45,46.

Determining minimum occurrence site threshold
The required minimum occurrence sites for species distribution modelling was determined using true skill statis-
tics (TSS) according to Allouche et al.47. TSS was conducted using a 2 × 2 contingency table (Table S3), where “a” 
is the number of species that accurately passed the threshold, “b” is the number of species that incorrectly passed 
the threshold (type I error; false positive), “c” is the number of species that incorrectly did not pass the threshold 
(type II error; false negative), and “d” is the number of species that correctly did not pass the threshold. The TSS 
value was calculated by summing sensitivity (Eq. 4) and specificity (Eq. 5) subtracted by 1 (Eq. 6). As presented 
in Fig. 1d, the minimum occurrence threshold is the point at which the TSS value is initially maximized. In 
addition, the overall accuracy was calculated using Eq. 7. The indices, excluding the TSS value, range between 
0 to 1, where 0 and 1 indicate totally incorrect and correct predictions, respectively. The TSS value ranges from 
–1 to 1, where –1 and 1 indicate totally incorrect and correct predictions, respectively, and 0 indicates that the 

(2)IQR = Q3−Q1

(3)ThresholdofCompliance = Q1− q× IQR

https://water.nier.go.kr
https://wamisgo.kr.
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prediction is  random47. Although there is no specific classification for evaluating the TSS value, a value over 0.6 
is generally considered a sufficiently acceptable  result42,43.

All calculations were conducted using Microsoft Excel 2019 (Microsoft Corporation, Redmond, WA, USA).

Data and materials availability
All data are available in the main text, supplementary materials, or from accessing the Water Environment 
Information System (https:// water. nier. go. kr/). If website access is difficult, data can be obtained from the cor-
responding author on request.

Received: 23 November 2022; Accepted: 3 October 2023
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