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Entropy analysis of nickel(II) 
porphyrins network via curve 
fitting techniques
Muhammad Talha Farooq 1,2, Thiradet Jiarasuksakun 2,3 & Pawaton Kaemawichanurat 1,2*

Nickel(II) porphyrins typically adopt a square planar coordination geometry, with the nickel atom 
located at the center of the porphyrin ring and the coordinating atoms arranged in a square plane. 
The additional atoms or groups coordinated to the nickel atom in nickel(II) porphyrins are called 
ligands. Porphyrins have been investigated as potential agents for imaging and treating cancer due 
to their ability to selectively bind to tumor cells and be used as sensors for a variety of analytes. 
Nickel(II) porphyrins are relatively stable compounds, with high thermal and chemical stability. They 
can be stored in a solid state or in solution without significant degradation. In this study, we compute 
several connectivity indices, such as general Randi’c, hyper Zagreb, and redefined Zagreb indices, 
based on the degrees of vertices of the chemical graph of nickel porphyrins. Then, we compute the 
entropy and heat of formation NiP production, among other physical parameters. Using MATLAB, 
we fit curves between various indices and the thermodynamic properties parameters, notably the 
heat of formation and entropy, using various linearity- and non-linearity-based approaches. The 
method’s effectiveness is evaluated using R2 , the sum of squared errors, and root mean square error. 
We also provide visual representations of these indexes. These mathematical frameworks might offer 
a mechanism to investigate the thermodynamical characteristics of NiP’s chemical structure under 
various circumstances, which will help us understand the connection between system dimensions and 
these metrics.

Transition metal (TM) porphyrins are widely used in a variety of technological applications, including sensors, 
pigment applications, cancer therapy, synthetic photosynthesis, nonlinear optics, and nanomaterials, as a result 
of their special features1. Their value for catalysis and biological significance is directly tied to this interest. The 
coordination characteristics and conformational flexibility of porphyrins have been extensively used over the past 
ten years in the quest for potential porphyrin isomers that can provide enhanced functionality in particular tech-
nological applications2. The nitrogen-confused porphyrins (NCPs), a unique and promising class of porphyrins 
with enhanced capabilities for application as acid catalysts and anion/cation sensors, are one such significant class 
of porphyrins3. The chemical structure, physical characteristics, and coordination properties of these porphyrin 
isomers are significantly different from those of the parent porphyrins. Such structures are great candidates for 
use in photodynamic therapy because of their effective singlet-oxygen sensitization4.

The information content of complex networks5 and graphs based on Shannon’s entropy6 work was first stud-
ied by researchers in the late 1990s. In discrete mathematics, computer science, information theory, statistics, 
chemistry, biology, and other domains, a large range of quantitative methods for studying complex networks have 
been developed7,8. For instance, graph entropy measurements have been extensively employed in the fields of 
mathematical chemistry, biology, and computer science to characterize the structure of graph-based systems9,10. 
To measure the structural complexity of graphs, the idea of graph entropy, created by Rashevsky11 and Trucco, 
has been employed12. Chemical indices are valuable resources for researching various physico-chemical char-
acteristics of molecules without having to perform several tests. Quantitative structure-activity relationships 
(QSAR) are used in the study of drugs to understand the chemical properties using mathematical calculations13,14. 
The entropy of a graph was first described as an information-theoretic property by Mowshowitz15. Here, the 
complexity is clear. As stated by Shannon, uncertainty and information are two sides of the coin: a reduction 
in uncertainty is the same as the reception of a certain amount of information. Distinguished researchers have 
developed numerous techniques for efficiently computing structural descriptors, aimed at optimizing computa-
tional efficiency. Among these techniques, the polynomial representation of structural descriptors has garnered 
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significant attention and widespread acceptance in the scientific literature16,17. Entropy has emerged as a com-
prehensive and overarching concept across a wide spectrum of disciplines, spanning from logic and biology to 
physics and engineering. It serves as the link between the ideas of randomness and uncertainty, connecting them 
with physical processes that are viewed as channels for the transformation of information18.

The visible-light-induced photo redox catalyst nickel(II) tetraphenyl porphyrin (NiTPP) is given as a reliable, 
affordable, and effective catalyst. Recently, it was demonstrated that a library of Ni(II) ligand-to-ligand charge 
transfer complexes has useful features as photosensitizers, but their use in conventional photoredox catalysis is 
still unexplored19,20. Porphyrins have a wide range of applications in various fields, including: Porphyrins have 
been investigated as potential agents for imaging and treating cancer due to their ability to selectively bind to 
tumor cells. They are also used in photodynamic therapy (PDT), a treatment method that uses light-sensitive 
compounds to destroy cancer cells21. Porphyrins and their derivatives have been widely studied as catalysts in 
organic chemistry, with applications in hydrogenation, oxidation, and cycloaddition reactions. Porphyrins have 
been used as sensors for a variety of analytes, including metal ions, pH, and gases22. Porphyrins have been used for 
the detection and removal of heavy metal ions from contaminated water23. Porphyrins have been used as natural 
pigments in plant breeding and as a growth regulator in crops24. Porphyrins have applications in biotechnology 
such as biosensors, bioimaging, and biocatalysis25.

Several well-known topological indices, or the values that help characterize a structure’s topological proper-
ties after it has been replicated, are used to calculate a structure’s degree-based entropy. Zhdanov examined the 
chemical processes involving organic compounds using entropy values26. Chen27 first defined the entropy of an 
edge-weighted graph in 2014. The information entropy is defined as:

In Eq. (1) ηe is the edge set, ηv is the vertex set, and φ(ab) is the edge weight of the edge (ab) in η and η = NiP be 
a molecular graph of Nickel Porphyrin and logarithm to be presumed to be based 10.

Structure of nickel(II) porphyrins
Nickel(II) porphyrins are a class of coordination complexes composed of a central nickel atom coordinated to 
four nitrogen atoms of a porphyrin ring and two additional atoms or groups35. These compounds are known for 
their stability, strong absorption in the visible region of the electromagnetic spectrum, and potential applications 
in catalytic and biomedical fields. They have been studied as catalysts in a variety of organic reactions, such as 
hydrogenation, oxidation, and cycloaddition reactions. In addition, they have been investigated as potential 
agents for imaging and treating cancer due to their ability to selectively bind to tumor cells. The additional atoms 
or groups coordinated to the nickel atom in nickel(II) porphyrins are called ligands. The ligands can vary depend-
ing on the synthesis method and the specific compound. Common ligands include water, chloride, and various 
organic groups36. Nickel(II) porphyrins have strong absorption in the visible region of the electromagnetic 
spectrum, with the absorption maximum typically around 400 nm. This property is due to the porphyrin ring 
and is used in applications such as imaging and photodynamic therapy37. Nickel(II) porphyrins have a low-spin 
electron configuration and have no unpaired electrons, so they have no net magnetic moment. Porphyrins and 
similar tetrapyrrolic macrocycles are found abundantly in nature and serve vital roles across a diverse range of 
disciplines, spanning from medicine to materials science. These compounds, particularly their metal complexes 
known as metalloporphyrins, serve as essential active centers in numerous enzymes38.

Since Küsterover39 initially postulated the porphyrin macrocyclic structure a century ago, study in the area has 
increased significantly, leading to a massive body of literature that is still growing quickly. To give you an idea, the 
“Handbook of Porphyrin Science” series,40 which was started in 2010, currently consists of 44 volumes and 214 
chapters. The use of X-ray crystallography (including synchrotron) and neutron crystallography to determine 
the crystal structures of porphyrins has greatly aided the development to date. Currently, the Cambridge Struc-
tural Database has far more than 4000 porphyrin crystal structures (CSD)41. The structure of the Ni-metallated 
version, which has an interlayer spacing of 3.347 and Ni that is coplanar with the macrocycle, is otherwise com-
parable to that of Porphyrins. Using nanoelectrodes, Yoon42 assessed the electrical conductivity of two varieties 
of porphyrin wires. One type included 48 Ni(II) porphyrin moieties in directly meso-meso-connected Ni(II) 
porphyrin arrays. Because of the orthogonal arrangement of these arrays, consecutive porphyrins are aligned 
along the chain at right angles to one another. By using X-ray diffraction and a combination of single-crystal 
and solution resonance Raman studies, the structure of nickel(II) [Ni(P)] has been identified. Both resonance 
Raman spectroscopy and X-ray diffraction are approaches that are effective for examining porphyrin structure.

Methodology
Firstly, we find the degree of all types of vertices for the structure of nickel(II) porphyrins like we have three 
types of vertices: degree 2,3 and 4 and then we formulate general formulas for [m, n] dimensions and by utilizing 
these provided formulas in Table 1 we can compute vertices for any cell and by using same method we calculate 
the edge partition of nickel(II) porphyrins is shown in Table 3 and we have 4 types of edge partitions. The order 
and size of nickel(II) porphyrins for [m, n] is 37mn+ 6m+ 6n and 48mn+ 6m+ 6n respectively. Furthermore, 
degree-based topological indices that are mentioned in Table 2 are computed for nth cell of nickel(II) porphyrins 
and entropy for these calculated indices by using Table 3 and explain it with numerical and graphical representa-
tion. And after that, we built-in function in MATLAB is used to create models between the Heat of Formation 
and each information entropy because it provides the lowest RMSE value, which indicates the best match. 
The Numerical Integrity of fit for entropy versus indices of Ni(II) porphyrins is depicted in Table 8. The unit 

(1)Eφ(η) = log(I)− 1

I

∑

i=1

Fiφ(aibi) logφ(aibi)
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structure of nickel(II) porphyrins (NiP) is shown in Fig. 1 and for more details about the structure of NiP(II) 
see the Figs. 2 and 3.

Using Table 3 and Equation the Randic6 and corresponding entropy for α = 1,−1, 12 ,
−1
2  is :

Computation of degree based indices and entropy of nickel(II) porphyrins [m,n]
The Randić index and Randić entropy for Ni(II) porphyrins
Using Tables 2, 3 and Eq. (1) the Randic index28 and corresponding entropy is:

α = 1

Rα(NiP) = (8mn+ 6m+ 6n)× (4)α + (16mn)× (6)α + (20mn)× (9)α + (4mn)× (12)α

Table 1.   Vertex partition of the Ni(II) porphyrins.

(du) Frequency Set of vertices

d2 16mn+ 6m+ 6n 2

d3 20mn 3

d4 mn 4

Table 2.   Topological characteristics and the edge’s (mn) weight are shown together.

Topological indices φ(mn)

The general Randić  index Rα = 1,−1, 1
2
, −1

2
28 (φ(m)× φ(n))α

The atom bound connectivity index ABC29,30
√

φ(m)×φ(n)−2

φ(m)×φ(n)

The geometric arithmetic index GA29,30 2
√
φ(m)×φ(n)

φ(m)+φ(n)

The first Zagreb index M1
29,30 (φ(m)+ φ(n)

The second Zagreb index M2
29 (φ(m)× φ(n)

The hyper Zagreb index H31 (φ(m)× φ(n))2

The forgotten index F32 (φ(m)2 + φ(n)2)

The augmented Zagreb index AZI33
(

φ(m)×φ(n)
φ(m)+φ(n)−2

)3

The first redefined Zagreb index ReZG1
34 φ(m)+φ(n)

φ(m)×φ(n)

The second redefined Zagreb index ReZG2
34 φ(m)×φ(n)

φ(m)+φ(n)

The third redefined Zagreb index ReZG3
34 (φ(m)× φ(n))(φ(m)+ φ(n))

Figure 1.   Unit structure of nickel(II) porphyrins [m = 1, n = 1].
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Figure 2.   The structure of nickel(II) porphyrins [m = 2, n = 2].

Figure 3.   The structure of nickel(II) porphyrins [m = 3, n = 3].

Table 3.   Edge partition of the Ni(II) porphyrins.

(e1, e2) Frequency Set of edges

(2, 2) 8mn+ 6m+ 6m E1

(2, 3) 16mn E2

(3, 3) 20mn E3

(3, 4) 4mn E4
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α = −1

α = 1
2

α = −1
2

The atom bond connectivity index and atom bond connectivity entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the Atom bond connectivity index29,30 and corresponding entropy is:

R1(NiP) =356mn+ 24m+ 24n

ER1(NiP) = log[356mn+ 24m+ 24n] − (8mn+ 6m+ 6n) log[4]4
(356mn+ 24m+ 24n)

− (16mn) log[6]6
(356mn+ 24m+ 24n)

− (20mn) log[9]9
(356mn+ 24m+ 24n)

− (4mn) log[12]12
(356mn+ 24m+ 24n)

R−1(NiP) =7.2222222222mn+ 1.5m+ 1.5n

ER−1(NiP) = log[7.2222222222mn+ 1.5m+ 1.5n] −
(8mn+ 6m+ 6n) log

[

(4)

(

−1
4

)
]

(7.2222222222mn+ 1.5m+ 1.5n)

−
(16mn) log

[

(6)

(

−1
6

)
]

(7.2222222222mn+ 1.5m+ 1.5n)
−

(20mn) log

[

(9)

(

−1
9

)
]

(7.2222222222mn+ 1.5m+ 1.5n)

−
(4mn) log

[

(12)

(

−1
12

)
]

(7.2222222222mn+ 1.5m+ 1.5n)

R 1
2
(NiP) =129.0482424mn+ 12m+ 12n

ER 1
2

(NiP) = log [129.0482424mn+ 12m+ 12n]−
(8mn+ 6m+ 6n) log

[

(4)

(√
4
2

)
]

(129.0482424mn+ 12m+ 12n)

−
(16mn) log

[

(6)

(√
6
2

)
]

(129.0482424mn+ 12m+ 12n)
−

(20mn) log

[

(9)

(√
9
2

)
]

(129.0482424mn+ 12m+ 12n)

−
(4mn) log

[

(12)

(√
12
2

)
]

(129.0482424mn+ 12m+ 12n)

R−1
2
(NiP) =18.35333985mn+ 3.0m+ 3.0n

ER−1
2

(NiP) = log[18.35333985mn+ 3.0m+ 3.0n] −
(8mn+ 6m+ 6n) log

[

(4)
−1
2
√
4

]

(18.35333985mn+ 3.0m+ 3.0n)

−
(16mn) log

[

(6)
−1
2
√
6

]

(18.35333985mn+ 3.0m+ 3.0n)
−

(20mn) log

[

(9)
−1
2
√
9

]

(18.35333985mn+ 3.0m+ 3.0n)

−
(4mn) log

[

(12)
−1

2
√
12

]

(18.35333985mn+ 3.0m+ 3.0n)
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The geometric arithmetic index and geometric arithmetic entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the Geometric Arithmetic index29,30 and corresponding entropy is:

The first Zagreb index and first Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the first Zagreb index29,30 and corresponding entropy is:

The second Zagreb index and second Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the second Zagreb index29 and corresponding entropy is:

The Hyper Zagreb index and Hyper Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the Hyper Zagreb index31 and corresponding entropy is:

ABC(NiP) =40.01062533mn+ 4.242640687m+ 4.242640687n

EABC(NiP) = log [40.01062533mn+ 4.242640687m+ 4.242640687n]

−

(8mn+ 6m+ 6n) log







�

�

4−2
4

�

�

�

4−2
4

�







40.01062533mn+ 4.242640687m+ 4.242640687n

−

(16mn) log







�

�

6−2
6

�

�

�

6−2
6

�







40.01062533mn+ 4.242640687m+ 4.242640687n

−

(20mn) log







�

�

9−2
9

�

�

�

9−2
9

�







40.01062533mn+ 4.242640687m+ 4.242640687n

−

(4mn) log







�

�

12−2
12

�

�

�

12−2
12

�







40.01062533mn+ 4.242640687m+ 4.242640687n

GA(NiP) =36.70648944mn+ 6m+ 6n

EGA(NiP) = log[36.70648944mn+ 6m+ 6n] −
(8mn+ 6m+ 6n) log

[

(

2
√
4

4

)

(

2
√
4

4

)]

36.70648944mn+ 6m+ 6n

−
(16mn) log

[

(

2
√
6

6

)

(

2
√
6

6

)]

36.70648944mn+ 6m+ 6n
−

(20mn) log

[

(

2
√
9

9

)

(

2
√
9

9

)]

36.70648944mn+ 6m+ 6n

−
(4mn) log

[

(

2
√
12

12

)

(

2
√
12

12

)]

36.70648944mn+ 6m+ 6n

M1(NiP) =260mn+ 24m+ 24n

EM1(NiP) = log[260mn+ 24m+ 24n] − (8mn+ 6m+ 6n) log[4]4
(260mn+ 24m+ 24n)

− (16mn) log[5]5
(260mn+ 24m+ 24n)

− (20mn) log[6]6
(356mn+ 24m+ 24n)

− (4mn) log[7]7
(260mn+ 24m+ 24n)

M2(NiP) =356mn+ 24m+ 24n

EM2(NiP) = log[356mn+ 24m+ 24n] − (8mn+ 6m+ 6n) log[4]4
(356mn+ 24m+ 24n)

− (16mn) log[6]6
(356mn+ 24m+ 24n)

− (20mn) log[9]9
(356mn+ 24m+ 24n)

− (4mn) log[12]12
(356mn+ 24m+ 24n)
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The forgotten index and forgotten entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the Forgotten index32 and corresponding entropy is:

The augmented Zagreb index and augmented Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the Augmented Zagreb index33 and corresponding entropy is:

The first redefined Zagreb index and first redefined Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the first redefined Zagreb index34 and corresponding entropy is:

The second redefined Zagreb index and second redefined Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the second redefined Zagreb index34 and corresponding entropy is:

The third redefined Zagreb index and third redefined Zagreb entropy for Ni(II) porphyrins
By using Tables 2, 3 and Eq. (1) the third redefined Zagreb index34 and corresponding entropy is:

HM(NiP) =1444mn+ 96m+ 96n

EHM(NiP) = log[1444mn+ 96m+ 96n] − (8mn+ 6m+ 6n) log[16]16
(1444mn+ 96m+ 96n)

− (16mn) log[25]25
(1444mn+ 96m+ 96n)

− (20mn) log[36]36
(1444mn+ 96m+ 96n)

− (4mn) log[49]49
(1444mn+ 96m+ 96n)

F(NiP) =732mn+ 48m+ 48n

EF(NiP) = log[732mn+ 48m+ 48n] − (8mn+ 6m+ 6n) log[8]8
(732mn+ 48m+ 48n)

− (16mn) log[13]13
(732mn+ 48m+ 48n)

− (20mn) log[18]18
(732mn+ 48m+ 48n)

− (4mn) log[25]25
(732mn+ 48m+ 48n)

AZI(NiP) =167.41928863mn+ 48m+ 48n

EAZI (NiP) = log[167.41928863mn+ 48m+ 48n] −
(8mn+ 6m+ 6n) log[( 648 )(

64
8 )]

(167.41928863mn+ 48m+ 48n)

− (16mn) log[8]8
(167.41928863mn+ 48m+ 48n)

−
(20mn) log

[

(

729
64

)

(

729
64

)
]

(167.41928863mn+ 48m+ 48n)

−
(4mn) log

[

(

1728
125

)

(

1728
125

)
]

(167.41928863mn+ 48m+ 48n)

ReZG1(NiP) =37mn+ 6m+ 6n

EReZG1(NiP) = log[37mn+ 6m+ 6n] −
(8mn+ 6m+ 6n) log

[

(

4
4

)

(

4
4

)
]

(37mn+ 6m+ 6n)
−

(16mn) log

[

(

5
6

)

(

5
6

)

]

(37mn+ 6m+ 6n)

−
(20mn) log

[

(

6
9

)

(

6
9

)
]

(37mn+ 6m+ 6n)
−

(4mn) log

[

(

7
12

)

(

7
12

)

]

(37mn+ 6m+ 6n)

ReZG2(NiP) =64.0571428571mn+ 6m+ 6n

EReZG2(NiP) = log[64.0571428571mn+ 6m+ 6n] −
(8mn+ 6m+ 6n) log

[

(

4
4

)

(

4
4

)
]

(64.0571428571mn+ 6m+ 6n)

−
(16mn) log

[

(

6
5

)

(

6
5

)
]

(64.0571428571mn+ 6m+ 6n)
−

(20mn) log

[

(

9
6

)

(

9
6

)
]

(64.0571428571mn+ 6m+ 6n)

−
(4mn) log

[

(

12
7

)

(

12
7

)
]

(64.0571428571mn+ 6m+ 6n)
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Numerical and graphical representation of computed results
In this section, we represent the numerical and graphical representation of the computed results. In Table 4 
we represent the numerical results and in Figs. 4, 5, 6, 7 we represent the graphical comparison of the Randić 
entropies for different values of (α = 1,−1, 12 and −1

2 ).
Table 5 shows the numerical results and in Figs. 8, 9, 10 and 11 we represent the graphical comparison of 

EABC , EGA , EM1 and EM2 entropies. The numerical results for EHM , EF and EAZI entropies are depicted in Table 6, 
and graphical comparisons are shown in Figs. 12, 13 and 14 and Table 7 shows the numerical results of redefined 
Zagreb entropies and graphical comparisons are shown in Figs. 15,16 and 17.

We have examined degree-based molecular descriptors for the nickel(II) porphyrins Network. The Randic 
index has a strong correlation with a variety of physicochemical characteristics of alkanes, including chromato-
graphic retention times, surface area, vapor pressure, and boiling temperature variables in the Antonie equation. 
The atom-bond connectivity (ABC) index proves highly effective in calculating the strain energy of molecules 
through correlation. A good quantitative structural property relationship (QSPR) model is created when the 
temperature of alkane production is described by using the ABC index with a high correlation coefficient (r = 
0.9970). Moreover, the geometric arithmetic index is a stronger correlation coefficient across a range of physico-
chemical parameters for octanes. Zagreb indices have been utilized to investigate complexity and hetero systems. 
These indices are also applied for constructing multilinear regression models and are instrumental in studies 
related to Quantitative Structure-Property Relationship (QSPR) and Quantitative Structure-Activity Relationship 
(QSAR)43,44. The Forgotten index has demonstrated associations with numerous chemical attributes of molecules. 
The Augmented Zagreb index proves to be more effective in correlating with the measurement of strain energy 

ReZG3(NiP) =2024mn+ 96m+ 96n

EReZG3(NiP) = log[2024mn+ 96m+ 96n] − (8mn+ 6m+ 6n) log[16]16
(2024mn+ 96m+ 96n)

− (16mn) log[30]30
(2024mn+ 96m+ 96n)

− (20mn) log[54]54
(2024mn+ 96m+ 96n)

− (4mn) log[84]84
(2024mn+ 96m+ 96n)

Table 4.   Numerical comparison of ER1 , ER−1
 , ER 1

2

 and ER−1
2

.

[m, n] ER1
ER

−1
ER 1

2

ER
−1
2

[1, 1] 4.0270 4.0287 4.1146 0.94287

[2, 2] 5.3148 5.3110 5.3881 2.1561

[3, 3] 6.0910 6.0856 6.1585 2.9026

[4, 4] 6.6488 6.6425 6.7131 3.4441

[5, 5] 7.0842 7.0776 7.1468 3.8695

[6, 6] 7.4416 7.4347 7.5029 4.2203

[7, 7] 7.7446 7.7377 7.8050 4.5183

[8, 8] 8.0083 8.0008 8.0676 4.7776

[9, 9] 8.2404 8.2330 8.2996 5.0072

[10, 10] 8.4484 8.4413 8.5073 5.2130

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] [10,10]
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Figure 4.   Graphically representation of ER1.
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in molecules. Additionally, the Balaban index exhibits greater predictive capability compared to the predictive 
capacity of the Randic index. The above calculation provides numerical representations of the entropy that are 
calculated using these degree-based topological indices in Tables 4, 5, 6, 7 and graphical representations in Figs. 4, 
5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15, 16 and 17. As depicted in Figures, the values of these indices are directly propor-
tional to the values of [m, n], where [m, n] is plotted along the x-axes, and the resulting entropy is plotted along 
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Figure 5.   Graphically representation of ER−1
.
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Figure 6.   Graphically representation of ER 1
2

.
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Figure 7.   Graphically representation of ER−1
2

.
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the y-axes. These graphs reveal the differences between each entropy for these topological indices for a specific 
structure. The computational outcomes underscore that the estimates of degree-based indices are significantly 
influenced by the values of m and n, or in other words, by the molecular structure.

Table 5.   Numerical comparison of EABC , EGA , EM1
 and EM2

.

[m, n] EABC EGA EM1
EM2

[1, 1] 4.0898 3.8932 4.0770 4.0270

[2, 2] 5.3712 5.1491 5.3596 5.3148

[3, 3] 6.1446 5.9125 6.1336 6.0910

[4, 4] 6.7008 6.4632 6.6900 6.6488

[5, 5] 7.1353 6.8944 7.1247 7.0842

[6, 6] 7.4921 7.2489 7.4816 7.4416

[7, 7] 7.7947 7.5498 7.7842 7.7446

[8, 8] 8.0575 7.8114 8.0473 8.0083

[9, 9] 8.2897 8.0426 8.2792 8.2404

[10, 10] 8.4976 8.2498 8.4873 8.4484

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] [10,10]
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Figure 8.   Graphically representation of EABC.
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Figure 9.   Graphically representation of EGA.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17317  | https://doi.org/10.1038/s41598-023-44000-1

www.nature.com/scientificreports/

Rational curve fitting between heat of formation and entropy of their corresponding 
indices
In this part, we explain the ideas of Information Entropy and Heat of Formation (Enthalpy) of nickel(II) porphy-
rins (NiP). The standard molar enthalpy (HoF) of Porphyrins is +629.8 kjmole−1 . The following is a mathematical 
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Figure 10.   Graphically representation of EM1
.
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Figure 11.   Graphically representation of EM2
.

Table 6.   Numerical comparison of EHM , EF and EAZI.

[m, n] EHM EF EAZI

[1, 1] 4.0273 4.0274 1.5964

[2, 2] 5.3157 5.3163 2.0096

[3, 3] 6.0922 6.0929 2.4036

[4, 4] 6.6494 6.6507 2.7468

[5, 5] 7.0853 7.0863 3.0450

[6, 6] 7.4428 7.4440 3.3069

[7, 7] 7.7461 7.7466 3.5397

[8, 8] 8.0098 8.0107 3.7494

[9, 9] 8.2406 8.2435 3.9393

[10, 10] 8.4503 8.4519 4.1131
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Figure 12.   Graphically representation of EHM.
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Figure 13.   Graphically representation of EF.
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Figure 14.   Graphically representation of EAZI.
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formula to determine Heat of Formation (HOF) for various formula units:

HOF =Standard Molar HOF

Avogadro′s Number
× Formula Units
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Figure 15.   Graphically representation of EReZG1
.

Table 7.   Numerical comparison of EReZG1
 , EReZG2

 and EReZG3
.

[m, n] EReZG1
EReZG2

EReZG3

[1, 1] 4.0774 4.0770 3.9505

[2, 2] 5.3590 5.3592 5.2482

[3, 3] 6.1326 6.1332 6.0280

[4, 4] 6.6889 6.6894 6.5874

[5, 5] 7.1234 7.1241 7.0246

[6, 6] 7.4803 7.4808 7.3825

[7, 7] 7.7829 7.7837 7.6863

[8, 8] 8.0457 8.0465 7.9505

[9, 9] 8.2781 8.2788 8.1838

[10, 10] 8.4861 8.4869 8.3908
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Figure 16.   Graphically representation of EReZG2
.
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Based on the characteristics of its chemical graph structure, this could offer us an effective technique to compre-
hend the molecular structure of Ni(II) porphyrins. The rational built-in function in MATLAB is used to create 
models between the Heat of Formation and each information entropy because it provides the lowest RMSE value, 
which indicates the best match. The Numerical Integrity of fit for entropy versus indices of Ni(II) porphyrins 
is depicted in Table 8. Enthalpy is a property or state function that resembles energy as a result, it has the same 
dimensions as energy and is measured in joules or ergs.

(2)HoF(R1) =
p1(R1)

4 + p2(R1)
3 + p3(R1)

2 + p4(R1)+ p5

(R1)3 + q1(R1)2 + q2(R1)+ q3
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Figure 17.   Graphically representation of EReZG3
.

Table 8.   Goodness of fit for HoF versus entropy of indices for nickel(II) porphyrins.

Entropie’s Fit − type SSE R2 RMSE

ER1 (NiP) rat43 0.013010 1 0.080641

ER−1
(NiP) rat43 0.022160 1 0.105300

ER 1
2

(NiP) rat43 0.005942 1 0.054510

ER −1
2

(NiP) rat52 0.004039 1 0.044940

ERABC (NiP) rat32 0.002442 1 0.024710

ERGA (NiP) rat43 0.008907 1 0.066730

ERM1
(NiP) rat44 0.182200 1 0.426800

ERM2
(NiP) rat43 0.029830 1 0.122100

ERHM (NiP) rat44 0.761800 1 0.872800

ERF (NiP) rat43 0.066450 1 0.182300

ERAZI (NiP) rat42 0.541700 1 0.424900

ERReZG1 (NiP) rat43 0.011340 1 0.075290

ERReZG2 (NiP) rat32 0.001656 1 0.020350

ERReZG3 (NiP) rat32 0.056020 1 0.118300

Table 9.   Rational curve fitting of HoF versus ER1.

pj CI qj CI

j = 1 1293 (−2.692e + 07, 2.692e + 07) 480.1 (−1.087e + 07, 1.087e + 07)

j = 2 −6650 (−1.298e + 08, 1.298e + 08) −1.154e + 04 (−2.524e + 08, 2.523e + 08)

j = 3 −1.648e + 04 (−4.351e + 08, 4.351e + 08) 6.972e + 04 (−1.507e + 09, 1.507e + 09)

j = 4 2.431e + 05 (−5.456e + 09, 5.456e + 09)

j = 5 −4.891e + 05 (−1.076e + 10, 1.076e + 10)



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17317  | https://doi.org/10.1038/s41598-023-44000-1

www.nature.com/scientificreports/

Where mean 6.9049 and standard deviation 1.4121 are used to normalize the R1 and coefficient (with 95% con-
fidence bounds) are given in Table 9 and graphical representation in Fig. 18.

Where mean 6.8993 and standard deviation 1.4096 are used to normalize the R−1 and coefficient (with 95% 
confidence bounds) are given in Table 10 graphical representation in Fig. 19.

Where mean 6.9703 and standard deviation 1.4035 are used to normalize the R 1
2
 and coefficient (with 95% con-

fidence bounds) are given in Table 11 graphical representation in Fig. 20.

Where mean 3.7052 and standard deviation 1.3669 are used to normalize the R−1
2

 and coefficient (with 95% 
confidence bounds) are given in Table 12 and graphical representation in Fig. 21.

Where mean 6.9573 and standard deviation 1.4080 are used to normalize the ABC and coefficient (with 95% 
confidence bounds) are given in Table 13 and graphical representation in Fig. 22.

(3)HoF(R−1) =
p1(R−1)

4 + p2(R−1)
3 + p3(R−1)

2 + p4(R−1)+ p5

(R−1)
3 + q1(R−1)

2 + q2(R−1)+ q3

(4)HoF(R 1
2
) =

p1(R 1
2
)4 + p2(R 1

2
)3 + p3(R 1

2
)2 + p4(R 1

2
)+ p5

(R 1
2
)3 + q1(R 1

2
)2 + q2(R 1

2
)+ q3

(5)HoF(R−1
2
) =

p1(R−1
2
)5 + p2(R−1

2
)4 + p3(R−1

2
)3 + p4(R−1

2
)2 + p5(R−1

2
)+ p6

(R−1
2
)2 + q1(R−1

2
)+ q2

(6)HoF(ABC) = p1(ABC)
3 + p2(ABC)

2 + p3(ABC)+ p4

(ABC)2 + q1(ABC)+ q2

Table 10.   Rational curve fitting of HoF versus ER−1
.

pj CI qj CI

j = 1 4677 (−1.511e + 07, 1.512e + 07) −40.73 (−3.703e + 04, 3.695e + 04)

j = 2 −8.093e + 04 (−2.616e + 08, 2.615e + 08) −1188 (−4.797e + 06, 4.795e + 06)

j = 3 5.644e + 05 (−1.824e + 09, 1.825e + 09) 1.796e + 04 (−6.139e + 07, 6.143e + 07)

j = 4 −1.786e + 06 (−5.774e + 09, 5.771e + 09)

j = 5 2.147e + 06 (−6.934e + 09, 6.939e + 09)

Table 11.   Rational curve fitting of HoF versus ER 1
2

.

pj CI qj CI

j = 1 2019 (−1.081e + 07, 1.081e + 07) 257.1 (−1.561e + 06, 1.562e + 06)

j = 2 −2.605e + 04 (−1.385e + 08, 1.385e + 08) −6914 (−3.923e + 07, 3.922e + 07)

j = 3 1.453e + 05 (−7.675e + 08, 7.678e + 08) 4.526e + 04 (−2.514e + 08, 2.515e + 08)

j = 4 −3.514e + 05 (−1.838e + 09, 1.837e + 09)

j = 5 3.11e + 05 (−1.601e + 09, 1.601e + 09)

Table 12.   Rational curve fitting of HoF versus ER−1
2

.

pj CI qj CI

j = 1 309.2 (−3.589e + 06, 3.589e + 06) −1049 (−1.191e + 07, 1.191e + 07)

j = 2 −422.8 (−5.174e + 06, 5.174e + 06) 9421 (−1.079e + 08, 1.079e + 08)

j = 3 2928 (−3.497e + 07, 3.497e + 07)

j = 4 1.186e + 04 (−1.333e + 08, 1.334e + 08)

j = 5 6663 (−7.902e + 07, 7.903e + 07)

j = 6 1.592e + 04 (−1.813e + 08, 1.814e + 08)
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Where mean 6.7215 and standard deviation 1.3927 are used to normalize the GA and coefficient (with 95% 
confidence bounds) are given in Table 14 and graphical representation in Fig. 23.

Where mean 6.9465 and standard deviation 1.4087 are used to normalize the M1 and coefficient (with 95% 
confidence bounds) and given in Table 15 and graphical representation in Fig. 24.

Where mean 6.9049 and standard deviation 1.4121 are used to normalize the M2 and coefficient (with 95% 
confidence bounds) are given in Table 16 and graphical representation in Fig. 25.

(7)HoF(GA) = p1(GA)
4 + p2(GA)

3 + p3(GA)
2 + p4(GA)+ p5

(GA)3 + q1(GA)2 + q2(GA)+ q3

(8)HoF(M1) =
p1(M1)

4 + p2(M1)
3 + p3(M1)

2 + p4(M1)+ p5

(M1)
4 + q1(M1)

3 + q2(M1)
2 + q3(M1)+ q4

(9)HoF(M2) =
p1(M2)

4 + p2(M2)
3 + p3(M2)

2 + p4(M2)+ p5

(M2)
3 + q1(M2)

2 + q2(M2)+ q3

Table 13.   Rational curve fitting of HoF versus EABC.

pj CI qj CI

j = 1 26.46 (20.58, 32.34) −22.03 (−22.48,−21.57)

j = 2 −283.4 (−363.3,−203.6) 124.9 (119.9, 129.9)

j = 3 1189 (805.9, 1573)

j = 4 −1718 (−2340,−1095)

Table 14.   Rational curve fitting of HoF versus EGA.

pj CI qj CI

j = 1 192.1 (−1.849e + 07, 1.849e + 07) 487.7 (−6.063e + 07, 6.063e + 07)

j = 2 1.46e + 04 (−1.784e + 09, 1.784e + 09) −1.117e + 04 (−1.344e + 09, 1.344e + 09)

j = 3 −1.689e + 05 (−2.03e + 10, 2.03e + 10) 6.447e + 04 (−7.667e + 09, 7.667e + 09)

j = 4 7.279e + 05 (−8.692e + 10, 8.693e + 10)

j = 5 −1.061e + 06 (−1.263e + 11, 1.263e + 11)

Table 15.   Rational curve fitting of HoF versus EM1
.

pj CI qj CI

j = 1 101.1 (−4.217e + 06, 4.217e + 06) −17.34 (−4.485e + 08, 4.485e + 08)

j = 2 −641.6 (−4.549e + 10, 4.549e + 10) 48.03 (−7.937e + 09, 7.937e + 09)

j = 3 1071 (−3.065e + 11, 3.065e + 11) 275.3 (−2.424e + 10, 2.424e + 10)

j = 4 595.4 (−5.978e + 11, 5.978e + 11) 128.1 (−1.177e + 11, 1.177e + 11)

j = 5 203.7 (−6.494e + 10, 6.494e + 10)

Table 16.   Rational curve fitting of HoF versus EM2
.

pj CI qj CI

j = 1 −106.8 (−5.435e + 05, 5.433e + 05) 67.49 (−4.125e + 05, 4.127e + 05)

j = 2 3899 (−1.814e + 07, 1.814e + 07) −1761 (−8.728e + 06, 8.724e + 06)

j = 3 −3.296e + 04 (−1.502e + 08, 1.501e + 08) 1.018e + 04 (−4.735e + 07, 4.737e + 07)

j = 4 1.187e + 05 (−5.35e + 08, 5.352e + 08)

j = 5 −1.523e + 05 (−6.813e + 08, 6.81e + 08)
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Where mean 6.9059 and standard deviation 1.4124 are used to normalize the HM and coefficient (with 95% 
confidence bounds) are given in Table 17 and graphical representation in Fig. 26.

Where mean 6.9070 and standard deviation 1.4129 are used to normalize the F and coefficient (with 95% confi-
dence bounds) are given in Table 18 and graphical representation in Fig. 27.

Where mean 3.0450 and standard deviation 0.8447 are used to normalize the AZI and coefficient (with 95% 
confidence bounds) are given in Table 19 and graphical representation in Fig. 28.

(10)HoF(HM) = p1(HM)4 + p2(HM)3 + p3(HM)2 + p4(HM)+ p5

(HM)4 + q1(HM)3 + q2(HM)2 + q3(HM)+ q4

(11)HoF(F) = p1(F)
4 + p2(F)

3 + p3(F)
2 + p4(F)+ p5

(F)3 + q1(F)2 + q2(F)+ q3

(12)HoF(AZI) = p1(AZI)
4 + p2(AZI)

3 + p3(AZI)
2 + p4(AZI)+ p5

(AZI)2 + q1(AZI)+ q2

Table 17.   Rational curve fitting of HoF versus EHM.

pj CI qj CI

j = 1 66.7 (−5.88e + 06, 5.88e + 06) −16.66 (−1.612e + 09, 1.612e + 09)

j = 2 −329.8 (−1.078e + 11, 1.078e + 11) 42.03 (−2.725e + 10, 2.725e + 10)

j = 3 409.8 (−5.609e + 11, 5.609e + 11) 269.6 (−7.381e + 10, 7.381e + 10)

j = 4 273.4 (−7.972e + 11, 7.972e + 11) 88.98 (−4.256e + 11, 4.256e + 11)

j = 5 110.6 (−2.952e + 11, 2.952e + 11)

Table 18.   Rational curve fitting of HoF versus EF.

pj CI qj CI

j = 1 289 (−1.608e + 06, 1.609e + 06) 81.54 (−6.42e + 05, 6.421e + 05)

j = 2 −3816 (−2.111e + 07, 2.11e + 07) −2118 (−1.394e + 07, 1.394e + 07)

j = 3 2.759e + 04 (−1.549e + 08, 1.549e + 08) 1.259e + 04 (−7.84e + 07, 7.843e + 07)

j = 4 −9.57e + 04 (−5.441e + 08, 5.439e + 08)

j = 5 1.343e + 05 (−7.729e + 08, 7.731e + 08)

Table 19.   Rational curve fitting of HoF versus EAZI.

pj CI qj CI

j = 1 1152 (−3.346e + 08, 3.346e + 08) −2154 (−6.123e + 08, 6.122e + 08)

j = 2 3.439e + 04 (−9.792e + 09, 9.792e + 09) 1.432e + 04 (−4.081e + 09, 4.081e + 09)

j = 3 −2.185e + 04 (−6.211e + 09, 6.211e + 09)

j = 4 −8269 (−2.385e + 09, 2.385e + 09)

j = 5 −2.839e + 04 (−8.082e + 09, 8.082e + 09)

Table 20.   Rational curve fitting of HoF versus EReZG1
.

pj CI qj CI

j = 1 48.71 (−5.667, 103.1) −23.97 (−28.56,−19.37)

j = 2 −554.8 (−1260, 150.7) 145.7 (95.87, 195.5)

j = 3 2390 (−865.4, 5646)

j = 4 −3511 (−8591, 1570)

j = 5
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Where mean 6.9454 and standard deviation 1.4082 are used to normalize the ReZG1 and coefficient (with 95% 
confidence bounds) are given in Table 20 and graphical representation in Fig. 29.

(13)HoF(ReZG1) =
p1(ReZG1)

3 + p2(ReZG1)
2 + p3(ReZG1)+ p4

(ReZG1)
2 + q1(ReZG1)+ q2

(14)HoF(ReZG2) =
p1(ReZG2)

3 + p2(ReZG2)
2 + p3(ReZG2)+ p4

(ReZG2)
2 + q1(ReZG2)+ q2

Table 21.   Rational curve fitting of HoF versus EReZG2
.

pj CI qj CI

j = 1 25.98 (21.24, 30.73) −21.95 (−22.31,−21.58)

j = 2 −276.5 (−340.8,−212.1) 124.1 (120.1, 128.1)

j = 3 1155 (847, 1463)

j = 4 −1661 (−2161,−1162)

Table 22.   Rational curve fitting of HoF versus EReZG3
.

pj CI qj CI

j = 1 25.98 (21.24, 30.73) −21.95 (−22.31,−21.58)

j = 2 −276.5 (−340.8,−212.1) 124.1 (120.1, 128.1)

j = 3 1155 (847, 1463)

j = 4 −1661 (−2161,−1162)

Figure 18.   Heat of formation (HoF) versus ER1 of nickel(II) porphyrins.

Figure 19.   Heat of formation (HoF) versus ER 1
2

 of nickel(II) porphyrins.
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Figure 20.   Heat of formation (HoF) versus ER 1
2

 of nickel(II) porphyrins.

Figure 21.   Heat of formation (HoF) versus ER−1
2

 of nickel(II) porphyrins.

Figure 22.   Heat of formation (HoF) versus EABC of nickel(II) porphyrins.

Figure 23.   Heat of formation (HoF) versus EGA of nickel(II) porphyrins.



20

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17317  | https://doi.org/10.1038/s41598-023-44000-1

www.nature.com/scientificreports/

Figure 24.   Heat of formation (HoF) versus EM1
 of nickel(II) porphyrins.

Figure 25.   Heat of formation (HoF) versus EM2
 of nickel(II) porphyrins.

Figure 26.   Heat of formation (HoF) versus EHM of nickel(II) porphyrins.

Figure 27.   Heat of formation (HoF) versus EF of nickel(II) porphyrins.
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Figure 28.   Heat of formation (HoF) versus EAZI of nickel(II) porphyrins.

Figure 29.   Heat of formation (HoF) versus EReZG1
 of nickel(II) porphyrins.

Figure 30.   Heat of formation (HoF) versus EReZG2
 of nickel(II) porphyrins.

Figure 31.   Heat of formation (HoF) versus EReZG3
 of nickel(II) porphyrins.
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Where mean 6.9460 and standard deviation 1.4086 are used to normalize the ReZG2 and coefficient (with 95% 
confidence bounds) are given in Table 21 and graphical representation in Fig. 30.

Where mean 6.8433 and standard deviation 1.4179 are used to normalize the ReZG3 and coefficient (with 95% 
confidence bounds) are given in Table 22 and graphical representation in Fig. 31.

Curve fitting of entropy and topological indices can provide insight into the relationship between the struc-
tural characteristics of a compound and its thermodynamic and topological properties. This can be useful for 
predicting the properties of new compounds, understanding the behavior of known compounds, and guiding 
the design of new materials with desired properties. The heat of formation stands as one of the fundamental 
physicochemical properties inherent to substances and molecules. We look at the relationship between the heat 
of formation and the degree-based topological indices (along with their respective entropies) for the nickel(II) 
porphyrins Network’s corresponding crystal structure. A mathematical connection between the heat of formation 
and the indices (entropies) is depicted in the data or analysis Tables 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21 and 22. The above tables and graphs in the study provide both numerical data and graphical representations 
that show how the heat of formation is correlated with degree-based topological indices(entropies).

Conclusion
First, we calculate numerical values for various degree-based topological indices, and next by using the Shanon 
entropy formula, we calculated entropies by using these indices. After that, we determined the entropy’s graphi-
cal behavior using MATLAB and calculated numerical values using Maple. Utilizing MATLAB software, the 
rational fitting approach was used since it offered the lowest root mean squared error or sum of squared error of 
all the built-in methods. The findings provide a thorough explanation of the Ni(II) porphyrins crystal structure 
and demonstrate a strong link between system dimensions and a variety of properties. This research can be used 
as a theoretical tool to support more effective essential alterations for certain usages by understanding how the 
characteristics of (NiP) are affected by its shape.

Data availability
All data generated or analyzed during this study are included in this published article.
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