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Characteristics of multi‑channel 
intermuscular directional coupling 
based on time‑varying partial 
directional coherence analysis
Yihao Du , Qiang Fan , Chaoqun Chang , Xiaolin Bai , Tianfu Cao , Yanfu Zhang , Xiaoran Wang  & 
Ping Xie *

The human body transmits directional information between muscles during upper limb movements, 
and this will be particularly evident when the dominant muscle changes during movement transitions. 
By capturing the electromyography (EMG) signals of wrist flexion and extension continuous transition 
movements, we investigated the characteristics of multichannel intermuscular directional coupling 
and directional information transmission, and consequently explored the control mechanism of 
Central nervous system (CNS) and the coordination mechanism of motor muscles. Multi-channel 
EMG was collected from 12 healthy subjects under continuous translational movements of wrist 
flexion and extension, and the time-varying biased directional coherence analysis (TVPDC) model 
was constructed using partial directional coherence analysis (PDC) frequency domain directionality 
to study the directional information transfer characteristics in the time–frequency domain, screen 
closely related muscle pairs and perform directional coupling significance analysis. Palmaris longus 
(PL) played a dominant role under wrist flexion movements(WF), Extensor Carpi Radialis (ECR) played 
a dominant role under wrist extension movements(WE), and the remaining muscles responded to 
them with information and Biceps Brachii (BB) played a responsive role throughout the movement; 
flexor pairs had the highest positive coupling values in the beta band during Conversion action1 (MC1) 
and WF phases, and extensor pairs had the highest positive coupling values in the gamma band during 
Conversion action2(MC2) phase and the highest coupling values in the beta band during WE phase. 
TVPDC can effectively analyze the multichannel intermuscular directional coupling and information 
transmission relationship of surface electromyography under wrist flexion and extension transition 
movements, providing a reference for exploring the control mechanism of CNS and abnormal control 
mechanism in patients with motor dysfunction in a new perspective.

The movement of the human upper limbs is a very complicated process under the influence of the Central Nerv-
ous System (CNS) which is the consequence of the joint action of movement-related muscle groups in a certain 
spatio-temporal relationship1.The neurological system exerts control over muscle groups through neural oscilla-
tions to achieve inter-muscular coordination, which not only reflects the coordinated control mechanism of the 
CNS, but also the feedback from muscle groups to the CNS. In addition, since the relevant muscles in upper limb 
movements act as synergistic and antagonistic muscles, correspondingly, the muscles act differently in different 
movement patterns and exhibit different activity states and functional relationships. Therefore, it is an essential 
theoretical reference and diagnostic physiological basis to analyze the directional information transmission 
relationship between muscles in upper limb motor transitions, and then to explore the motor control mechanism 
of CNS and the abnormal control mechanism in patients with motor dysfunction.

Due to the surface electromyography (sEMG) signal contains rich CNS control information and muscle 
activation information2, the activity states and functional relationships of muscle groups could be obtained 
by analyzing sEMG features from multiple perspectives. It has been suggested that the motion control system, 
in the process of innervating upper limb movements, activates the motor-related muscle groups as a whole to 
simplify the motor process3, while the muscles within the muscle groups are driven by a common corticospinal 
cord4, so there are different degrees of information interactions between the muscles, i.e., the phenomenon of 
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intermuscular coupling. Thus, intermuscular coupling characteristics could reflect the intrinsic mechanism of the 
motor state and control mode of different muscles, e.g. intermuscular coupling in the alpha band is mainly under 
control of spinal nerves5. The intermuscular coupling in the beta band is associated with isometric muscle con-
tractions and could reflect information transfer in the corticospinal pathway6,7; the coupling phenomenon in the 
gamma band is reflected in the integration of information associated with very vigorous muscle contractions and 
cognitive processes8,9, which are mainly controlled by the cortical nerves of the brain10. In addition, Russo et al.11 
combined non-negative matrix decomposition and coherence analysis to explore the muscle synergistic-coupling 
relationship under wrist flexion and wrist extension movements, and more closely investigated the way in which 
CNS control mechanisms and muscles cooperate with each other, Tian et al.12 introduced transfer entropy and 
generalized biased directional coherence into the analysis of intermuscular coupling of wrist flexion movements 
in the flexed elbow state, and deeply revealed the CNS control mechanisms in the dominance of synergistic and 
antagonistic muscles, Hu et al.13 combined non-negative matrix decomposition and time–frequency coherence 
to explore the time-varying coherence between synergistic muscles in wrist movement sequences and demon-
strated the time-varying mechanisms of synergistic modulation and synchronous oscillation in the CNS control 
mechanism, Lee et al.14 used a multi-scale time–frequency coupling analysis model to study the anterior bundle 
of deltoid muscle in healthy individuals and patients by constructing a multi-scale time–frequency coupling 
analysis model for The differences in the time–frequency coupling properties of the anterior, middle and posterior 
deltoid bundles in healthy subjects and patients were investigated by Lee et al. Most of these studies focused on 
the experimental paradigm of wrist flexion/extension, with a focus on the intermuscular coupling properties in 
the frequency or time–frequency domains, and did not consider the intermuscular coupling properties during 
the transition from wrist flexion/extension to wrist extension/flexion movements, and rarely investigated the 
directional information transfer relationships during movements. In addition, the consistency method used for 
intermuscular coupling analysis15 focuses on the coupling strength of two time series in the frequency domain, 
and Granger Causality (GC) analysis can only identify the directional information transfer between two time 
series, and cannot effectively analyse the directional information transfer relationship within a muscle group16,17

In summary, this paper designs an experimental paradigm for continuous translational movements of upper 
limb wrist flexion and extension, and investigates the directional coupling characteristics of multichannel sEMG 
between muscles using a Granger causality-based biased directional coherence analysis method; the model of 
time-varying biased directional coherence analysis was constructed to further validate and supplement the direc-
tional information transfer relationship under continuous wrist flexion–extension transition movements, and 
to filter the muscle pairs closely related to wrist flexion–extension movements; muscle pair directional coupling 
significance analysis was performed, and the results of 12 subjects were statistically analyzed to investigate the 
change pattern of directional coupling characteristics under continuous wrist flexion–extension transition move-
ments, and then to investigate the motor control mechanism of CNS and the abnormal control mechanism of 
patients with motor dysfunction, so as to provide quantitative motor function status assessment and diagnostic 
reference for rehabilitation physicians.

Results
In order to verify the feasibility of TV-PDC model, PDC analysis was performed on the collected sEMG data 
based on the wrist flexion and extension test, and further time frequency domain directional coupling analysis 
was performed using TVPDC model to verify and supplement the single time domain or frequency domain 
PDC results, while the muscle pairs with strong correlation with wrist flexion and extension movements were 
screened for directional coupling significance analysis, and finally the results were statistically analyzed to study 
the overall change pattern.

Analysis of PDC results
The pre-treated sEMG data were analyzed using PDC and the mean PDC values were calculated for each subject 
for 10 replicate trials. Figure 1 shows the results of the analysis for a randomly selected subject, with the horizontal 
coordinate indicating the frequency and the vertical coordinate indicating the normalized PDC value. The shaded 
part of the plot in the -th row and -th column indicates the intensity of the information flowing from channel to 
channel, i.e., the magnitude of the PDC value in the -direction.

As seen in Fig. 1, the coupling intensity in the direction of ECR→B is the largest under the local angle, 
followed by PL→FDS and PL→BB, and the coupling intensity in the direction of ECR→ECU, ECR→BB and 
PL→ECR is also more obvious; the overall angle has the most information transmitted from ECR and PL to 
other muscles, followed by FCR, and there is also weak information transmitted from ED and FDS; conversely, 
the remaining muscles had almost no information transmission to the above muscles, and BB was influenced by 
almost all the remaining muscles, but BB had no information transmission to all the other muscles.

Analysis of TVPDC results
Moreover, TVPDC was used to perform the analysis of the sEMG data under continuous wrist flexion and 
extension transitions, while the results of the data segment under the relaxed state in the test movement were 
removed for the convenience of observation, and only the 8-s analysis results under continuous movements 
(MC1→WF→MC2→WE) were studied. Figure 2 shows the results of TVPDC analysis for the same subject, 
the horizontal coordinates indicate time, the vertical coordinates indicate frequency, and different colors in the 
figure indicate the magnitude of TVPDC values.

As seen in Fig. 2, the most information was transmitted from ECR and PL to other muscles under the 
overall perspective, followed by FCR, with very weak information coming out from ED and FDS, and no sig-
nificant information transmission from the remaining muscles, which is basically consistent with the results of 
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PDC analysis; the information transmitted from ECR to all the remaining muscles under the local perspective 
occurred mainly in MC2 stage and WE stage, the information transmitted from PL to all the remaining muscles 
occurred in MC1 and WF stage, while FCR had information transmitted to the remaining muscles in both WF 
stage, but the degree of its influence was smaller than PL and ECR, and ED and FDS had weak information 
transmitted to the remaining muscles at the end of WE stage, and finally BB was Each phase was influenced by 
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Figure 1.   Results of 8-channel intermuscular PDC analysis.

Figure 2.   Results of 8-channel intermuscular TVPDC analysis.
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the remaining muscles, with ECR and PL having the greatest influence, fully demonstrating that the TVPDC 
model can effectively analyze the multichannel intermuscular directional information transfer relationship with 
time and frequency. In addition, compared to the results of TVPDC analysis in the horizontal coordinate—time 
domain, the results of TVPDC analysis in the vertical coordinate—frequency domain were less pronounced, 
but differences in TVPDC values could still be observed: the intensity of coupling between ECR and PL and the 
rest of the muscles decreased with increasing frequency, while the degree of influence of FCR on the rest of the 
muscles increased with increasing frequency.

Exercise‑related muscle pair screening
Integrating the results of PDC and TVPDC analyses in 12 subjects, the muscle pairs that can be screened to be 
closely related to the continuous transition movements of wrist flexion and extension are PL-ECR, PL-FDS, and 
PL-BB under wrist flexion movements and ECR-ECU, ECR-B, and ECR-BB under wrist extension movements13, 
as shown in Table 1.

Results of closely related muscle pair direction coupling analysis
To deeply explore the directional coupling properties of muscle pairs closely related to the continuous transition 
movements of wrist flexion and extension, the significant TVPDC values of flexor pairs (PL-ECR, PL-FDS, and 
PL-BB) and extensor pairs (ECR-ECU, ECR-BB, and ECR-BB) obtained by screening the same subjects were 
calculated, as shown in Fig. 3.

From Fig. 3a), the flexor pair PL→ECR had higher DPxy(k, f ) values in the beta (15–35 Hz) and gamma 
(35–70 Hz) bands at the end of MC1 and the initial phase of WF, PL→FDS and PL→BB had higher DPxy(k, f ) 
values in the theta (1–9 Hz) and alpha (8–15 Hz) bands at the WF phase, while ECR→PL had higher values 
in the beta and gamma bands at the WE phase, while the other two muscle pairs did not show any significant 
performance. From Fig. 3b), the overall coupling values of the extensor pairs in the MC2 phase are all higher 
than those in the WE phase, with ECR→ECU having higher A values in the beta band of the MC2 phase and 
ECR→B and ECR→BB having higher A values in the beta and gamma bands of the MC2 phase; in addition, all 
the above directional information transfer exhibits a unidirectional pattern, i.e., the reverse information transfer 
is almost zero.

To analyze further the differences in the values of flexor and extensor pairs during different movement phases 
(MC1, WF, MC2 and WE) and within different frequency bands (theta(4–8 Hz), alpha(8–15 Hz), beta(15–30 Hz) 
and gamma(30–45 Hz)), the mean values of the closely related muscle pair values were calculated separately for 
12 subjects and normalized, and the results are shown in Fig. 4.

From Fig. 4, the intensity of forward coupling was higher in the flexor pairs than in the extensor pairs at 
different movement phases under the overall angle. The APDC value of forward coupling was larger in the beta 
band for the flexor pair than in the other bands during the MC1 and WF phases, as seen in Fig. 4a, and the APDC 
value was smallest in the gamma band, and the differences were statistically significant (p<0.01) between both 
the beta and gamma bands; the flexor pairs had APDC values of reverse coupling presence under MC2 and WE 
phases with a maximum in the gamma band, which was explained by the fact that the ECR, as the dominant 
muscle for wrist extension movements, showed information transmission in the ECR→PL direction. Accord-
ing to Fig. 4b, the APDC value of forward coupling in the extensor pair was significantly higher in the WE phase 
than in the MC2 phase; the significant area within the gamma band was the largest under the MC2 phase, and 
the differences with the rest of the bands were all statistically significant; the APDC in the beta band was the 
largest under the WE phase, followed by the gamma band, and the differences with theta and alpha bands were 
all statistically significant; the reverse coupling in the extensor pair did not show APDC values in different move-
ment phases, which was attributed to the absence of the dominant muscle in the extensor pair and the absence 
of reverse information transfer.

Table1.   Muscle pairs with larger coupling values at different exercise phases in 12 subjects.

Subjects Flexor pair Extensor pair

H1 PL → BB, FDS → BB, FDS → ECU ECR → B, ECR → BB

H2 PL → FDS, PL → BB, FCR → BB ECR → B, ECR → BB, ECR → ECU

H3 PL → BB, FDS → FCR ECR → B, ECR → BB, ECR → PL

H4 PL → BB, FDS → BB, FCR → BB ECR → B, ECR → BB, ECR → ECU

H5 FCR → BB, FDS → PL ECR → B, ECR → ED, ECR → PL

H6 PL → FDS, PL → BB ECR → B, ECR → BB, ECR → ECU

H7 PL → FDS, PL → BB, FCR → PL ECR → B, ECR → BB, ED → BB

H8 PL → FDS, FCR → BB ECR → B, ECR → ECU

H9 PL → BB, PL → ECU, FDS → BB ECR → B, ECR → BB, ED → BB

H10 PL → FDS, PL → BB, PL → ED ECR → B, ECR → BB, ED → BB

H11 PL → BB, FDS → ECU ECR → B, ECR → BB

H12 PL → ECR, PL → FDS, PL → BB ECR → B, ECR → BB, ECR → ECU
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Conclusion
To address the characteristics of intermuscular directional information transfer under continuous translational 
movements of wrist flexion and extension, the PDC analysis method and TVPDC analysis model were applied 
to the multi-channel intermuscular directional coupling characteristics of 12 healthy subjects. The experiment 
results showed that PL transmitted the most directional information to the rest of the muscles under wrist flex-
ion, followed by FCR; ECR transmitted the most directional information to the rest of the muscles under wrist 
extension, and all of them had frequency band differences. In the significance analysis of the coupling strength 
of the muscle pairs closely related to the continuous wrist flexion–extension transition movements, the coupling 
strength of the flexor pairs was slightly higher than that of the extensor pairs. Specifically, the flexor pair had the 
largest positive coupling values in the beta band under MC1 and WF phases, the extensor pair had the largest 
coupling values in the gamma band under MC2 phase, and the largest coupling values in the beta band under 
WE phase. The above results fully illustrate that the TVPDC multichannel intermuscular directional coupling 
analysis model constructed in this paper can effectively portray the directional information transfer relationships 
in different frequency domains under different exercise phases, which provides some theoretical reference for 
exploring the control mechanism of CNS and the abnormal control mechanism in patients with motor dysfunc-
tion. The study of translational movements can provide a new perspective for kinematic research, and ergonomic 
research can help make the translational movements of robots more fluid and natural.

Figure 3.   Results of significant TVPDC analysis for closely related muscle pairs.
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Discussion
The multichannel intermuscular directional transmission characteristics under continuous wrist flexion and 
extension transitions were analyzed, and it was found that PL and ECR transmitted the most information to other 
muscles during wrist flexion and wrist extension movements in the time domain perspective, indicating that PL 
and ECR were the dominant motor muscles under wrist flexion and wrist extension movements, respectively; 
additionally, FCR also has a dominant role in the WF phase, while there are no remaining dominant muscles in 
the WE phase, which may be due to the fact that WE movements are more flexible in daily life, but WF move-
ments require more muscles to execute the control information from the CNS13. There are also corresponding 
muscles that play a dominant role during the transition between wrist flexion and wrist extension, due to the fact 
that the CNS is also required to integrate relevant information to rapidly mobilize the corresponding muscles to 
support the transition movement during dynamic task execution9.
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By screening, the muscle pairs closely related to the continuous transition movements of wrist flexion and 
extension were obtained, among which the flexor pair PL-ECR was more specific, as the dominant muscles under 
wrist flexion and wrist extension movements, transmitting control information to each other at different stages, 
respectively; PL→ECR has a higher coupling strength in the beta and gamma bands at the end of MC1 and under 
WF phase. The functions of the ECR under the WF phase from an anatomical point of view are similar to those 
of other responsive muscles, as one of the responsive muscles of the PL, and both the maintenance and higher 
information transfer functions of the wrist muscles during the completion of the steady-state task are related to 
the control mechanisms of the CNS within the beta and gamma bands; similarly, ECR→PL exhibits a similar 
interpretation of the information transfer law. The overall significant area under MC1 phase was greater than 
WF phase in the statistical analysis of flexor pairs, which may be due to the fact that during the initial phase of 
movement, the muscle requires more CNS control information to accomplish dynamic movements; most sig-
nificant coupling characteristics in the beta band, which is due to the fact that the motion control information 
of the CNS is mainly in the beta band. In contrast, the coupling intensity within the gamma band is the lowest 
and significantly different, which is due to the fact that advanced information integration is temporarily not 
required at the beginning of the movement, manifesting as a lower coupling intensity within the gamma band.

Methods
Research subjects and experimental procedure
As seen in Fig. 5, the upper limb wrist flexion–extension continuous transition movement test was designed, and 
the 8-channel sEMG associated with wrist flexion–extension movement(Biceps Brachii (BB), Brachioradialis 
(B), Radial Carpal Flexor (Flexor Carpi Radialis, FCR), Palmarislongus (PL), Radial Carpal Short Extensor 
(Extensor Carpi Radialis, ECR), Extensor Digitorum (ED), Extensor Carpi Ulnaris (ECU), and Flexor Digitorum 
Superficialis (FDS)) was collected simultaneously to study the change pattern of directional coupling between 
multiple muscles.

The data were obtained from 12 healthy adults (9 males and 3 females, age 25 ± 3 years), all subjects without 
upper limb motor dysfunction and all right-handed, who voluntarily participated in this data collection trial. For 
removing the influence of skin surface oil and dander on the signal acquisition, the skin of the signal acquisition 
site needs to be wiped with 75% medical alcohol concentration.

Before the test, the subject sat in front of a computer screen with the upper arm resting on a homemade brace 
used to support the upper arm to prevent fatigue and shoulder sway from affecting the test data, and there was 
no obstructive effect on wrist flexion and extension movements. The test process requires the subject to make 
the corresponding action according to the instructions of the computer screen, the test cycle is 10 s, the trial is 
8 s, and the rest is 30 s after each cycle, totaling 10 cycles, the specific test paradigm is shown in Fig. 6.

Electromyographic data pre‑processing
Since the sEMG signal is a nonstationary random signal, it is highly susceptible to interference from the external 
environment and acquisition equipment, and it needs to be pre-processed in order to obtain a higher quality 
signal for subsequent analysis. The results of sEMG pre-processing are shown in Fig. 7, which removes the 
baseline drift, industrial frequency and harmonic interference, and frequency band over-width, respectively.

Sliding average method to remove baseline drift.
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Figure 5.   Wrist flexion extension continuous conversion exercise experiment.
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The EMG is affected by the baseline stability performance of the acquisition device during the acquisition 
process, resulting in a slow unidirectional change over time, i.e., baseline drift. In this section, sliding average is 
used to remove the baseline drift.

The sliding average method is to select a suitable window size for a set of data, average all the abnormal data 
in the window as the center point abnormal value of the window, and then move the window by analogy until 
the average process of all data is completed.

Suppose the data x(i),i = 0,1,2,···, n , the window length is N(N < n/2), first calculate the average value of the 
data points of the first window xi(1), move the window backward in turn, the window step length is k , the data 
length of the fitted curve is m , satisfying m = (n—N)/ p and rounded. The final center point outlier fitting curve 
is xm(i),i = 0,1,2,···,m, and finally the curve is upsampled as xm (i), i = 0,1,2,···,n. The final median filtering result 
obtained is

Adaptive filter to remove 50 Hz industrial frequency and harmonic interference.
Since the acquisition equipment is powered by the daily 50 Hz AC power supply, it is accordingly represented 

in the EMG by the presence of 50 Hz sine waves and their harmonic spikes, i.e., industrial frequency interference. 
In this paper, the adaptive filter is used to remove the industrial frequency interference.

Butterworth bandpass filter to intercept the effective frequency band.
The effective frequency band of EMG is concentrated in the range of 0–250 Hz, which usually results in 

an overly wide EMG band due to the acquisition bandwidth of the acquisition equipment. Band-pass filtering 
method is a common method to obtain the effective frequency band in signal processing, and by setting reason-
able low-pass and high-pass parameters, the retention of the effective frequency band of EMG signal can be 
achieved. In this paper, a fourth-order Butterworth bandpass filter is used to intercept the effective frequency 
band.

xl(i) = x(i)− xm(i), i = 0, 1, 2, · · ·, n
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Partial directional coherence analysis model
As GC can only analyze the causal characteristics between two channel signals, the evolved PDC can analyze the 
direct causality of multi-channel signals in the frequency domain at the same time, avoiding the indirect causal 
effects caused by other channels.The process of implementing PDC is as follows:

Set x(t) = (x1(t) · · · xm(t))
H is a smooth m-dimensional series with zero mean, then, the p-order AR model 

for x is

in which, p is the order of the model,Ar(r = 1, 2, · · · ,p) is the coefficients matrix, ε(t) = (ε1(t) · · · εm(t)) is the 
white noise, and Ar is the

where aij(r) is the causal coefficient between variable i and variable j . Performing the Fourier transform on both 
sides of Eq. (1) yields:
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Similarly, the PDC value of the ith variable to the jth variable is defined as PDCji(f ).
For the purpose of describing the test results for each subject, the mean PDC values for 10 replicate trials 

were calculated for each subject in this paper:

Here, PDCn(f ) is PDCij(f ) . All PDCij(f ) ’s mentioned below represent mean values.

(1)









x1(t)

...

xm(t)









=

p
�

r=1

Ar









x1(t − r)

...

xm(t − r)









+









ε1(t)

...

εm(t)









(2)Ar =

























a11(r)a12(r) · · · · · · a1m(r)

...
...
...
...
...

...
...
... aij(r)

...

...
...
...
...
...

am1(r) · · · · · · · · · amm(r)

























(3)Ā =
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Time‑varying partial directional coherence analysis model
Suppose the EMG signals of the two channels are x(t) and y(t) , t = 1, 2, · · · ,n . Among them, n is the total length 
of the signal, and the data are first divided into K equal-length data segments using the unit energy Hamming 
window w(t) . And then the short-time Fourier transform within the corresponding window is as follows.

In this case, Xk(f ) and Yk(f ) are the time–frequency domain representations of x(t) and y(t) , respectively, 
x1(t) = x[k(T− s)+ t] and y1(t) = y[k(T− s)+ t] are the two-channel time-domain signals under the k th 
window, T is the length of the window function w(t) , and s is the number of overlapping samples. In this paper, 
it is set to T = 500 and s = 450.

Then, combining with Eq. (6), the time-varying partial directional coherence value is defined as:

and where aj(k,f ) is the j-th column of 
_
A(k,f ) , k is the number of windows, and f  is the frequency. Similarly, the 

following normalization conditions are satisfied.

which satisfies 1 ≤ j ≤ q , a value between 0 and 1 characterizes the strength of the directional coupling of the 
two channel EMG signals x(t) and y(t) at frequency f .

In the same way, to facilitate the description of the test results for each subject, the mean TVPDC values for 
10 replicate trials were calculated for each subject in this paper as follows:

In which, TVPDCn

(

k, f
)

 is TVPDCij

(

k, f
)

 . All TVPDCij

(

k, f
)

 ’s mentioned below represent the mean value.
To further characterize the significance of the TVPDCij(k, f ) values in the time–frequency range, the proxy 

data method was used to randomize the phase of the original data to obtain the proxy data TVPDC′
ij(k, f ) without 

changing the time-domain amplitude and frequency-domain power spectrum values.

The DPij(k,f ) is the proxy data for 10 sets of repeated trials for each subject. If a value of DPij(k,f ) is posi-
tive, it indicates that the TVPDC is significant within that time–frequency point; if DPij(k,f ) is negative, it is 
considered to be significant to zero.

Moreover, this paper defines the significantly biased directional coherence area metric:

�k and �f  are the time resolution and frequency resolution, respectively. The larger the APDC value, the 
greater the strength of the directional coupling in that time–frequency range.
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