
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports

ePyDGGA: automatic configuration
for fitting epidemic curves
Josep Alòs 1,5*, Carlos Ansótegui 1,5*, Ivan Dotu 2,5, Manuel García‑Herranz 3,5, Pol Pastells 4,5 &
Eduard Torres 1,5

Many epidemiological models and algorithms are used to fit the parameters of a given epidemic curve.
On many occasions, fitting algorithms are interleaved with the actual epidemic models, which yields
combinations of model-parameters that are hard to compare among themselves. Here, we provide a
model-agnostic framework for epidemic parameter fitting that can (fairly) compare different epidemic
models without jeopardizing the quality of the fitted parameters. Briefly, we have developed a
Python framework that expects a Python function (epidemic model) and epidemic data and performs
parameter fitting using automatic configuration. Our framework is capable of fitting parameters
for any type of epidemic model, as long as it is provided as a Python function (or even in a different
programming language). Moreover, we provide the code for different types of models, as well as the
implementation of 4 concrete models with data to fit them. Documentation, code and examples can
be found at https://​ulog.​udl.​cat/​static/​doc/​epide​mic-​gga/​html/​index.​html.

In December 2019 the novel coronavirus SARS-CoV2 (COVID-19) emerged in Wuhan, China. Despite drastic
containment measures implemented by the Chinese government, the disease quickly spread worldwide, officially
reaching the pandemic level in March 20201. As of December 2022, the number of reported cases rose to 650
million, with nearly 6.6 million deaths2.

Mathematical models offer a precious tool for public health authorities to control epidemics . Indeed, models
can be used for estimating transmission parameters, understanding contagion dynamics and mechanisms or
comparing interventions for containing emerging epidemics3,4. Furthermore, epidemic models can be used to
obtain short and long-term predictions, which in turn may enable decision-makers to optimize possible control
strategies, such as containment measures, lockdowns and vaccination campaigns.

Interest in epidemic forecasting and predictive analytics through modeling has grown dramatically over the
last decade, as reflected by the increasing amount of organized challenges to predict epidemics of diseases as
diverse as Chikungunya5, Dengue fever6,7, Influenza8,9 or Ebola10; the creation of modeling hubs11 and operational
hubs and platforms of decision makers on disease control like CDC12 or WHO13 looking to transition from
research and innovation to better intelligence and tools to fight epidemics.

When faced with a new epidemic, as contagion data starts being collected, computational epidemiologists
are prompted with the task of modeling the spread of the infectious disease and setting the parameters that are
intrinsic to such models. Once these models have been generated and their parameters fitted to the available data,
they are used to predict the contagion curve, assess the impact of potential interventions, etc. Different models
can (and do) lead to different conclusions and their validity is often assessed through how well their parameters
explain the data that has been used to fit them. A problematic issue arises in this context when, typically, different
types of models are fitted using different approaches and different data even in some cases, when the modeling
and the fitting are intertwined.

Broadly speaking, models can be in one dimension, deterministic or stochastic and, in another dimension,
compartmental or agent-based. Moreover, models can be classified by the way they treat both time and space,
whether discrete or continuous. The combination of all these features results in a vast array of model types that
are typically fitted using different approaches: partial differential equations (Laplace), nonlinear least squares
fitting, inference (MCMC), Genetic Algorithms, etc. Therefore, it is clear that the comparison of different models
with different epidemic parameters becomes a non-straightforward task. At the same time, model results have
transcended the expert sphere and are now scrutinized in the public domain14,15, potentially affecting public
opinion or the decision-makers using them.

OPEN

1Logic and Optimization Group, University of Lleida, Lleida, Spain. 2Giga, UNICEF, New York, USA. 3Frontier Data
Technologies Unit, UNICEF, New York, USA. 4Barcelona, Spain. 5These authors contributed equally: Josep Alòs,
Carlos Ansótegui, Ivan Dotu, Manuel García-Herranz, Pol Pastells and Eduard Torres. *email: josep.alos@udl.cat;
carlos.ansotegui@udl.cat

https://ulog.udl.cat/static/doc/epidemic-gga/html/index.html
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43958-2&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Indeed, as Viboud et al. indicate10: “Infectious disease forecasting is gaining traction in the public health
community; however, limited systematic comparisons of model performance exist”. As mathematical models
have become more central to policy and decision-making in the public health community, there has also been
a growing debate on their validity and usefulness16,17, their general lack of transparency18 and the scarce avail-
ability of model performance comparisons and tools to do so systematically10. This could be further complicated
by the growing scientific evidence and interest pointing at model ensembles as best performing strategies for
predictive analytics19,20.

In this work we propose a new framework (ePyDGGA), based on automatic configuration (AC), that can
be seen as model type agnostic, to fit epidemic parameters for any type of epidemic model. Note that model
agnostic means that the method to fit the parameters of the model is not dependant on the model or even the
type of model, it only needs to know the parameters to be fitted, the data and a (any) cost function. We provide
implementations for many different types of models within the framework and we also show how performance
(based on the error from the epidemic model prediction against the real data) can be even better than that
achieved by more “traditional” fitting methods. In particular, our experiments focus on fitting the epidemic
models a posteriori, to better understand the biological variables that define the model. Effectively, we provide a
fitting mechanism that can be used in any type of epidemiological model without jeopardizing the quality of the
fitted parameters, therefore providing a way to fairly compare (and fit) different models (for the same epidemic
curve). Moreover, since the AC process requires high computation power we show how all the computations
can be run transparently within a cloud service.

Preliminaries
For the sake of completion, let us here define some concepts that, although known, will help illustrate our use
cases further on.

Compartmental models: SIR model
The most basic SIR model implementation is straightforward. We have the three compartments (S)usceptible, (I)
nfected, and (R)ecovered. In the mean-field approximation, or in the deterministic case, the equations describ-
ing the SIR model are:

where S(t), I(t) and R(t) are the number of susceptible, infectious and recovered individuals at time t; β is the
infectivity and δ is the recovery rate. Additionally, N = S(t)+ I(t)+ R(t),∀t . Note that N is different from the
real population of the region under analysis, as it is unknown which fraction of the population is susceptible to
the pathogen. Thus, usually, N is defined as “active population” and set as a model parameter21.

The following condition must be fulfilled:

A basic Python implementation of the (time continuous variant) SIR model is shown in Listing 1. Essentially, the
|sir| function receives the real evolution of the epidemic in the |data| parameter, as well as the active popula-
tion value N, the initial values of I and R and the values for the β and δ parameters. This function computes the
solution (i.e. the evolution of the values in the S, I, and R compartments) of the ODE system shown in Eq. (1)
for the given parameters, and returns the Mean Squared Error from the predicted infected cases each day with
the real infected cases provided. See Supplementary Listing 1 for a description of the full implementation of the
SIR model in Python.

Other models can be easily adapted from this code. In particular, in this work, we consider the variants SIRD,
SAIR, SEAIR, SIDARTHE22 and SEIPAHRF23.

(1)

dS(t)

dt
= −

β

N
I(t)S(t)

dI(t)

dt
= −δI(t)+

β

N
I(t)S(t)

dR(t)

dt
= δI(t)

(2)S(t)+ I(t)+ R(t) = N

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Automatic configuration algorithms and tools
Consider the scenario where a company or a research group has devised a new algorithm, system, or tool, to
which we refer as the target algorithm without loss of generality. This algorithm accepts input data, performs
a computation or task, and reports a result. Moreover, the algorithm opens to the user a set of parameters that
can be set in many different ways that impact the quality of the result. Informally, the algorithm configuration
problem is to determine a well-performing parameter configuration of a given algorithm across a given set of
instances or input data.

Since we do not know the input data on which the target algorithms will ultimately be run on by the users of
these solvers, the developers of these tools have three options: They can either aim to find good default parameters
for their solver that work reasonably well, by hand. They can try to write a user manual that explains the solver
parameters to the users so that they can search for good parameterizations for their respective applications. Or
they can employ an automatic solver configurator that finds decent default parameters, as well as allows users to
tune the solver for a particular input data after deployment.

Algorithm tuners were developed to tune and customize solvers so that they would perform better on specific
sets of problem instances24–26. Moreover, managerial dispatch technologies were invented to choose, at runtime,
which solver to run for a given instance27–31. And finally, combining self-tuning and selection technologies,
methods have been invented to choose a solver parameterization instance-specifically at runtime32,33.

Definition 1  Let A be the target algorithm (that we want to automatically configure) with {p1, . . . , pn} parameters
of domain d(pi) . These parameters can be categorical, which implies they can assume a small, fixed number of
values, or numerical, which implies they represent rational or integer values. The parameter space of all parameter
settings P is the subset of d(p1)× · · · × d(pn) of valid parameter combinations. By Aθ we denote the instantiation
of algorithm A with parameter setting or configuration θ ∈ P.

Definition 2  Let I be the set of instances that will be used to configure the target algorithm A. In the context of
fitting Epidemiologic Models, an instance is the real evolution of the epidemic in a geographical region over time.

USER

Epidemic Model

AC Settings

DOCKER

model.py

settings.py main.py

OptiLog PyDGGA

PyDGGA
Scenario

USER

Fitted
Parameters

Evolution Data data/

Figure 1.   Main components of the ePyDGGA framework.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Definition 3  The Automatic algorithm configuration problem is the optimization problem which accepts as
input an algorithm A, a set of instances I, a Performance Metric PM(Aθ , I) which measures the performance of
Aθ on the set of instances I, and a configuration budget B (time limits, memory limits, etc). The objective of the
optimization is to find, without exceeding the resources indicated by B, a configuration θ∗ ∈ P that maximizes
the expected performance of A over the set of instances I.

Fitting an epidemic model (EM) corresponds to minimizing the difference between the real evolution and
the predicted evolution by changing the epidemic parameters.

As we want to minimize this difference we define the performance metric as PM(Aθ , I) = −cost(EMθ , I) ,
where I is a single instance that contains the real data we want to fit, EMθ is the prediction of the Epidemic Model
parameterized with the configuration θ , and cost is a cost function (e.g. mean square error) that measures the
error between the real evolution and the predicted evolution.

The ePyDGGA framework
Here we present ePyDGGA (available at https://​ulog.​udl.​cat/​softw​are/). Broadly speaking, it is a framework
that allows the user to configure (in this context, to adjust or fit epidemiological parameters) a Python function
into a distributed computing platform. Figure 1 depicts the structure and relationship among all the compo-
nents. Briefly, the user defines their epidemic model in model.py, as well as the AC settings in settings.py, and
specifies the evolution data inside the data/folder. Then, main.py calls both settings.py and model.py, loads the
provided data and calls OptiLog (available at https://​pypi.​org/​proje​ct/​optil​og/)34,35 to produce the necessary files
for PyDGGA (available at https://​ulog.​udl.​cat/​softw​are/)36 to perform automatic configuration (what we call the
PyDGGA scenario). Finally, it returns the fitted parameters in a readable manner to the user. Below, we explain
the main components in more detail.

Automatic configurator: PyDGGA​
Our automatic configurator engine is PyDGGA​36, a Python tool that implements a distributed version of the auto-
matic algorithm configurator GGA​24, which is a specialized genetic algorithm to find high-quality parameters for
solvers and algorithms. PyDGGA implements GGA using an event-driven architecture and runs a simulation of
future generations of the genetic algorithm to maximize the usage of the available computing resources. PyDGGA
offers a friendly interface to deploy distributed AC scenarios on shared high-performance computing clusters.

Embedding epidemic models within OptiLog
The main barrier to using AC tools is that they require a deep knowledge of the tool, due to (1) a large number
of settings of the tool itself, and (2) the format of the so-called AC scenario. An AC scenario is the definition of
the process that is being tuned, stating how to execute the target algorithm (in our case the epidemic model), the
budget for the AC algorithm, and the set of instances to use. Each tool could also require additional information.
Setting up the scenario for a tool is a cumbersome and error-prone task, due to the tools not following a standard
format. The proprietary scenario definition for each tool also results in a lack of portability among them.

We can remove this barrier using OptiLog34,35. OptiLog is a Python framework for rapid prototyping of SAT-
based systems. It also offers modules to ease the experimentation workflow, a Blackbox module to integrate any
software into OptiLog, and a Tuning module. For this work, we are interested in these two modules: Blackbox,
and Tuning. In particular, the Tuning module will allow us to easily create AC scenarios, and the Blackbox module
to extend the tuning module to any piece of software, not only Python.

Epidemic model implemented in Python
For reference, we take the SIR model explained in “Compartmental models: SIR model” section (Listing 1 and
Supplementary Listing 1). The changes that have been done to the original model to be fitted with an AC tool
supported by OptiLog are shown in Listing 2. Note that we do not show the internal function implementation
as it does not require any change in order to be tuned by OptiLog. The changes, highlighted in red, are the fol-
lowing: first, we declare the |sir| function to be configurable using the decorator |@ac| (line 4), then we add the
type and domain of the parameters we want to fit (lines 6–10), and finally we create an entrypoint, which is the
function that will load the data provided and report the cost to the AC tool (lines 13–16).

https://ulog.udl.cat/software/
https://pypi.org/project/optilog/
https://ulog.udl.cat/software/

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Supplementary Listing 2 shows how the AC scenario is created. OptiLog will automatically generate the
scenario with the files in the format required by the specific configurator. The parameters used are defined in
Supplementary Table 2.

Epidemic model in other languages
If we have an epidemic model implemented in another programming language, we can either use Python bind-
ings for this language or use the BlackBox OptiLog’s module. This module allows one to run external scripts and
programs in a constrained environment and parse the result.

Assuming we have a (time continuous) SIR model implemented in an executable external program, we present
how we could connect the model with OptiLog in Supplementary Listing 3.

We first implement the |BlackBox| (called |ExternalSir|) that represents this executable: First, in line 8 we
define the regular expression that will capture the cost of the model from its standard output. Then, we define the
parameters in lines 15–21, with the domain annotations. We define where the executable can be found and how
it receives the instance (line 26). Finally, we define the format that the executable uses to receive the parameters
in lines 32–37.

Once we have the |ExternalSir| created, we create the model function, which will receive an instance of this
class. To instruct OptiLog that this instance can be configured automatically, we set the type of the parameter as
|CfgObj| (line 40), and then we run the model and report the error.

Using OptiLog within cloud computing services
While OptiLog allows us to setup the scenario for the AC tool, there is still a barrier on how to install, deploy, and
execute it in distributed environments. A Docker image is an executable package for a certain application that
contains all the runtime, system tools, libraries, etc., required by the application. It also defines how the applica-
tion is started, which ports are exposed, which files are available, etc. Usually, those images are created using
a Dockerfile, which is a definition of the steps to take to create the image. The Docker images are not executed
directly but serve as a template to create a container, which is a specific run of the application inside the image.

Our framework allows to not only run the model locally but also to create a Docker37 image (although it
should work with any open container initiative (OCI) implementation38) that can be used to fit the model in
the cloud.

Framework description
Figure 2 shows both our overall framework and the steps to configure an epidemic model taking its Python
implementation and relevant data. The template provided is the core of the framework, and the starting point of
all the examples provided in https://​ulog.​udl.​cat/​static/​doc/​epide​mic-​gga/​html/​index.​html and for the results
shown in the following section. Let us briefly define each of the parts of the template here:

•	 A project folder. This folder contains, among other files, the model.py and settings.py files, which will be modi-
fied by the user to implement the model and to change the AC tool hyper-parameters (such as the time that
the AC tool should run) respectively.

	  This folder also contains the main.py file, although the user should not modify this file. This file will be
used as the entrypoint of the project, to run the model or start the fitting process.

•	 A data folder, inside the project folder. It is intended to contain the evolution data to fit the epidemic model.
•	 A requirements.txt file. The user should specify the Python packages that are required to run the model. This

is mandatory if the user wants to use Docker.
•	 A Dockerfile. This file will instruct Docker how to create an image with the model and the data ready to be fit.

The user has to modify this file only if the model requires software that cannot be installed through a Python
package.

•	 A Makefile. This file allows to use the “make” command to build and publish the Docker image for the tem-
plate.

https://ulog.udl.cat/static/doc/epidemic-gga/html/index.html

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

To start calibrating an epidemic model using the provided template, the first step is to add the epidemic model
implementation inside the model.py file. In this file, there are two functions: model and entrypoint. To fit the SIR
model explained in “Compartmental models: SIR model” and “Embedding epidemic models within OptiLog”
sections, we use the “entrypoint” function as in Listing 2 (adding the additional “seed” parameter that for this
model we ignore) and the “sir” function as our “model” function. Note that we do not need to set the code to cre-
ate the AC scenario, as it is managed automatically based on the settings.py file (which the user can also modify).
Additionally, the user must provide the data to fit the model inside the projects/data folder (Step 4 in Fig. 2).

Epidemic PyDGGA
Template

Step 5:
Add third party
requirements

Dockerfile
Makefile
project/

model.py
settings.py
data/
gga
main.py

requirements.txt

Model to fit

def sir(
data,
n = 70000,
initial_i = 10,
initial_r = 4,
beta = 0.5,
delta = 0.2

):
...

Annotated model

@ac
def sir(

data,
n = Int(70000, 500000) = 70000,
initial_i: Int(1, 1000) = 10,
initial_r: Int(1, 1000) = 4,
beta: Real(0.1, 1.0) = 0.5,
delta: Real(0.1, 1.0) = 0.2

):
...

Step 1:
annotate

parameters

Step 3:
Edit AC
settings

Step 4:
Copy the

Evolution Data
to the data/ folder

data.csv

Step 6:
Copy GGA license
(.pydgga.lic) to the

template folder

Step 8:
Start the fitting process
through "docker run [...]"

Docker Image

Step 7:
Build the

docker image

Step 9:
Retrieve the

fitted parameters

(wait for fitting
process to finish)

Fitting Process Output

[...]
Tuning process finished.
===================
Best parameters:
- model(n): 460220
- model(initial_i): 782
- model(initial_r): 54
- model(initial_d): 771
- model(beta): 0.43255751784177965
- model(gamma): 0.11660842844152228
- model(mu): 0.09385044718899432
===================

Step 2:
Add the annotated model

to the provided model.py file

Figure 2.   Steps to create and run a new model in ePyDGGA.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Then, we would modify the requirements.txt and Dockerfile to add the required software dependencies of
our model.

Finally, we would copy the PyDGGA license file to the template directory with the name “.pydgga.lic”. This
is required to build the Docker image.

Once the template is ready, to build the Docker image (Step 7) we use the following command:

Note that, at this point, the Docker image is ready to be uploaded to some cloud computing service in order
to be executed.

To start the fitting process, run:

Everything listed after the image name will be considered as parameters that are received by project/main.py,
the script that runs the template. For example, to list all the possible parameters of the model run:

If no parameter is specified to Docker, by default it will start the fitting process expecting one dataset in
project/data and spawning 4 concurrent processes.

Results
Epidemic data sources
We used the data provided by Johns Hopkins University in their Covid-19 data repository39, which contains
data for over 250 countries. As some countries are reported in a more granular level (province, state...) in three
different tables (cumulative confirmed, deaths, and recovered), we aggregate all the data in a time series for each
country and extract the infected per day using the cumulative minus the recovered and dead data.

We also use the data in the original papers when comparing with those, as explained in each experiment in
“Assessing the impact of AC tools for epidemic models” section. In particular, when comparing with21,40 we use
the official data from Italian Protezione Civile41, and reports from WHO1 and Worldometer42 when comparing
with23.

Choosing the AC tool
The first experiment we performed is to compare different non-commercial AC tools in order to choose the
most suitable one for tuning epidemic models. In particular, we compare PyDGGA​36 and SMAC43 by fitting the
epidemic evolution of 7 epidemic models and 6 countries, for a total of 42 combinations.

In particular, we fit the models SIR, SIR-Erlang, SIR-Network, SIRD, SAIR, SAIR-Erlang, and SEAIR; with the
countries China, France, Greece, Iran, Italy, and Turkey. Each model was fit for 54 days (the starting day differs
as the countries started to be impacted at different moments).

For each combination of model-country, we set an AC scenario with the time series of the country being the
only instance to be used during the tuning process, and setting the AC tools to tune it using 16 parallel processes
and a time budget of 1 day for the whole tuning process and 1200 s for each execution of a configuration.

SMAC was configured to use the default parameters, while PyDGGA required to change the mutation prob-
ability due to the small number of parameters for the models, setting it to 1n , where n is the number of parameters
of the model, in order to force one parameter to mutate.

Supplementary Table 3 shows the best cost found by PyDGGA and SMAC for each pair of country-model.
As we see, PyDGGA is able to fit better the different models and therefore it is the AC tool we selected for the
framework.

Assessing the impact of AC tools for epidemic models
The second type of experiments that we conducted is to evaluate if using the selected AC tool, PyDGGA, we can
refine the reported parameters for a model. To do so, we fit the same model as in the original works and compare
the reported parameters with the ones found by PyDGGA.

We choose four compartmental models from the literature, in order to obtain sensible parameters from an
epidemiological point of view.

First, we study two different SIRD models, as used by Fanelli and Piazza in44 and Calafiore et al.21. Secondly,
we use the SIDARTHE model, introduced by Giordano et al. in40. Finally, we test against the SEIPAHRF model
presented by23. All four models are of different nature, with a different amount of parameters, and all fitted using
different approaches, proving the generality of our method. The first one is a stochastic model, the second one
is a nonlinear matrix equation, and the third and fourth are composed of ODEs. We compare all of them with
the datasets used in their respective papers.

Supplementary Table 2 shows the GGA parameters used in each use case.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

SIRD model (1)
The authors in44 use a stochastic differential evolution algorithm to find the best-fit parameters for the model
using data corresponding to the period between January 22nd 2020 and March 15th 2020 (included) They provide
results for Italy and China. In the case of Italy, the first day to be fitted is February 11th.

This stochastic model computes a sequence of random evolutions of the epidemic and then averages them to
find the predicted evolution. As this process is slower than non-stochastic models, we have long-running execu-
tions that might lead to PyDGGA exploring only a small region of the parameters domain. To resolve this, during
the configuration process, we reduce the number of evolutions that the algorithm simulates to 10. Then, when
the best parameters are found, we execute the model with 1 000 simulations, which is the result presented here.

The solution’s cost is then computed as the sum of squared differences between the solution (averaging over
realizations) and the data points for infected, recovered and dead individuals, i.e.

In Table 1 we show the results of this experiment for Italy and China. The “Reported” columns show the values
of the parameters reported in44, and the columns “GGA” show the values for the parameters fit using PyDGGA.
We also show the cost (sum of squared differences) for those values of the parameters. For Italy, all the initial
conditions but S0 are fixed.

Note that for China the costs are significantly large (over 6000) with respect to Italy (around 200). This is a
direct result of fitting the model over more days (55 days for China and 35 for Italy).

In general, we observe how in both scenarios the GGA is able to improve the overall costs of the reported
models (20% for Italy and 10% for China).

(3)cost = (CostI + CostR + CostD)/10
6

Table 1.   Best fit parameters for the stochastic SIRD model in44, with an infection rate r = β/N , a recovery
rate a = δ(1− θ) , and a death rate d = δθ. The values reported in the original paper are shown in columns
“Reported” and the values found using PyDGGA are shown in columns “GGA”. The cost values are the sum of
squared differences, divided by 106 for visualization purposes.

Parameter

Italy China

Reported GGA​ Reported GGA​

r(days−1) 7.9× 10−6 4.0× 10−7 3.95× 10−6 3.89× 10−6

a(days−1) 2.13× 10−2 3.87× 10−2 3.57× 10−2 3.83× 10−2

d(days−1) 1.63× 10−2 3.09× 10−2 3.10× 10−3 2.95× 10−3

S0(10
4) 4.13 85.6 8.33 8.52

I0 Fixed Fixed 430 422

R0 Fixed Fixed 10 4

D0 Fixed Fixed 15 5

Cost I 245 189 3009 2950

Cost R 3 6 3081 3144

Cost D 1 3 10 13

Cost 250 199 6699 6031

Table 2.   Best fit parameters and cost for the SIRD model for the three stages analysed in21, with an infection
rate r = β/N and a recovery rate a = δ(1− θ). The values reported in the original paper are shown in columns
“Reported” and the values found using PyDGGA are shown in columns “GGA”. The cost is computed using
Eq. (5), and presented divided by 103 for visualization purposes.

Parameters

Early stage Late stage Whole period

Reported GGA​ Reported GGA​ Reported GGA​

q 0.011 0.002 0.014 0.005 0.0137 0.0050

β 0.123 0.200 0.012 0.057 0.0142 0.0637

a 0.018 0.013 0.038 0.020 0.0302 0.0194

d 0.014 0.011 0.002 0.004 0.0025 0.0054

w 0.9 0.9 0.7 0.7 0.9 0.9

Cost S ( 103) 457 113 531 16 1233 182

Cost I ( 103) 314 88 1582 13 1989 149

Cost R ( 103) 26 26 410 16 253 32

Cost D ( 103) 4 6 9 1 21 5

Cost ( 103) 800 234 2535 46 3496 368

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

SIRD model (2)
Calafiore et al.21 use a discrete approach for the SIRD model. They also use an additional parameter, q, which is
a proportionality factor relating the detected number of positives with the actual number of infected.

Instead of fitting the whole function with initial conditions, they use the daily Italy data41 for the I, R, and D
compartments to obtain S in the following way:

where t is the time in days, q is the proportionality factor, and Pop is the real population. Note that fitting q is
equivalent to fitting n, as n = q× Pop.

Then, they compare the real daily change for each compartment (y), with the one predicted by the model
( y′ ). Thus, there are a total of 4 configurable parameters in this model: 3 epidemic rates: β , δ and θ ; and one for
initial conditions q.

They use the following cost function:

where w is the so-called forgetting factor, w ∈ (0, 1] , and T is the number of days. costC is the cost associated to
a single compartment C = {S, I ,R,D}.

In Table 2 we show the costs and configurations reported, as well as the ones obtained by PyDGGA, for three
different ranges: an early stage (from February 24th to March 27th 2020), a late stage (from March 27th to May
18th 2020), and the whole period.

In our code, we set Pop = 59.3× 106 , approximately the population of Italy. In the three cases studied, we
obtain a substantial improvement with respect to the cost function. The results can be easily interpreted in this
case, given that for the three stages, we obtain a higher infectivity ( β ) and lower effective population (q), as the
virus was spreading faster, albeit on a smaller social group.

(4)S(t) = q× Pop− I(t)− R(t)− D(t),

(5)cost =
1

T

T−1∑

t=0

wT−t ||y(t)− y(t)′||2 =
∑

C

costC

Table 3.   Cost of the model SIDARTHE for the different infected compartments (D, R, T, H) for the parameter
values reported in22 (row “Reported”) and the values found using PyDGGA (row “GGA”). The costs are
computed using Eq. (6).

CostD CostR CostT CostH cost

Reported 432 82 33 74 622

GGA​ 34 82 32 7 156

Table 4.   Fitted parameters for the SEIPAHRF model. Parameters in parenthesis are fixed from the start.
The values reported in the original paper are shown in column “Reported” and the values found using
PyDGGA are shown in columns “GGA”. The cost is computed using Eq. (5), and presented divided by 103 for
visualization purposes.

Parameter Reported GGA (NIC) GGA (IC) GGA (NF/NIC)

β 2.55 4.54 2.93 3.76

l 1.56 1.03 2.62 0.9

β ′ 7.65 9.1 9.55 1.95

κ 0.25 0.32 0.14 0.62

ρ1 0.580 0.49 0.31 0.027

ρ2 0.001 0.05 0.14 0.34

γa 0.94 0.61 0.85 0.73

γi 0.27 1.42 0.48 0.8

γr 0.5 0.14 0.27 0.14

δi 3.5 4.92 1.95 3.87

δp 1 0.95 1.26 0.91

δh 0.3 0.65 0.05 0.14

Ie (0) (0) (0) 20

Ii (1) (1) (1) 15

Ip (5) (5) (5) 7

Cost 15.098 4.41 4.17 3.74

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

SIDARTHE model
SIDARTHE40 is a mean-field deterministic compartmental model. It consists of a series of 8 ODEs. Giordano
benchmarks the model with real data from Italy, the same one from the previous section41, for the period between
February 20th and April 5th 2020, allowing some parameters to change within given intervals, to account for
mobility restrictions and social distancing.

We use the same fitting strategy, setting different rates at 6 different times, and allowing only the same 29
parameters used in40 to change.

The cost is computed as the sum of squared differences for the infected individuals with different severities
(compartments D, R and T), and the recovered individuals H.

As shown in Table 3 we find a better overall solution, improving on three of the four compartments, with the
biggest difference in the Diagnosed (D) compartment. For the sake of space, we do not show the values for the
29 configurable parameters. At day 1 the parameters are set as α = 0.594 , β = δ = 0.016 , γ = 0.524 , ǫ = 0.100 ,
θ = 0.313 , ζ = η = 0.126 , µ = 0.010 , ν = 0.029 , τ = 0.016 , � = ρ = 0.038 and κ = ξ = σ = 0.013 . After day
4, α = 0.332 , β = δ = 0.006 and γ = 0.359 . After day 12, ǫ = 0.139 . After day 22, α = 0.352 , β = δ = 0.005
and γ = 0.313 ; also, ζ = η = 0.038 , µ = 0.005 , ν = 0.011 , � = 0.085 and ρ = κ = ξ = σ = 0.014 . After day 28,
α = 0.225 and γ = 0.089 . Finally, after day 38, ǫ = 0.241 , ρ = κ = ξ = 0.023 , σ = 0.011 and ζ = η = 0.013.

SEIPAHRF model
SEIPAHRF23 is also a mean-field deterministic compartmental model. It consists of a series of 8 ODEs. The data
is benchmarked against the Wuhan reported by WHO1 and Worldometer42, between January 4th and March 9th
2020. The total of individuals used in the original paper is 44,000 instead of the 11 million total population, due
to the quarantine applied that restricted the movement and limited the spread of the disease.

The results are shown in Table 4. In order, we show the fitted parameters and the mean squared error of the
confirmed (I + P + H compartments) individuals for the original paper, for GGA fitted without an initial con-
figuration (GGA (NIC)), for GGA with the reported parameters as an initial configuration (GGA (IC)), and for
GGA without an initial configuration and letting the initial exposed, infected, and superspreaders amount to be
fitted as well (GGA (NF/NIC)).

Discussion
Epidemic modeling is a complex and sensitive task with multiple and diverse challenges45: from model selec-
tion itself, that is finding a model complex enough to reflect what is happening but simple enough not to get
lost in unnecessary and noisy details; to parameter estimation or model fitting. Talking about “the best model”
is normally a blurred concept encompassing performance in many of these different dimensions of goodness.

There are also very different purposes behind model design and/or use: from evaluating the impact (or poten-
tial impact) of events and interventions to scenario analysis or forecasting. Different models require different
types, quantity and granularity of data. Data quality and availability vary among countries and communities
and data bias and diversity can impact model performance46. It is difficult to make performance assumptions of
a model based on cross-country claims or to weigh the evidence of models using different datasets47.

Comparing models is a non-trivial, complex problem48, currently entangled to parameter fitting. Modeling
approaches are diverse, each with its strengths and weaknesses: compartmental models, network models, agent
base models, deterministic, stochastic, micro-simulation based...And parameter values can drastically affect
model performance in the same way that model appropriateness can limit performance, regardless of parameter
accuracy. In49 words: “The ability of a model to make accurate predictions depends not only on the fidelity with
which the model represents real-world transmission dynamics but also on the appropriate specification of model
parameters and the accuracy of model state variable estimation at the start of a forecast”.

In the absence of a systematic approach, model selection is still very limited50,51 and/or manual7,52; linked
often to the trust on and reputation of the particular research group responsible for the model, and many times
to just comparing the final results (or fit) of a model with a specific set of parameters.

In this work, we have explored how automatic configuration tools can help systematize, optimize and solve
some of these fundamental problems. First, in fitting model parameters, we have shown how automatic con-
figuration can minimize the burden of modelers, allowing them to focus on modeling itself and in establishing
credible ranges and constraints that must be followed by the parameters. In our results, ePyDGGA was able to
find combinations of parameters achieving a better fit of the model than with the parameter values supplied by
the modelers.

This systematic approach also enables an objective and at-scale tool for comparing models, independent of
how good were the modeling teams on finding the best parameter values for their models. automatic configura-
tion tools, when provided with a trusted model, can help in exploring the potential nature of a disease through
the observed epidemic, that is, providing a thorough and optimal exploration of what combinations of properties
of the epidemic, expressed as parameters, better explain what is being observed. This is of particular importance
in modeling emerging diseases53, where being able to scrutinize several models and understand the properties
of the diseases is especially difficult. As stated by53 “Mechanistic models play an essential role in the response to
emergence events. However, given the unknowns inherent in the situation, accurately characterizing an emerg-
ing pathogen is hard and always will be”.

(6)cost = (CostD + CostR + CostT + CostH)/10
6

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Conclusions
We have presented a new framework ePyDGGA that allows users to create new epidemic models and fit them in
such a way that model and fitting are clearly separated and thus, comparison among models can be done fairly
and without jeopardizing the quality of the fitted parameters.

We have shown that ePyDGGA is suitable for fitting any type of model, even stochastic ones (where we can-
not use numerical methods to solve them). We also provide many examples of each of these models within the
framework.

Finally, we have shown that by using Docker we can leverage cloud technologies to perform the heavy com-
putation task of exploring the search space of the parameters for an epidemic model.

In terms of future work, we are aware that there might be a need for more complexity in the parameters, for
example: (1) relationships among the parameters, i.e., it can be that parameter A cannot take value a if parameter
B takes value b; (2) parameters might need to be specified in terms of probabilistic functions and not just ranges,
i.e., parameter A might need to be defined from a Gaussian distribution with mean µ and standard deviation σ .
Therefore, it is clear that work needs to be done to address these complexities within the framework so they are
taken into account within the AC process.

Finally, as it has been argued repeatedly, deciding that a model is “better” than others usually depends on
several factors or, in optimization terms: it depends on several cost functions. It is naturally better than a model
that fits more accurately the observed data. But if an epidemic has been going on for over a year and has moved
over several waves or peaks already, it might be preferable that the model fits better the last part of the epidemic,
the current one, even if that means not doing so well in fitting the now long gone first wave. A balance might be
the preferred choice of an informed decision-maker: “Whichever model fits best the last part of the epidemic and it
reasonably fits the curve corresponding to the whole year”. Sometimes a decision maker might be more interested
in looking at absolute numbers: “How many people can I expect to become infected...”. Sometimes only relative
size is important: “Is the peak over? Or should I expect a rebound?”. Computer Science –through optimization and
automatic configuration– offers powerful tools to work with multi-objective optimization problems, allowing
different cost functions to be optimized at the same time, and therefore yielding a Pareto Front of solutions (and
therefore of fitted parameters) instead of just one. Decision makers could then explore Pareto Fronts, under-
standing where the boundaries of accuracy are as well as how those boundaries are characterized (e.g. how fast
accuracy on a given factor drops when trying to improve accuracy on a different one). We believe this direction
to be one of the most natural and powerful ways to continue the work described in this paper in the near future.

Data availability
The data used in this study is available in the original repositories: · Covid-19 data repository from Johns Hopkins
University39 · Italian Protezione Civile official data41 · WHO reports1 · Worldometer42.

Received: 11 April 2023; Accepted: 30 September 2023

References
	 1.	 Organization, W. H. https://​www.​who.​int/​emerg​encies/​disea​ses/​novel-​coron​avirus-​2019 (2020).
	 2.	 WHO. W. H. O. Coronavirus disease (COVID-19)—World Health Organization. https://​www.​who.​int/​emerg​encies/​disea​ses/​

novel-​coron​avirus-​2019.
	 3.	 Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006).
	 4.	 Peak, C. M., Childs, L. M., Grad, Y. H. & Buckee, C. O. Comparing nonpharmaceutical interventions for containing emerging

epidemics. Proc. Natl. Acad. Sci. 114, 4023–4028 (2017).
	 5.	 Agency, D. A. R. P. Darpa Chikv Challenge (2014).
	 6.	 Initiative, E. P. Dengue Forecasting Project (2015).
	 7.	 Johansson, M. A. et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl. Acad. Sci. 116,

24268–24274 (2019).
	 8.	 McGowan, C. J. et al. Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016. Sci. Rep. 9, 683 (2019).
	 9.	 Reich, N. G. et al. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proc.

Natl. Acad. Sci. 116, 3146–3154 (2019).
	10.	 Viboud, C. et al. The rapidd ebola forecasting challenge: Synthesis and lessons learnt. Epidemics 22, 13–21 (2018).
	11.	 Hub, C. S. M. The Covid-19 Scenario Modeling Hub Coordination Team (2023).
	12.	 Initiative, T. E. P. The Epidemic Prediction Initiative (2023).
	13.	 Organization, W. H. The Who Hub for Pandemic and Epidemic Intelligence (2023).
	14.	 Times, T. S. CDC’s Overblown Estimate of Ebola Outbreak Draws Criticism (2015).
	15.	 Post, T. W. Swine Flu Could Infect Half of U.S., Panel Estimates (2009).
	16.	 Eker, S. Validity and usefulness of COVID-19 models. Humanit. Soc. Sci. Commun. 7, 54 (2020).
	17.	 Butler, D. et al. Models overestimate ebola cases. Nature 515, 18 (2014).
	18.	 Barton, C. M. et al. Call for transparency of COVID-19 models. Science 368, 482–483 (2020).
	19.	 Ray, E. L. et al. Ensemble forecasts of coronavirus disease 2019 (COVID-19) in the US. MedRXiv, pp. 2020–08 (2020).
	20.	 Oidtman, R. J. et al. Trade-offs between individual and ensemble forecasts of an emerging infectious disease. Nat. Commun. 12,

5379 (2021).
	21.	 Calafiore, G. C., Novara, C. & Possieri, C. A time-varying SIRD model for the COVID-19 contagion in Italy. Annu. Rev. Control

50, 361–372 (2020).
	22.	 Giordano, G. et al. A SIDARTHE model of COVID-19 epidemic in Italy. arXiv preprint arXiv:​2003.​09861 (2020).
	23.	 Ndaïrou, F., Area, I., Nieto, J. J. & Torres, D. F. M. Mathematical modeling of COVID-19 transmission dynamics with a case study

of Wuhan. Chaos Solitons Fractals 135, 109846. https://​doi.​org/​10.​1016/j.​chaos.​2020.​109846 (2020).
	24.	 Ansotegui, C., Sellmann, M. & Tierney, K. A gender-based genetic algorithm for the automatic configuration of algorithms. In

Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming, 142–157 (2009).
	25.	 Hutter, F., Hoos, H. & Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceedings

of the 5th International Conference on Learning and Intelligent Optimization, 507–523 (2011).

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://arxiv.org/abs/2003.09861
https://doi.org/10.1016/j.chaos.2020.109846

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

	26.	 Birattari, M., Yuan, Z., Balaprakash, P. & Stützle, T. F-race and iterated F-race: An overview. In Empirical Methods for the Analysis
of Optimization Algorithms, 311–336 (2010).

	27.	 Malitsky, Y., Sabharwal, A., Samulowitz, H. & Sellmann, M. Algorithm portfolios based on cost-sensitive hierarchical clustering.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 608–614 (2013).

	28.	 Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J. & Shoham, Y. A portfolio approach to algorithm selection. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, 1542–1543 (2003).

	29.	 Xu, L., Hutter, F., Hoos, H. H. & Leyton-Brown, K. SATzilla2009: An Automatic Algorithm Portfolio for SAT. Solver Description
(SAT Competition, 2009).

	30.	 Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H. & Sellmann, M. Algorithm selection and scheduling. In CP, 454–469
(2011).

	31.	 Xu, L., Hutter, F., Shen, J., Hoos, H. H. & Leyton-Brown, K. Satzilla2012: Improved Algorithm Selection Based on Cost-Sensitive
Classification Models (SAT Competition, 2012).

	32.	 Kadioglu, S., Malitsky, Y., Sellmann, M. & Tierney, K. ISAC–instance-specific algorithm configuration. In Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI) Vol. 215 (eds Coelho, H. et al.) 751–756 (IOS Press, 2010).

	33.	 Xu, L., Hoos, H. H. & Leyton-Brown, K. Automatically configuring algorithms for portfolio-based selection. In AAAI (2010).
	34.	 Ansótegui, C. et al. Optilog: A framework for sat-based systems. In SAT 2021, 1–10 (Cham, 2021).
	35.	 Alòs, J., Ansótegui, C., Salvia, J. M. & Torres, E. OptiLog V2: Model, solve, tune and run. In 25th International Conference on

Theory and Applications of Satisfiability Testing (SAT 2022) Vol. 236 (eds Meel, K. S. & Strichman, O.) 25:1-25:16 (Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, 2022). https://​doi.​org/​10.​4230/​LIPIcs.​SAT.​2022.​25.

	36.	 Ansótegui, C., Pon, J. & Sellmann, M. Boosting evolutionary algorithm configuration. Ann. Math. Artif. Intell.https://​doi.​org/​10.​
1007/​s10472-​020-​09726-y (2021).

	37.	 Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2 (2014).
	38.	 Foundation, T. L. Open Container Initiative (2015).
	39.	 Center for Systems Science and Engineering & at Johns Hopkins University, E. C. Covid-19 data repository. https://​github.​com/​

CSSEG​ISand​Data/​COVID-​19 (2021).
	40.	 Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med.

26, 855–860 (2020).
	41.	 del Consiglio dei Ministri Dipartimento della Protezione Civile, P. Dati Covid-19 Italia. https://​github.​com/​pcm-​dpc/​COVID-​19

(2021).
	42.	 Covid-19 coronavirus pandemic (2020).
	43.	 Lindauer, M. et al. Smac3: A versatile Bayesian optimization package for hyperparameter optimization. arXiv:​2109.​09831 (2021).
	44.	 Fanelli, D. & Piazza, F. Analysis and forecast of COVID-19 spreading in china, Italy and France. Chaos Solitons Fractals 134, 109761

(2020).
	45.	 Kretzschmar, M. E. et al. Challenges for modelling interventions for future pandemics. Epidemics 38, 100546 (2022).
	46.	 Schlosser, F., Sekara, V., Brockmann, D. & Garcia-Herranz, M. Biases in human mobility data impact epidemic modeling. https://​

doi.​org/​10.​48550/​ARXIV.​2112.​12521 (2021).
	47.	 De Angelis, D., Presanis, A. M., Birrell, P. J., Tomba, G. S. & House, T. Four key challenges in infectious disease modelling using

data from multiple sources. Epidemics 10, 83–87 (2015).
	48.	 Gibson, G. J., Streftaris, G. & Thong, D. Comparison and assessment of epidemic models. Stat. Sci. 33, 19–33 (2018).
	49.	 Yang, W., Karspeck, A. & Shaman, J. Comparison of filtering methods for the modeling and retrospective forecasting of influenza

epidemics. PLoS Comput.l Biol. 10, e1003583 (2014).
	50.	 Stocks, T., Britton, T. & Höhle, M. Model selection and parameter estimation for dynamic epidemic models via iterated filtering:

Application to rotavirus in Germany. Biostatistics 21, 400–416 (2020).
	51.	 Sun, L., Lee, C. & Hoeting, J. A. Parameter inference and model selection in deterministic and stochastic dynamical models via

approximate Bayesian computation: Modeling a wildlife epidemic. Environmetrics 26, 451–462 (2015).
	52.	 Adiga, A. et al. Mathematical models for Covid-19 pandemic: A comparative analysis. J. Indian Inst. Sci. 100, 793–807 (2020).
	53.	 Metcalf, C. J. E. & Lessler, J. Opportunities and challenges in modeling emerging infectious diseases. Science 357, 149–152 (2017).

Acknowledgements
UNICEF and University of Lleida want to thank AECID (Spanish Agency for International Development Coop-
eration) for their support to data innovation and Frontier Data Technologies through UNICEF’s Frontier Data
Network.

Author contributions
All authors contributed equally to this work.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​43958-2.

Correspondence and requests for materials should be addressed to J.A. or C.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.4230/LIPIcs.SAT.2022.25
https://doi.org/10.1007/s10472-020-09726-y
https://doi.org/10.1007/s10472-020-09726-y
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/pcm-dpc/COVID-19
http://arxiv.org/abs/2109.09831
https://doi.org/10.48550/ARXIV.2112.12521
https://doi.org/10.48550/ARXIV.2112.12521
https://doi.org/10.1038/s41598-023-43958-2
https://doi.org/10.1038/s41598-023-43958-2
www.nature.com/reprints

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:784 | https://doi.org/10.1038/s41598-023-43958-2

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	ePyDGGA: automatic configuration for fitting epidemic curves
	Preliminaries
	Compartmental models: SIR model
	Automatic configuration algorithms and tools

	The ePyDGGA framework
	Automatic configurator: PyDGGA​
	Embedding epidemic models within OptiLog
	Epidemic model implemented in Python
	Epidemic model in other languages

	Using OptiLog within cloud computing services
	Framework description

	Results
	Epidemic data sources
	Choosing the AC tool
	Assessing the impact of AC tools for epidemic models
	SIRD model (1)
	SIRD model (2)
	SIDARTHE model
	SEIPAHRF model

	Discussion
	Conclusions
	References
	Acknowledgements

