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Quantification of expected 
information gain in visual acuity 
and contrast sensitivity tests
Zhong‑Lin Lu 1,2,3*, Yukai Zhao 4, Luis Andres Lesmes 5 & Michael Dorr 5

We make use of expected information gain to quantify the amount of knowledge obtained from 
measurements in a population. In the first application, we compared the expected information gain 
in the Snellen, ETDRS, and qVA visual acuity (VA) tests, as well as in the Pelli–Robson, CSV‑1000, and 
qCSF contrast sensitivity (CS) tests. For the VA tests, ETDRS generated more expected information 
gain than Snellen. Additionally, the qVA test with 15 rows (or 45 optotypes) generated more expected 
information gain than ETDRS, whether scored with VA threshold alone or with both VA threshold and 
VA range. Regarding the CS tests, CSV‑1000 generated more expected information gain than Pelli–
Robson, and the qCSF test with 25 trials generated more expected information gain than CSV‑1000, 
whether scored with AULCSF or with CSF at six spatial frequencies. The active learning‑based qVA 
and qCSF tests have the potential to generate more expected information gain than traditional paper 
chart tests. Although we have specifically applied it to compare VA and CS tests, expected information 
gain is a general concept that can be used to compare measurements in any domain.

Measurement serves as the bedrock of the scientific method and finds application across a diverse range of dis-
ciplines, encompassing physics, biology, engineering, social science, and  medicine1–4. It provides the empirical 
data essential for hypotheses testing, theory formulation, performance evaluation, and diagnostic  procedures5–9. 
Despite the development of numerous quality metrics designed to assess individual measurements and the con-
cordance between two unidimensional  measurements10–12, the task of comparing innovative measurements to 
the established gold standards remains a formidable challenge. This challenge is particularly pronounced when 
the novel measurements yield outcomes of distinct or greater dimensionality. Furthermore, conventional metrics, 
such as those gauging test–retest variability, primarily quantify the uncertainties associated with measurement 
outcomes and do not encompass an evaluation of the knowledge accrued through the act of measurement.

Viewed through the lens of information  theory13–15, measurement is conceptually defined as “a set of observa-
tions that reduce uncertainty, with the result expressed as a quantity”16. In order to precisely quantify the extent 
of new knowledge derived from measurement, we advocate for the application of expected information gain, also 
referred to as expected mutual  information17. While the concept of information  gain18 has found extensive use 
in machine learning, where it serves as a fundamental criterion for optimizing decision  trees19 and guides the 
selection of optimal stimuli in active learning  algorithms20–22, its applications have largely centered on assessing 
relative information gain among different features or stimuli in the learning process. However, in this particular 
investigation, we employ it to quantitatively assess the amount of information acquired through measurements 
conducted on a population.

Computing the expected information gain
Two equivalent methodologies exist for calculating the expected information gain. The first approach hinges 
on the reduction of uncertainty regarding the property being measured, often referred to as the “truth”, follow-
ing the measurement. In contrast, the second approach is grounded in the disparity between the uncertainty 
associated with all conceivable measurement outcomes within a population and the projected remaining uncer-
tainty after the execution of a measurement. While the first approach is a direct derivation from the concept of 
expected information gain, the second approach, in practice, tends to be more straightforward to implement. 
Both approaches are presented in the following section, and additional verification of their equivalence can be 
located in Appendix 1.
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The first approach to calculate expected information gain begins by considering the property to be meas-
ured, referred to as the “truth”. This property is represented by a random variable X , with a probability density 
function denoted as P(x) (Fig. 1a). We also consider all possible outcomes of the measurement, represented by 
a random variable Y  , with its own probability density function P(y) (Fig. 1c). Following each measurement, the 
outcome is represented by a probability distribution P(y|x) (Fig. 1b). By applying Bayes’ rule, we can derive the 
posterior distribution of x , denoted as P(x|y)(Fig. 1d), using the formula: P

(

x|y
)

= P
(

y|x
)

P(x)/P(y) , where 
P
(

y
)

=
∫

XP
(

y|x
)

P(x)dx . Shannon entropy is then employed to quantify the level of uncertainty associated 
with X before any measurement:

Following a measurement, the expected entropy of X is determined as:

and subsequently, the expected information gain is computed (Fig. 1e):

This approach quantifies the reduction in uncertainty regarding the property X as a result of the measurement 
outcomes represented by Y .

The second approach to compute expected information gain also begins by considering probability density 
functions: P(x), P

(

y
)

 and P(y|x) (Fig. 1a–c). Using Shannon entropy, we first assess the level of uncertainty 
associated with Y based on the distribution of all possible measurement outcomes:
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Figure 1.  (a) Probability distribution of a quantity x occurring in population X, P(x) . (b) Probability 
distribution of obtaining measurement y given x is the true value being measured: P

(

y|x
)

 . (c) Probability 
distribution of obtaining a measurement y from all potential measurement outcomes Y  regardless of the 
underlying true value, P(y) . (d) Posterior distribution of X, P

(

x|y
)

, following a measurement outcome y . (e) 
Expected information gain IG(X|Y) is the difference between H(X) and the expected posterior entropy H(X|Y) . 
Expected information gain IG(Y |X) is the difference between H(Y) and the expected residual entropy H(Y |X) . 
IG(X|Y) = IG(Y |X).
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Next, we determine the expected residual uncertainty of Y after a measurement:

Finally, the expected information gain (Fig. 1e) is computed as:

This second approach assesses how much uncertainty remains in Y  after obtaining the measurement out-
comes represented by P(y|x) . In essence, it quantifies the reduction in uncertainty associated with Y as a result 
of measuring X . Both approaches yield equivalent results and provide valuable insights into the information 
gained through measurements in different ways.

A practical illustration of expected information gain
We present a practical illustration of expected information gain using two rulers, considering both the first 
(Fig. 2a,d) and second (Fig. 2b,c) approaches:

• First approach For a ruler with a unit � , the probability distribution of measuring an object with length x is 
represented by P(y|x) = U(x −�/2, x +�/2) , where U(m, n) is a uniform distribution with boundaries m 
and n . If this ruler is used to measure objects with lengths between 0 and L with equal probability, the prob-
ability distribution for object lengths is P(x) = U(0, L) . The entropy of X before any measurement H(X) is:

  The outcome distribution P(y) can also be determined:

  The entropy of X after considering Y  is:
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Figure 2.  An illustration of expected information gain from measurement of the length of pencils using a ruler 
with unit � . (a) A uniformly distributed pencil length X , P(x) . (b) Outcome distribution from measuring the 
length of a pencil with true length x0 , P 

(

y|x0
)

 . (c) A uniformly distributed outcomes Y  , P
(

y
)

. (d) Posterior 
distribution of x based on measurement outcome y0, P(x|y0).
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  The expected information gain is then computed as:

• Second approach The entropy of Y (H(Y)) is calculated:

  The expected residual uncertainty of Y  after considering X is determined:

  The expected information gain is then computed as:

Consider two one-foot-long rulers, one with a one-inch unit and the other with a 1/16-inch unit. Using both 
approaches, the expected information gains are calculated as log2(12/1)) = 3.58 bits and log2(12/(1/16)) = 7.58 
bits for the two rulers, respectively. These values correspond to 12 and 192 distinct length classes, consistent 
with the number of units on the rulers. These calculations demonstrate how expected information gain can be 
applied to assess the knowledge gained from measurements using different rulers with varying units of measure-
ment. It provides a quantitative measure of the information acquired through these measurements, which can 
be valuable in various contexts.

Expected information gain for a unidimensional measurement with a normal outcome 
distribution
We next show how to derive the expected information gain for a unidimensional measurement with a normal 
outcome distribution and provide an intuitive interpretation. In this case, the probability distribution for meas-

uring y given x is defined as P(y|x) = 1√
2πσ

e
− (y−µ(x))2

2σ2 , where µ(x) is the expected value of x . If both x and y are 
uniformly distributed in an interval of length L , then H(X) = log2(L), H(X|Y) = log2

(

σ
√
2πe

)

 , H(Y) = log2(L), 
H(Y |X) = log2

(

σ
√
2πe

)

 , and IG(X|Y) = IG(Y |X) = log2
(

L
4.13σ

)

. Intuitively, these values indicate the follow-
ing: (1) L/(4.13σ) classes: This represents the number of distinct classes or intervals into which the measurement 
outcomes can be categorized. Each class has a size of approximately 4.13σ , which corresponds to the 98% con-
fidence interval of the outcome distribution. In other words, this is a way to quantitatively express the granularity 
or resolution of the measurement. (2) The 98% Confidence Interval: The size of each class, 4.13σ, represents the 
range within which an observed measurement is likely to fall with a high level of confidence (98% confidence 
interval). This interval provides a measure of uncertainty associated with the measurement outcome.

Overview of the current study
Expected information gain, which quantifies the knowledge gained through measurement, is not limited to uni-
dimensional examples. It can be effectively used to compare measurements with any level of dimensionality. In 
this study, we extended its application to the assessment of visual acuity (VA) and contrast sensitivity (CS) tests, 
which inherently involve measurements with different dimensionalities. By applying expected information gain 
to VA and CS tests, we aimed to provide a quantitative basis for comparing these tests, considering their varying 
optotypes, outcome dimensionalities, and their ability to provide valuable knowledge.

Visual acuity is a crucial measure of visual function and is widely used for diagnosing and managing visual 
diseases, evaluating the effectiveness of treatments, and establishing professional  standards23–25. The gold standard 
test, the ETDRS  chart26, consisting of rows of five equal-sized optotypes, is used to generate a unidimensional 
VA threshold score for each patient. However, a newer test called the qVA  test27,28 is introduced, which involves 
three equal-sized optotypes in each trial and generates a two-dimensional score, incorporating VA threshold 
and VA range. Importantly, this added dimension provides a more comprehensive assessment of visual acuity, 
and not considering it could lead to an incomplete  evaluation28.

The contrast sensitivity function is an increasingly important measure in clinical research and clinical trials 
as it offers a more comprehensive characterization of spatial vision compared to  VA29,30. Multiple instruments 
have been developed to measure  CS20,31,32, each using different optotypes and producing scores with varying 
dimensionalities. For example, the Pelli–Robson  test32 uses unfiltered Sloan letter stimuli and generates a uni-
dimensional CS score at one spatial frequency, while the CSV-1000  test33 uses windowed sinewave grating 
stimuli and provides a four-dimensional CS score at four spatial frequencies. Another test, the  qCSF20,34, uses 
filtered Sloan letter stimuli and generates both a unidimensional area under the log CSF (AULCSF) score and 
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a six-dimensional CS score at six spatial frequencies. This diversity in CS tests and their outcome dimensions 
poses challenges when comparing their effectiveness.

While many studies have assessed the accuracy, test–retest variability, sensitivity, and specificity of VA and 
CS  tests28,35–47, comparing them has proven difficult due to differences in optotypes, optotype arrangements, and 
outcome dimensionalities. Existing metrics often focus solely on the uncertainty of measurement outcomes and 
do not quantify the knowledge gained through these measurements. This study aimed to address these challenges 
by employing the concept of expected information gain to compare VA and CS tests. Computer simulations were 
used to calculate and compare the expected information gain and the number of classes derived from the Snellen 
 chart48, ETDRS  chart26, and qVA  test27 for VA assessment, as well as the Pelli–Robson  chart32, CSV-1000 chart 
(Vector Vision, Houston, Texas)33, and qCSF  test20,34 in populations with uniform distributions, as well as popula-
tions with distributions based on experimental data. This approach provides a quantitative and knowledge-based 
method for comparing these essential vision tests.

Methods
Apparatus
All the simulations and analyses were conducted on a Dell computer with Intel Xeon W-2145 @ 3.70 GHz CPU 
(8 cores and 16 threads) and 64 GB installed memory (RAM) with Matlab R2019a (MathWorks Corp., Natick, 
MA, USA) and R (R Core Team, 2020).

Visual acuity tests
Simulated observers
We conducted two simulations using the Snellen, ETDRS, and qVA tests (Fig. 3). In Simulation 1, we simulated 
1386 observers from a uniform distribution of VA threshold 

(

θVAThreshold

)

 and VA range 
(

θVARange

)

 , with 
θVAThreshold ∈ [−0.3, 1.0] logMAR and sampled every 0.02 logMAR, and log10(θVARange) ∈ [−1.0, 0] and sampled every 
0.05 log10 units. In Simulation 2, we simulated 1386 observers from the population distribution of VA threshold 
and VA range derived from an existing qVA dataset of 14 eyes tested with Bangerter  foils28,49. The original experi-
ment was conducted at the Ohio State University. Written consent was obtained from all the participants before 
the experiment. The study protocol was approved by the institutional review board of human subject research 
of The Ohio State University and adhered to the tenets of the Declaration of Helsinki.

Visual acuity behavioral function
For each simulated observer, the discriminability ( d′ ) for an optotype of size s is described by the VA behavioral 
function (Patent No. US 10758120B2)27:

where θVA = (θVAThreshold , θ
VA
Range) , θ

VA
Threshold is VA threshold, corresponding to the optotype size at d′ = 2, θVARange is 

the VA range of the behavioral function, that is, the range of optotype sizes that covers d′ =1 to d′ = 4 performance 
levels, and ω = log1035− log101.25.

(8)log10(d
′
(s|θVA)) = log10(6)+

ω

2θVARange

(

s − θVAThreshold

)

−
1

2
log10

(

8+ 10

ω

θVARange

(

s−θVAThreshold

)

)

,

Figure 3.  (a) A Snellen chart (Image courtesy of Precision Vision, Inc). (b) An ETDRS chart (Image courtesy of 
Precision Vision, Inc). (c) A subset of potential stimuli in qVA.
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In these VA tests, observers identify optotypes from the 10 Sloan letters. We can compute the probability of 
obtaining m correct responses in the 10-alternative forced identification task in a row of M randomly sampled 
optotypes from their dʹ function (Appendix 2):

where f (.) is derived from signal detection theory by considering chart design, i.e., the number of optotypes in 
a row and whether optotypes in each row are sampled from the 10 Sloan letters with or without replacement.

Snellen chart
The Snellen chart (Fig. 3a) has 11-rows, with 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, and 9 optotypes in each row and optotype 
size descending from 1.0 to − 0.3 logMAR. Each simulated observer was tested with the standard  procedure50. 
The probability of correctly identifying m optotypes in a row is determined by Eq. (9) with varying M across 
rows. Starting from the top row, the observer must correctly identify at least half of the optotypes on a row before 
proceeding to the next row. If they can’t identify the optotype on the top row, the VA score was 1.1 logMAR; 
otherwise, the VA score is equal to the size of the optotypes in the last row with at least 50% correct identifica-
tion. The VA score could therefore take 12 potential values. For each simulated observer xi , we repeated the test 
1000 times to obtain the distribution of test scores P

(

yj|xi
)

, where j = 1, . . . , 12.

ETDRS chart
The ETDRS chart (Fig. 3b) has 14 five-optotype rows, with optotype size descending from 1.0 to − 0.3 logMAR. 
Each simulated observer was tested with the standard  procedure26,50. The probability of correctly identifying m 
optotypes in a row is determined by Eq. (9) with M = 5 . Four different termination rules were simulated. Start-
ing from the top row, the test could stop after the observer makes three, four, or five mistakes in identifying the 
optotypes in a row or continue until the observer is tested with the entire chart. The VA score is computed as 
1.1–0.02n, where n is the number of correctly identified optotypes, with 71 potential values. For each simulated 
observer xi , we repeated the test 1000 times to obtain the distribution of test scores P

(

yj|xi
)

, where j = 1, . . . , 71.

qVA test
The qVA (Fig. 3c) is a Bayesian active learning visual acuity  test27. Its stimulus space consists of optotypes of 91 
linearly spaced sizes from − 0.5 to 1.3 logMAR, with a 0.02 logMAR resolution. Starting with a weak prior dis-
tribution of VA threshold and VA range in a two-dimensional space that has 700 linearly spaced VA thresholds 
(between − 0.5 and 1.3 logMAR) and 699 log-linearly spaced VA ranges (between 0.1 and 1.5 logMAR), it uses an 
active learning procedure to test the observer with the optimal stimulus in each trial and generates the posterior 
distribution of VA threshold and range. Each simulated observer was tested with 5, 15, or 30 rows (corresponding 
to 15, 45, or 90 optotypes). The probability of correctly identifying m optotypes in a row is determined by Eq. (9) 
with M = 3 . We computed the mean VA threshold and range from their posterior distributions in each test and 
quantized them into 86 and 56 discrete scores with a 0.02 logMAR resolution, with a total of 4816 potential 
combinations. For each simulated observer xi , we repeated the test 1000 times to obtain the two-dimensional 
distribution of test scores P

(

yj|xi
)

, with j = 1, . . . , 4816 . We also computed the distribution of VA threshold 
P
(

yThreshold,j|xi
)

 by marginalizing P 
(

yj|xi
)

:

where j = 1,…,86.

Information gain
We first computed P

(

yj
)

 from P
(

yi|xi
)

 for each test:

where I = 1386 in both simulations. We then computed the total entropy of each test of a population:

where J = 12, 71, 86, 4816 for the Snellen, ETDRS, VA threshold from qVA, and VA threshold and VA range from 
qVA. The expected residual entropy was computed as:

and, finally expected information gain can be obtained:

(9)p
(

m|s,M, θVA
)

= f
(

m,M, d
′(
s|θVA

)

)

,

(10)P
(

yThreshold,j|xi
)

=
∑

range

P
(

yj|xi
)

,

(11)P
(

yj
)

=
1

I

I
∑

i=1

P(yj|xi),

(12)H(Y) = −
J

∑

j=1

P(yj)log2(P(yj)),

(13)H(Y |X) = −
1

I

I
∑

i=1

J
∑

j=1

P(yj|xi)log2(P(yj|xi)),

(14)IG(Y |X) = H(Y)−H(Y |X).
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Contrast sensitivity tests
Simulated observers
We conducted two simulations using the Pelli–Robson chart, CSV-1000 chart, and qCSF test (Fig. 4). In 
Simulation 1, we simulated 1911 observers from a uniform distribution of peak gain 

(

θCSFPG

)

, peak spatial fre-
quency 

(

θCSFPF

)

 , and band width 
(

θCSFBH

)

 , with log10(θ
CSF
PG ) ∈ [0.3, 2.3] sampled every 0.10  log10 units, log10(θ

CSF
PF ) 

∈ [−0.3, 0.9] sampled every 0.10  log10 units, and log10(θ
CSF
BH ) ∈ [0.3, 0.6] sampled every 0.05  log10 units. In Simu-

lation 2, we simulated 1911 observers from the population distribution of CSF parameters derived from two 
existing qCSF datasets, one consisted of 112 eyes tested in three luminance  conditions38 and the other of 14 eyes 
tested with Bangerter  foils28, using a hierarchical Bayesian  model49,51. The original experiments were conducted 
at the Ohio State University. Written consent was obtained from all the participants before the experiment. The 
study protocol was approved by the institutional review board of human subject research of The Ohio State 
University and adhered to the tenets of the Declaration of Helsinki.

Letter and grating contrast sensitivity functions
The letter CSF, which specifies contrast sensitivity Sletter

(

f
)

 for filtered letters of different sizes at center spatial 
frequency f  , can be described with a log parabola function with three parameters θCSF =

(

θCSFPG , θCSFPF , θCSFBH

)

20,52,53:

where θCSFPG  is the peak gain, θCSFPF  is the peak spatial frequency (cycles/degree), and θCSFBH  is the bandwidth 
(octaves) at half-height. For an observer with peak gain θCSFPG  , peak spatial frequency θCSFPF , and bandwidth θCSFBH  , 
the probability of correct identification of a bandpass-filtered optotype with contrast c and center spatial fre-
quency f  is described with a Weibull psychometric  function34:

where g is the guessing rate, � = 0.04 is the lapse rate, and b determines the steepness of the psychometric func-
tion. Because they both use a 10-alternative forced identification task, g = 0.1 and b = 4.05 for the Pelli–Robson 
chart and qCSF test.

The grating CSF, which specifies contrast sensitivity Sgrating
(

f
)

 for gratings of the same size at spatial frequency 
f  , needs to be corrected for the increased number of cycles with increasing spatial  frequency54. For the grating 
stimuli used in the CSV-1000:

For the yes/no task in the first column of the CSV-1000 test, we used a high-threshold model. That is, the sim-
ulated observer says yes if the stimulus contrast > threshold (= 1/Sgrating

(

f |θCSF
)

). The simulated observer says no 
otherwise. For the two-alternative forced choice task in CSV-1000, we replace Sletter

(

f |θCSF
)

 with Sgrating
(

f |θCSF
)

 
and set g = 0.5 , b = 3.06 in Eq. (16) to compute the probability of making a correct response.

Pelli–Robson chart
The Pelli–Robson chart (Fig. 4a) consists of 16 optotype triplets of the same size and log-linearly spaced con-
trast between 0.56 and 100%33. At a viewing distance of 3 m, the center frequency of the optotypes is 3 c/d. The 
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(
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(
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�
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[1− exp
[

−
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))b
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(
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(
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0.539f
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.

Figure 4.  (a) A Pelli–Robson chart (Image courtesy of Precision Vision, Inc.). (b) A CSV-1000 chart 
(Reproduced with permission from GUARDiON Health Sciences, Inc.). (c) A subset of potential stimuli in 
qCSF.
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probability of correctly identifying each optotype in the chart is determined by Eq. (16). Starting from the top 
row, the test proceeds to the next triplets only if the observer correctly identifies at least two of the three optotypes 
in the current triplet. The CS of the observer is determined by the lowest contrast clowest at which they correctly 
identify at least two of the three letters in the triplet: Sletter(3c/d) = −log10(clowest ), with 17 potential contrast 
sensitivity scores. For each simulated observer xi , we repeated the test 1000 times to obtain the distribution of 
test scores P

(

yj|xi
)

, where j = 1, . . . , 17.

CSV‑1000 chart
The CSV-1000 chart (Fig. 4b) consists of CS tests at four spatial frequencies: 3, 6, 12, and 18 cycles/degree. 
Each test consists of 17 stimuli arranged in nine columns, with a single high-contrast vertical sinewave grating 
in the first column, and two test patches in the remaining eight columns, of which only one contains a vertical 
sinewave grating. The gratings are arranged with decreasing contrast from left to right, with contrast from − 0.70 
to − 2.08, − 0.91 to − 2.29, − 0.61 to − 1.99, and − 0.17 to − 1.55 log10 units in the four rows. Going through all 
four rows starting from the top, the observer is first required to perform a yes/no task on the first column in 
each row. If the observer can’t see the stimulus in the first column, the test stops for that row and the observer’s 
contrast sensitivity is:

If the observer can see the stimulus in the first column, they proceed to identify the location of the patch that 
contained the grating in each column with a three-alternative forced choice response: top, bottom, or blank. We 
treat blank as an incorrect response. The lowest contrast at which the observer correctly identifies the location 
of the grating is used to determine CS in the test: S

(

f
)

= −log10(clowest(f ) ). The result is a four-dimensional 
CS score sampled at four spatial frequencies. Because there are 10 potential CS scores in each spatial frequency, 
there are therefore a total of 104 potential CS functions. For each simulated observer xi , we repeated the test 1000 
times to obtain the distribution of test scores P

(

yj|xi
)

, where j = 1, . . . , 104.

qCSF test
The qCSF (Fig. 4c) is a Bayesian active learning contrast sensitivity  test20,34. Its stimulus space consists of 128 log-
linearly spaced contrasts (from 0.002 to 1.0) and 19 log-linearly spaced spatial frequencies (from 1.19 to 30.95 
c/d). Although a four-parameter truncated log parabola has been used in the qCSF  test20, we removed the trunca-
tion parameter in the simulations because we didn’t score the simulated observers in very low spatial frequencies. 
Starting with a weak prior distribution of peak gain, peak frequency and bandwidth in a three-dimensional space 
that has 60 log-linearly spaced peak gains (from 1.05 to 1050), 40 log-linearly spaced peak frequencies (from 
0.1 to 20 c/d), and 27 log-linearly spaced bandwidth (from 1 to 9 octaves), it uses an active learning procedure 
to test the observer with the optimal stimuli in each trial and computes the posterior distribution of the three 
CSF parameters in the afore-mentioned three-dimensional space. In each trial, three filtered optotypes with the 
same center spatial frequency but four, two, and one times the optimal contrast (capped at 0.9) are presented. 
The observer could be tested with 15, 25 and 50 trials. For each simulated observer xi , we repeated the test 1000 
times to obtain distributions of the unidimensional AULCSF P

(

yAULCSF,j|xi
)

 and the six-dimensional CSF score 
P
(

yCSF,j|xi
)

 at six spatial frequencies (1, 1.5, 3, 6, 12 and 18 c/d). Sampling the scores at 0.05 log10 resolution, 
j = 1, …, 57 for yAULCSF,j , and j = 1,…, 253,492 for yCSF,j.

Information gain
Equations (11)–(14) were used to compute P

(

yj
)

,H(Y) , H(Y |X), and IG(Y |X) , with I = 1911 for the two simula-
tions, and J = 17, 10,000, 57, 253,492 for the Pelli–Robson, CSV-1000, AULCSF from qCSF, and CSF from qCSF.

Results
Visual acuity tests
The VA threshold and VA range distributions of the observers in the two simulations are shown in Fig. 5a,b. 
Figure 5c shows distributions of the test scores P

(

yj|xi
)

 of one representative simulated observer xi in the Snel-
len, ETDRS (3-mistake rule), and qVA test, with results from the qVA test scored as VA-alone, and as both VA 
threshold and VA range. Figure 5d,e show the distributions of the test scores P

(

yj
)

 of the populations in Simula-
tions 1 and 2, respectively. Because a uniform X distribution is used in Simulation 1, the corresponding P

(

yj
)′
s 

from the tests are nearly uniform. On the other hand, P
(

yj
)′
s in Simulation 2 are more concentrated because 

the population is more concentrated.
The total entropy H(Y) , the expected residual entropy H(Y |X), the expected information gain IG(Y |X) , the 

expected number of classes N(Y |X) , the average number of optotypes tested, the expected information gain per 
optotype tested, and the ratio of expected information gain versus the log2 of the number of optotypes tested 
from the three tests in the two simulations are listed in Table 1. The expected information gain IG(Y |X) is also 
plotted in Fig. 5f. As expected, H(Y) in Simulation 2 is less than the corresponding H(Y) in Simulation 1 for all 
the tests because of the more concentrated P

(

yj
)

 resulted from a narrower range of simulated observers. As a 
result, IG(Y |X) and N(Y |X) in Simulation 2 are less than those in Simulation 1.

To check the validity of the simulations, we also estimated expected information IG(Y |X) of the Snellen and 
ETDRS tests from their reported test–retest variabilities (TRV = 1.96 σ ), with the assumption that the outcome 
distributions are normal and have the same TRV for observers with different acuities. For both tests, the outcome 
scores cover − 0.3 to 1.0 logMAR, expected information gain can be computed with IG(Y |X) = log2

(

L
4.13σ

)

, where 

(18)S
(

f
)

=
{

−log10
(

cfirstcolumn

(

f
))

− 0.3, f = 3, 6, 12
0.01, f = 18

.
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L = 1.3 logMAR. For the Snellen chart, the typical TRV is 0.23  logMAR35, with σ = TRV
1.96 = 0.117 logMAR, 

and the expected information gain is 1.4 bits. For the ETDRS chart, the typical TRV is 0.11  logMAR35, with 
σ = TRV

1.96 = 0.056 logMAR, and the expected information gain is 2.5 bits. These estimated values are largely 
consistent with our results in Simulation 1.

For the qVA test, we also computed expected information gain from an existing dataset with 14 eyes tested in 
four Bangerter foil  conditions28. In this dataset, VA threshold is between − 0.15 and 0.68 logMAR, and VA range 
is between 0.12 and 0.63 logMAR. We computed the total entropy, residual entropy and information gain based 
on the posterior distributions from single tests rather than distributions of test scores from repeated tests. In the 
qVA test, the posterior distributions from single tests are broader than those derived from repeated tests until 
about 45 optotypes are tested and converge to those from repeated tests  afterwards28. The expected information 
gain based on VA threshold alone is 1.6, 2.6 and 2.9 bits after qVA test with 15, 45 and 90 optotypes, respectively, 
and the expected information gain based on VA threshold and range is 2.1, 3.2, and 3.6 bits after qVA test with 
15, 45 and 90 optotypes, respectively. These results are largely consistent with those from Simulation 2.

In both simulations, ETDRS generated more expected information gain than Snellen. Scored with VA thresh-
old alone or with both VA threshold and VA range, qVA with 15 rows (or 45 optotypes) generated more expected 
information gain than ETDRS. In terms of expected information gain per optotype tested, the qVA test with 
45 optotypes scored with VA alone and with both VA and VA range was more efficient than the Snellen chart, 
which was in turn more efficient than the ETDRS chart. The different efficiencies were caused by different test 
designs and the distributions of acuity behavior used in the study. Interestingly, the ratio of expected information 
gain and the log2 of the number of optotypes tested in qVA was essentially constant across test lengths and was 

Figure 5.  Distributions and information gain in visual acuity tests. (a,b) Distributions of VA threshold and 
VA range of the simulated observers in Simulations 1 and 2. (c) From left to right: Distributions of the test 
scores P

(

yj|xi
)

 of one representative simulated observer xi in the Snellen, ETDRS (3-mistake rule), and qVA 
test (45 optotypes), with results from the qVA test scored as VA-alone, and as both VA threshold and VA range. 
(d,e) Distributions of the test scores P

(

yj
)

 of the populations in Simulations 1 and 2, respectively. (f) Expected 
information gain IG(Y |X) of the various tests in Simulation 1 (left) and Simulation 2 (right). For ETDRS, results 
from the 3-, 4-, 5-mistake and whole chart rules are shown. For qVA, results from testing with 15, 45, and 90 
optotypes are shown. The blue bars represent IG(Y |X) ; the gray bars represent residual entropy H(Y |X).
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greater than the corresponding scores in ETDRS and Snellen. The results suggest that the expected information 
gain increased linearly with the log2 of the number of optotypes in the qVA test.

Contrast sensitivity tests
The peak gain, peak spatial frequency, and bandwidth distributions of the observers in the two simulations 
are shown in Fig. 6a,b. Figure 6c shows distributions of the test scores P

(

yj|xi
)

 of one representative simulated 
observer xi in the Pelli–Robson, CSV-1000, and qCSF test, with results from the qCSF test scored as AULCSF, 
and CSF at six spatial frequencies. Figure 6d,e show the distributions of the test scores P

(

yj
)

 of the populations 
X in Simulations 1 and 2, respectively. Because a uniform X distribution is used in Simulation 1, the correspond-
ing P

(

yj
)

′s from the tests are more uniform. On the other hand, P
(

yj
)

′s in Simulation 2 are more concentrated 
because the observers are sampled in a narrower range.

The total entropy H(Y) , the expected residual entropy H(Y |X), the expected information gain IG(Y |X) , the 
expected number of classes N(Y |X), the average number of optotypes tested, the expected information gain per 
optotype tested, and the ratio of expected information gain versus the log2 of the number of optotypes tested 
from the three tests in the two simulations are listed in Table 2. The expected information gain IG(Y |X) is also 
plotted in Fig. 6f. As expected, H(Y) in Simulation 2 is less than the corresponding H(Y) in Simulation 1 in all 
the tests because of the more concentrated P

(

yj
)

 resulted from a narrower range of simulated observers. As a 
result, IG(Y |X) and N(Y |X) in Simulation 2 are less than those in Simulation 1.

To check the validity of the simulations, we also estimated information IG(Y |X) of the Pelli–Robson test from 
its reported test–retest variabilities (TRV = 1.96 σ ), with the assumption that the outcome distributions are nor-
mal and have the same TRV for all the observers. For the test, the outcome scores cover 0 to 2.25  log10 contrast 
sensitivity, with a typical TRV between 0.15 and 0.20 log10 in the normal  population55. Therefore, L = 2.25  log10 
CS, σ = TRV

1.96  is between 0.077 and 0.10  log10 CS, and the expected information gain is between 2.4 and 2.8 bits. 
These estimated values are largely consistent with the results in Simulation 1.

For the qCSF test, we also computed information gain from two existing datasets, one with 112 subjects tested 
binocularly in three luminance  conditions38 and the other with 14 eyes tested monocularly in four Bangerter 
foil  conditions28. In this dataset, peak gain is between 0.92 and 2.27  log10 CS, peak spatial frequency is between 
0.21 and 3.9 c/d, and the bandwidth is between 1.8 and 5.7 octaves. We computed the total entropy, expected 
residual entropy, and expected information gain based on the posterior distributions from single tests rather 
than distributions of test scores from repeated tests. In the qCSF test, the posterior distributions from single 
tests are broader than those derived from repeated tests until about 25 trials are tested and converge to those 
from repeated tests  afterwards34. The expected information gain based on AULCSF is 2.0, 2.4, and 2.9 bits after 
qCSF test with 15, 25 and 50 trials, respectively, and the expected information gain based on CSF at six spatial 
frequencies is 4.1, 4.6, and 5.3 bits after qCSF test with 15, 25 and 50 trials, respectively. Again, the results from 
the dataset are largely consistent with those from Simulations 2.

In both simulations, CSV-1000 generated more expected information gain than the Pelli–Robson test. Scored 
with AULCSF or with CSF at six spatial frequencies, qCSF with 25 trials generated more expected information 
gain than CSV-1000. In terms of expected information gain per optotype tested, the CSV-1000 test was the most 
efficient in Simulation 1, and qCSF with 15 rows of trials was the most efficient in Simulation 2. The variations 
in efficiency were caused by different test designs and the distributions of the populations used in the study. 
Interestingly, the ratio of expected information gain versus the log2 of the number of optotypes tested in qCSF 
was essentially constant across test lengths and was greater than the corresponding scores in Pelli–Robson in 

Table 1.  Entropy, information gain and number of classes from visual acuity tests.

Snellen

ETDRS qVA

# Mistakes

Whole chart

VA alone VA + Range

3 4 5 15 45 90 15 45 90

Simulation 1

H(Y) (bits) 3.5 6.1 6.1 6.0 5.9 6.1 6.1 6.1 10.7 11.6 11.7

H(Y|X) (bits) 1.6 3.5 3.5 3.6 3.4 3.8 2.9 2.4 7.8 7.2 6.5

IG (bits) 1.8 2.5 2.5 2.5 2.5 2.3 3.2 3.7 3.0 4.4 5.2

N(Y|X) 3.6 5.7 5.7 5.6 5.6 5.0 9.1 12.7 7.9 20.5 37.2

# Optotypes 24.7 41.4 45.5 51.8 70 15 45 90 15 45 90

IG/Optotype(bits) 0.07 0.06 0.06 0.05 0.04 0.16 0.07 0.04 0.20 0.10 0.06

IG/log2(# Optotype)(bits) 0.40 0.47 0.46 0.44 0.40 0.60 0.58 0.56 0.76 0.79 0.80

Simulation 2

H(Y) (bits) 3.0 5.5 5.5 5.5 5.3 5.6 5.5 5.5 10.1 10.4 10.3

H(Y|X) (bits) 1.6 3.5 3.5 3.6 3.4 3.7 2.8 2.3 7.7 7.2 6.5

IG (bits) 1.5 2.1 2.0 1.9 1.9 1.9 2.8 3.3 2.3 3.3 3.9

N(Y|X) 2.8 4.2 4.0 3.8 3.8 3.8 6.8 9.5 5.1 9.6 14.6

# Optotypes 23.8 44.7 48.4 55.1 70 15 45 90 15 45 90

IG/Optotype(bits) 0.06 0.05 0.04 0.03 0.03 0.13 0.06 0.04 0.16 0.07 0.04

IG/log2(# Optotype)(bits) 0.32 0.38 0.36 0.33 0.32 0.49 0.50 0.50 0.60 0.59 0.60
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Simulation 1 and both Pelli–Robson and CSV-1000 in Simulation 2. The results suggest that the expected infor-
mation gain increased linearly with the log2 of the number of optotypes in the qCSF test.

Discussion
In this study, we introduced a concept from information theory, called expected information gain (or mutual 
information), to quantify the amount of new knowledge that can be obtained from measurement on a popula-
tion. This concept allows us to compare measurements with different dimensionalities and assess the potential 
advantages of new measurements that generate distinct or higher dimensional data compared to the current 
gold standard. Importantly, it focuses on the actual knowledge gained through the measurements, surpassing 
the mere quantification of measurement uncertainties.

We demonstrated two equivalent approaches for computing expected information gain:

(1) Reduction of uncertainty This approach gauges the reduction in uncertainty regarding the “truth” (the 
property to be measured) after the measurement.

(2) Difference in uncertainty The second approach calculates the difference between the uncertainty associated 
with all possible measurement outcomes in a population and the expected residual uncertainty after the 
measurement.

In both approaches, the key idea is that expected information gain quantifies the increase in knowledge 
achieved through measurement. This knowledge gain is greater when there is more uncertainty initially and/or 

Figure 6.  Distributions and information gain in contrast sensitivity tests. (a,b) Distributions of peak gain, peak 
spatial frequency, and bandwidth of the observers in Simulations 1 and 2. (c) From left to right: Distributions 
of the test scores P

(

yj|xi
)

 of one representative simulated observer xi in the Pelli–Robson, CSV-1000, and 
qCSF test (25 trials), with results from the qCSF test scored as AULCSF, and CSF at six spatial frequencies. 
(d,e) Distributions of the test scores P

(

yj
)

 of the populations in Simulations 1 and 2, respectively. (f) Expected 
information gain IG(Y |X) of the various tests in Simulation 1 (left) and Simulation 2 (right). For qCSF, results 
from testing with 15, 25, and 50 trials are shown. The blue bars represent IG(Y |X) ; the gray bars represent 
residual entropy H(Y |X).
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when the measurement effectively reduces this uncertainty. These approaches provide a rigorous and quantitative 
way to assess the value of measurement in various fields of science and beyond.

As a practical application of this concept, we computed and compared expected information gain from vari-
ous VA and CS tests. Our findings revealed some intriguing insights:

(1) VA tests The ETDRS chart, the current gold standard, generated less expected information gain than the 
qVA test with 15 rows, indicating the potential for improved VA assessment with qVA.

(2) CS tests The CSV-1000 test outperformed the Pelli–Robson test, but the qCSF test with 25 trials demon-
strated the highest expected information gain, showcasing its advantages in assessing CS.

It’s crucial to consider the target population when comparing expected information gain, as it can vary for 
different populations. Our simulations demonstrated this dependence, indicating that different target populations 
might require different measurements, and different measurements may have advantages or disadvantages in 
different populations. Therefore, when comparing tests, it is crucial to consider the target population alongside 
the measurement instruments. In this study, we used the same target populations to compare different VA and 
CS tests, and consistent rank orders of the tests were obtained across the two populations.

Expected information gain isn’t limited to vision tests; it can be applied across various domains. For example, 
it can help compare newly developed optical coherence tomography (OCT) tests with existing ones, assess dif-
ferent vision tests’ abilities to classify patients, or evaluate data analytics techniques based on their capacity to 
reduce  uncertainty49,51.

Expected information gain can serve as a valuable tool for objectively evaluating the new knowledge acquired 
through measurements. It may facilitate better comparisons and informed decision-making in diverse fields of 
research and data analysis.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Appendix 1: Proof of equivalence
It’s well-known that information gain is symmetric, that is, IG(Y|X) = IG(X|Y) . We can prove this by substitut-
ing P

(

x|y
)

 with its Bayesian computation in Eq. (2):

Table 2.  Entropy, information gain and number of categories from contrast sensitivity tests.

Pelli–Robson CSV-1000

qCSF

AULCSF CSF

15 25 50 15 25 50

Simulation 1

H(Y) (bits) 4.0 9.9 5.4 5.4 5.4 16.2 16.0 15.7

H(Y|X) (bits) 1.7 6.4 2.2 1.8 1.4 8.5 7.8 6.7

IG (bits) 2.3 3.5 3.2 3.6 4.1 7.6 8.1 9.0

Categories 5.0 11.1 9.1 12.1 16.7 196.1 281.2 498.0

# Optotypes 27.9 11.0 45 75 150 45 75 150

IG/Optotype(bits) 0.08 0.32 0.07 0.05 0.03 0.17 0.11 0.06

IG/log2(# Optotype)(bits) 0.48 1.01 0.58 0.58 0.56 1.39 1.31 1.24

Simulation 2

H(Y) (bits) 2.8 7.8 4.9 4.8 4.8 13.9 13.5 12.8

H(Y|X) (bits) 1.7 6.5 2.7 2.3 1.7 9.4 8.8 7.8

IG (bits) 1.1 1.4 2.1 2.6 3.1 4.6 4.7 5.1

Categories 2.1 2.6 4.3 5.9 8.6 23.7 26.0 34.1

# Optotypes 36.8 15.2 45 75 150 45 75 150

IG/Optotype(bits) 0.03 0.09 0.05 0.03 0.02 0.10 0.06 0.03

IG/log2(# Optotype)(bits) 0.21 0.35 0.38 0.41 0.43 0.83 0.75 0.70



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16795  | https://doi.org/10.1038/s41598-023-43913-1

www.nature.com/scientificreports/

Therefore,

Appendix 2: Multi‑optotype acuity behavioral psychometric functions
From the log(dʹ) acuity behavioral psychometric function for a single-optotype in Eq. (8) (Fig. 7a), we can derive 
the percent correct psychometric function for a single optotype for the N-alternative forced optotype identifica-
tion (N-AFC) task based on signal detection theory (Fig. 7b), with N = 10 in the Snellen, ETDRS and qVA  tests21. 
We then take into account of the chart design (i.e., optotype sampling with or without replacement) to derive 
the probability of correctly identifying different numbers optotypes in each row of a test. The multi-optotype 
psychometric functions are shown for the qVA (Fig. 7c) and ETDRS (Fig. 7d) tests. Specially, the three optotypes 
in each test row are sampled from 10 Sloan letters with replacement in the qVA test, while the five optotypes in 
each test row are sampled from 10 Sloan letters with replacement in the ETDRS test.

(A1)

H(X|Y) = −
�

Y





�

X

(P
�

x|y
�

log2
�

P
�

x|y
��

dx)



P
�

y
�

dy

= −
�

Y





�

X

P
�

y|x
�

P(x)

P
�

y
� log2

�

P
�

y|x
�

P(x)

P
�

y
�

�

dx



P
�

y
�

dy

=
�

Y





�

X

P
�

y|x
�

P(x)log2
�

P
�

y
��

dx



dy −
�

Y





�

X

P
�

y|x
�

P(x)log2
�

P
�

y|x
�

P(x)
�

dx



dy

=
�

Y

P
�

y
�

log2
�

P
�

y
��

dy −
�

X





�

Y

P
�

y|x
�

log2
�

P
�

y|x
��

dy



P(x)dx −
�

X

P(x)log2(P(x))dx.

(A2)

IG(X|Y) = H(X)−H(X|Y) = −
�

Y

P
�

y
�

log2
�

P
�

y
��

dy +
�

X





�

Y

P
�

y|x
�

log2
�

P
�

y|x
��

dy



P(x)dx = IG(Y|X).

Figure 7.  Multi-optotype acuity behavioral psychometric functions. (a) The dʹ psychometric function for a 
single optotype for an observer with VA threshold = 0.2 logMAR and VA range = 0.25 logMAR. (b) The percent 
correct psychometric function for single-optotype in a 10-AFC task for the observer in (a). (c) The multi-
optotype psychometric functions of the observer in the qVA test, i.e., the probabilities of correctly identifying 
0, 1, 2, or 3 of the three optotypes in a test row as functions of optotype size of the row. (d) The multi-optotype 
psychometric functions of the observer in the ETDRS test, the probabilities of correctly identifying 0, 1, 2, 3, 4 
or 5 of the five optotypes presented in a test row as functions of optotype size of the row.
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