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and transmittance of finite‑length 
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Cholesteric liquid crystals exhibit a periodic helical structure that partially reflects light with 
wavelengths comparable to the period of the structure, thus performing as a one‑dimensional 
photonic crystal. Here, we demonstrate a combined experimental and numerical study of light 
transmittance spectra of finite‑length helical structure of cholesteric liquid crystals, as affected by 
the main system and material parameters, as well as the corresponding eigenmodes and frequency 
eigenspectra with their Q‑factors. Specifically, we have measured and simulated transmittance 
spectra of samples with different thicknesses, birefringences and for various incident light polarisation 
configurations as well as quantified the role of refractive index dispersion and the divergence of the 
incident light beam on transmittance spectra. We identify the relation between transmittance spectra 
and the eigenfrequencies of the photonic eigenmodes. Furthermore, we present and visualize the 
geometry of these eigenmodes and corresponding Q‑factors. More generally, this work systematically 
studies the properties of light propagation in a one‑dimensional helical cholesteric liquid crystal 
birefringent profile, which is known to be of interest for the design of micro‑lasers and other soft 
matter photonic devices.

The major optical property of cholesteric liquid crystals (CLCs) is selective light  reflection1–8 due to the periodic-
ity of their spontaneously formed helical birefringent structure. For the incidence of light along the helical axis of 
a CLC, a birefringent nature of LC molecules in combination with rotating nematic director results in a photonic 
band gap for the wavelengths, comparable to pitch p, the distance along the helical axis that corresponds to a 
rotation of the director of 360◦ . Such band gap exists only for a circularly polarised light with the same handed-
ness as the helix, which is strongly reflected. Due to selective light reflection, CLCs are 1D photonic band gap 
materials and allow for the implementation of tunable optical  filters9–11 and  isolators12, light  shutters13, diffractive 
optical  devices5 and band edge  lasers14–19.

The spatially modulated birefringent structure of CLCs performs as an optical resonator, where the reso-
nances occur due to the Bragg  reflection20. Lasing in such a one-dimensional periodic structure is achieved 
when the optical gain material—typically, a fluorescent dye—with the emission spectrum overlapping with one 
of the edges of the band gap is added to the system to amplify the light. When the dye molecules are illuminated 
by short pulses, they emit photons, which undergo the process of stimulated emission. Eventually, lasing at 
the frequency determined by the dye emission spectrum and periodic structure of the resonator occurs. CLC 
lasers are attractive for optical applications due to the ease of fabrication (i.e. the periodic structure is essentially 
self-assembled) and  tunability21: the pitch and consequently the laser emission wavelength can be tuned via 
 temperature22, mechanical  strain23,24, external electric  fields25,  phototuning26, by optically inducing the material 
 flow27 or changing the material  composition28. In addition, also the emission direction can be  tuned29 and defect 
mode lasing can be  realised30,31.

1D CLC resonators have been extensively explored in the past, both experimentally and with modelling or 
theory. Theoretically, 1D, 2D or 3D periodic materials are studied in terms of band structures and band gaps, 
which are normally calculated for infinite materials without  boundaries32. In practice, resonators, including 
1D CLC resonators, have finite size (i.e. finite number of unit cells which are repeated periodically within the 
boundaries of the material), which significantly affects the photonic response. Transmittance and reflection 
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coefficients for finite size CLC layer have been determined numerically by matrix  methods33, and finite element 
 method34 as well as the lasing  thresholds35. Similarly, numerical analyses of the effects of dielectric boundaries 
(substrate) on light localization, light coupling into different modes of the cavity, the effects of dielectric bounda-
ries (substrate) on light localization and dependence of light localization on the CLC layer thickness have been 
 done36,37. In Ref.38 it is shown that the rotatory power of cholesterics consists of two parts: one of them is related 
to the diffraction-induced circular dichroism whereas the other one originates from the tails of the Mauguin 
rotation of the plane of light polarisation, in Ref.39,40 the density of states and in Ref.41 spectral and polarisation 
characteristics of the light passing through a CLC are analyzed. There has been less research done on the local-
ized modes, which are relevant for lasing. In Ref.42 localized edge modes have been theoretically described and 
coupling into such modes has been demonstrated numerically for  normal36 and oblique  incidence43.

In this work, we demonstrate a combined experimental and numerical study of light transmittance spectra 
through finite-length helical structure of cholesteric liquid crystals, and the corresponding eigenmodes and 
frequency eigenspectra. Specifically, we have measured the transmittance spectra of samples with different thick-
nesses, birefringences and for various incident light polarisation configurations and compared them with numeri-
cal spectra obtained by Finite-Difference Time-Domain (FDTD) method. We quantify the role of refractive index 
dispersion and of the divergence of the incident light beam on the transmittance spectra. Next, we numerically 
calculate, using the Finite-Difference Frequency-Domain (FDFD) method, the full spectrum of the (passive) 
resonant eigenmodes and explore their belonging quality factors. We use the numerical results to identify the 
relation between transmittance spectra and the eigenfrequencies of the photonic eigenmodes. Furthermore, we 
present and visualize the geometry of these eigenmodes and calculate the corresponding Q-factors. Compared 
to previous work on standing optical edge modes, solving Maxwell’s equations in the full vector eigenproblem 
form gives us the exact solutions for the electric field within the cavity. Therefore, we gain an in-depth insight 
into the coupling between light and liquid crystal gain medium, which is essential information when orientable 
dies are used in  lasers44,45. More generally, this work is aimed to contribute to the development of soft matter 
based photonic platforms for advanced manipulation and control of the flow of light.

Results
Photonic eigenmodes and transmission spectra are explored in finite-length cholesteric liquid crystal resona-
tors are using complementary numerical FDTD and FDFD modelling and experiments, as described in Meth-
ods. The cholesteric liquid crystal sample of thickness D with ordinary no and extraordinary refractive index 
ne is confined between two equal dG thick glass plates with refractive index nG = 1.5 , as schematically shown 
in Fig. 1. The configuration of the director in the CLC sample with helical axis along x-axis can be written as 
n(x) = (0, cos(2π(x − dG)/p), sin(2π(x − dG)/p)) , where p is the cholesteric pitch. The given director field 
corresponds to the following dielectric tensor

where i, j ∈ {x, y, z} , δij is the Kronecker delta, and ni are components of the director n(x).

CLC transmittance spectra
Light with wavelengths nop < � < nep propagating along the helical axis of a cholesteric liquid crystal is par-
tially reflected. The circular polarisation component with the same handedness as the liquid crystal structure 
is reflected, while the opposite polarisation is transmitted. First, we present transmittance spectra obtained by 
experimental measurements and FDTD numerical modelling, depending on main system parameters, includ-
ing refractive indices ( no and ne ), pitch length (p), and thickness (D), as well as the polarisation of the incident 
light. We also consider the dispersion relations of refractive indices and experimentally relevant modulation of 
the incident light, beyond the usual theoretical assumption of plane waves.

(1)εij = n2oδij + (n2e − n2o)ninj ,

Figure 1.  Schematic of the liquid crystal geometry. CLC sample with ordinary refractive index no , 
extraordinary refractive index ne and pitch p is confined between two thick glass plates with refractive index 
nG . 1D simulation domain, marked in red, consists of a CLC layer with thickness D and effectively infinite glass 
layers on each side, which is achieved by use of PML (perfectly matched layers). Linearly polarised light with 
polarisation E0 enters the CLC at an angle γ (n0,E0) , relative to the nematic director orientation at the incident 
surface n0 . In all simulations, the light source (the incoming light shown in pink here) lies within one of the 
glass plates confining the CLC.
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Role of sample thickness (for fixed pitch)
Figure 2 demonstrates the role of the finite size of the cholesteric helical pattern, where we vary the thickness 
of the cholesteric cell but keep the cholesteric pitch constant, essentially varying the number of Bragg layers of 
the cholesteric resonator. We observe that with increasing sample thickness, the frequency range at which light 
is reflected does not change significantly, but the transmittance spectrum does. Approximately half of linearly 
polarised light with wavelengths nop < � < nep is reflected by already relatively thin structures; for example, 
five pitch lengths thick ( D = 5p ) sample with �n = ne − no = 0.3 give transmittance T � 0.6 for the band gap 
wavelengths. The spectra of light transmitted through thicker samples contain more oscillations outside the 
photonic band gap and appear sharper at the band edge.

Experimentally measured spectra of different materials
The wavelength range at which light is reflected on a CLC is most affected by the refractive indices and the pitch 
length. A systematic experimental study has been performed where we have measured the spectra of transmit-
ted unpolarised light T(�) for eight different liquid crystals with different nematic birefringences �n = ne − no 
and similar pitch lengths p (see Table 1), which are shown in Fig. 3. The bandwidths �� = �2 − �1 measured 
between the edges of the flat bottom of the spectrum, as shown in the Fig. 3, linearly depend on birefringence 
�n . Our numerical simulations and also other theoretical  approaches3, 34 predict the edges of the photonic band 
gap at wavelengths �1 = nop and �2 = nep , and thereby a linear relation ��/p = �n , while in this case, the linear 
relation ��/p ≈ 0.8�n holds. The difference could be a consequence of a combination of several reasons: (i) The 
refractive indices of nematic liquid crystals change after a chiral dopant is added, and it is challenging to measure 
them after doping, but typically, the birefringence decreases after adding the dopant, and (ii) the refractive indices 
depend on the wavelength of light. In the simplified numerical model which gives ��/p = �n , the dispersion 
relations of refractive indices is neglected. The impact of the wavelength dependence of the refractive indices on 
transmittance spectra is shown in Fig. 4.

Figure 2.  Simulated transmittance spectra in differently thick cholesteric liquid crystal cells with refractive 
indices no = 1.5 , ne = 1.8 and pitch p = 1µm . The angle between the electric field’s polarisation and the 
director field at the incident surface is γ (n0,E0) = 0◦ here. In all numerical simulations, only glass–CLC–
glass transmission is used in calcualation, not taking into account possible reflections at the external glass-air 
interface, possibly relevant in experiments.

Table 1.  Properties of liquid crystals used in experiments: clearing temperature T∗ , birefringence �n as 
determined in the nematic phase prior to the addition of chiral dopants; and measured quantities: chiral 
dopant concentration C, pitch length p, band edges �1 , �2 , and bandwidth �� = �2 − �1. (i−vii) from Qingdao 
Grand Winton International Co. Ltd., China; (viii) from Military Univ. of Technology, Poland.

LC sample T
∗ ( ◦C) �n C (wt%) p (nm) �1 (nm) �2 (nm) �� (nm)

XV9012-A00(i) 84 0.07 1.125 335 ± 5 496 511.5 15.4

YTXH002(ii) 90 0.15 1.114 318 ± 5 479.2 517.8 38.5

YTXH004(iii) 90 0.19 1.076 329 ± 2 498.9 545.8 47.9

YTXH005(iv) 84 0.25 1.125 315 ± 5 482.9 546.9 64.0

GCZS5316(v) 130 0.312 1.046 338 ± 2 468.0 545.6 77.6

GCHC10152(vi) 119 0.350 1.073 330 ± 5 508.4 602.0 93.6

GCHC10146(vii) 156.4 0.402 1.093 324 ± 5 492.0 601.0 109

NLC1791(viii) 109 0.452 1.073 330 ± 5 518.4 631.4 113
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Dispersion of refractive index
Figure 4 shows the effect of the refractive index dispersion on the transmittance of a selected cholesteric sample. 
We compare two numerically calculated transmittance spectra T(�) in an 8µm thick CLC cell with pitch length 
p = 0.300µm . In one case, we have assumed that the refractive indices vary with wavelength according to some 
typical exemplary (5CB nematic liquid crystal) dispersion relations, no(�) and ne(�) obtained  from46 and given in 
the caption of Fig. 4. To obtain the second spectrum, we have assumed that the refractive indices are independent 
of wavelength and equal to the values of these functions at 0.500µm . It turns out that when taking into account 
the selected dispersion relations, the photonic band gap of the material becomes significantly narrower—for 9% 
(from 59 nm to 54 nm ) for this particular material—than in the calculation where the wavelength dependence 

Figure 3.  (a–h) Experimentally measured unpolarised light transmittance spectra for eight cholesteric liquid 
crystal samples in 8µm thick cells with different birefringences. Note, that experimental measurements include 
reflections on glass-air interfaces of the CLC cells. (i) Corresponding dependence of the normalized bandwidth 
��/p on the nematic birefringence �n . Cholesteric pitch lengths and other material properties are listed in 
Table 1.

Figure 4.  Effect of refractive indices dispersion ( no(�) , ne(�) ) on transmittance spectrum. (a) The blue 
line shows the calculated spectrum of transmitted light for wavelength-independent refractive indices 
( no = 1.5475 , ne = 1.7416 ), and in black, the spectrum of the transmitted light for wavelength-dependent 
refractive indices with dispersion relations no(�/µm) = 1.5139+ 0.0052 �−2 + 0.0008 �−4 , and 
ne(�/µm) = 1.6708+ 0.0081 �−2 + 0.0024 �−4 , are shown. (b) Corresponding dispersion relations.
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of refractive indices is neglected. The reason for this is that the ordinary refractive index, corresponding to the 
band edge at the smaller wavelength is effectively larger at the lower band edge wavelength, compared to the 
value at 0.500µm . Contrary, the extraordinary refractive index, corresponding to the band edge at the larger 
wavelength is effectively smaller at the upper band edge wavelength, compared to the value at 0.500µm . There-
fore, the band edges are moved closer together. In other calculations presented in this paper, we neglect the 
dispersion relations for simplicity.

Role of birefringence and angle between polarisation and director at incident plane on the transmittance
Figure 5 shows the calculated transmittance spectra for different sample thicknesses D, refractive indices no , ne , 
and angles between the incident linear polarisation of the electric field and the director field at the edge of the 
sample γ (no,E0) . As shown in panel (a), not only a sufficient number of cholesteric pitches but also a sufficiently 
large birefringence �n is required to reflect half of the linealry polarised incident light with wavelengths within 
the band gap. In sufficiently thick samples (Fig. 5b, c), the refractive indices determine only the position and 
the width of the band gap. Panels (d-f) in Fig. 5 show the dependence of the spectrum on the angle γ (no,E0) . 
Transmittance is practically unaffected by this angle at wavelength �1 = nop and at the peaks of the spectrum, 
but it can change with γ (n0,E0) at wavelengths between �1 = nop and �2 = nep . In particular, on the bandedge at 
�2 = nep , the transmittance is T(nep) ≈ 0.6 if γ (n0,E0) = 0◦ , while at γ (n0,E0) = 90◦ , it is considerably smaller, 
T(nep) ≈ 0.4 . This effect occurs due to refractive index mismatch between nG and ne . If nG does not match no 
either, similar behaviour is observed at the other band edge too. The effect of the refractive index of the isotropic 
material confining the CLC ( nG ) on the transmission of linearly polarised light with γ (n0,E0) = 0◦ is shown in 
panel (g) of Fig. 5. The slope of the spectral curve within the band gap changes from increasing to decreasing as 
nG increases from 1.35 to 1.95. The opposite trend is observed for linearly polarised light with γ (n0,E0) = 90◦ . In 
both cases, the spectral curve is horizontal within the bandgap when nG = (no + ne)/2 = 1.65 . If we calculate the 
spectra T(�) for different angles γ (n0,E0) , and take their mean value at each wavelength, we obtain the transmis-
sion spectrum of unpolarised light. These spectra are indicated by dashed lines in panels (d,e,f) of Fig. 5. It turns 
out that the transmission within the bandgap is constant T ≈ 0.5 . This is true for different refractive indices nG.

Transmittance spectra of divergent beams
The simulated transmittance spectra are noticeably different in shape from those measured experimentally 
(Fig. 3). In the simulations, we assume that the plane waves pulses are incident on the cholesteric liquid crystal 
sample, while in experiments, a non-coherent light source is focused on the sample. This allows waves to propa-
gate through the sample not only along the helical axis but also at an angle.

To include these effects in numerical simulations, we study the transmittance of a Gaussian beam pulses with 
different beam divergences θ = �0/πnGw0 given by the waist width wo , the central vacuum wavelength of the 
pulse �0 and the refractive index of glass nG . Figure 6 shows that larger beam divergence (and thus larger numeri-
cal aperture NA = nG sin(θ) )) causes the oscillations in the spectra outside the band gap to vanish gradually. This 
could be explained by the shift of the transmittance spectrum when the direction of light propagation through 
the CLC sample is not parallel to the helical  axis6. In our case, the spectrum is actually the sum of the transmit-
tance spectra for different directions, which causes the oscillations outside the band gap to be averaged out.

Role of incident polarisation on the transmittance
The transmittance of light through cholesteric samples is strongly affected by the polarisation of the incoming 
light. Half of the linearly polarised light, which can be considered as the sum of two opposite circular polarisa-
tions, is reflected, and half is transmitted. The same is true for unpolarised light. Circularly polarised light with 
the same handedness as the structure (in this case RCP) is almost completely reflected for wavelengths between 
nop and nep , while circularly polarised light with the opposite handedness (LCP) is almost completely transmitted.

For liquid crystal GCHC10146 doped with R-5011 chiral dopant in a D = 8µm-thick cell with refractive 
indices no = 1.525 , ne = 1.909 (measured in a racemic mixture of R and S dopant), transmittance spectra for 
different polarisations of light were measured: for linear polarisation (parallel and perpendicular to the director 
field at the cell boundary), unpolarised light, and both circular polarisations, as shown in Fig. 7. Corresponding 
numerical calculations were performed, where we fitted the pitch length and the divergence of the incoming 
Gaussian beam to match the band gaps. The spectrum of unpolarised light was calculated as the average of the 
spectra of different linear polarisations for angles γ (no,E0) = 0◦, 10◦, . . . , 350◦ . Indeed, a very good qualitative 
agreement is observed for all polarisations.

One‑dimensional photonic eigenmodes in finite‑length CLC resonators
Cholesteric liquid crystals can also perform as photonic resonators for light of different frequencies, as deter-
mined by different photonic eigenmodes. We calculated these eigenfrequencies and eigenmodes using the FDFD 
method (as explained in Methods). As for transmittance, we consider a cholesteric liquid crystal sample with 
thickness D, pitch length p, and refractive indices no , ne confined between two glass plates with refractive index 
nG = 1.45 , as shown in Figs. 1 and 8b. The thickness of glass plates dG is assumed to be 5µm , ending by 2µm 
thick perfectly matched layers on both sides of the resonator. The calculated electric field profiles of resonant 
photonic eigenmodes of the cholesteric sample in the frequency region of the photonic band gap with corre-
sponding eigenfrequencies and Q-factors are shown in Fig. 8. These modes can be classified into two distinct 
branches—blue (B modes: B1, B2,...on the blue side of the band gap), and red (R modes: R1, R2,...on the red 
side of the band gap). Modes B and R are all right-circularly polarised (same handedness as the structure) and 
exist only outside the photonic band gap. Eigenmodes with frequencies closest to the bandgap have the larg-
est Q-factors. Selected modes B1, B2, and R1 are also represented in 3D images of the electric field profiles in 
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Fig. 9, where the orientation of the electric field and the orientation of the liquid crystal director are compared. 
Distinctly, in our cholesteric system, there also exist numerical eigensolutions of Maxwell’s equations, which 
are left-circularly polarised (LCP) and emerge at all possible frequencies, also within the band gap, as shown in 
the spectrum in Fig. 8a. However, these modes have significantly smaller Q-factors, which is expected as LCP 
light of any frequency is fully transmitted through a right-handed CLC and therefore cannot show resonant 
behaviour. Also, changing the glass thickness dG in the numerical simulation causes a change in the spectrum 

Figure 5.  (a,b,c) Simulated transmittance spectra of CLC cells for different combinations of ordinary and 
extraordinary refractive indices in differently thick cells for linearly polarised light with polarisation parallel to 
the director at the incident plane γ (no,E0) = 0◦ in D/p is 5, 10, and 40 pitch thick cells. (d,e,f) Transmittance 
spectra of CLC samples with fixed refractive indices no = 1.5 , ne = 1.8 for different angles between the electric 
field’s polarisation and the director at the incident plane γ (n0,E0) in D/p is 5, 10, and 40 pitch thick cells. The 
dashed lines represent the spectra of unpolarised light. (g) Transmittance spectra of the CLC with refractive 
indices no = 1.5 , ne = 1.8 and thickness D = 10p = 10µm at different refractive indices nG of the confining 
isotropic material (glass). This is the only result in which we varied nG . In all the others, we assumed its value to 
default at 1.5.
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Figure 6.  (a,b,c) Schematics of three different simulation setups. (d,e,f) Corresponding transmittance spectra 
T(�) of Gaussian beams with linear polarisation ( γ (n0,E0) = 0◦ ) and different waist thicknesses w0 . Smaller 
waist thicknesses correspond to higher numerical aperture NA and, thereby, smoother transmittance spectra. 
Parameters p = 0.300µm , no = 1.525 , ne = 1.909 , D = 12µm were used in these simulations. Beam focus is 
chosen to be at the source plane, which is placed 6.4µm away from the CLC sample. Note that schematics in 
(a,b,c) are not to scale.

Figure 7.  (a–e) Experimentally measured transmittance spectra of GCHC10146 cholesteric liquid crystal 
sample with right-handed helix for different polarisations: linear parallel (a), linear perpendicular (b), 
unpolarised light (c), right-handed circular polarisation (RCP) (d), and left-handed circular polarisation (RCP) 
(e) The experimentally measured transmission spectra also include the reflections at the air-glass interface. 
(f–j) Numerically calculated transmittance spectra of a Gaussian beam pulse with waist size w0 = 0.35µm and 
different electric field polarisation combinations: linear parallel (f), linear perpendicular (g), unpolarised light 
(h), RCP (i), and LCP (j). Parameters used: D = 8µm , no = 1.525 , ne = 1.909 , p = 0.306µm . In numerical 
simulations, reflections on the glass-air interface are ignored as the source is located inside the glass.
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of these modes, whereas the spectrum of B and R modes remains unchanged. In turn, we conclude that these 
left-handed modes are physically less relevant in the context of resonators, and we only focus on the resonant B 
and R modes in the rest of this article.

The eigenfrequencies of the modes that exist in a CLC resonator are closely related to the transmittance 
spectra. Figure 10a shows that the peaks in the T(�) spectrum (where T = 1 ) correspond to the frequencies of 
the eigenmodes B and R which means that the electromagnetic plane waves with frequencies corresponding to 
the eigenfrequencies of the eigenmodes are completely transmitted through the cholesteric liquid crystal, even 
though the light is trapped within the sample due to internal reflections. Plane waves with frequencies somewhere 
between the eigenfrequencies are partially reflected, as shown in the transmission spectra.

Figure 10b shows that in thicker resonators with a larger number of pitches, there are more eigenmodes within 
a certain frequency range. Thus, the differences between adjacent eigenfrequencies are smaller. In the context of 
laser design, this can be important because a certain emission spectrum of a dye in a thicker CLC sample thus 
effectively overlaps with a larger number of the resonator’s eigenfrequencies. It is also clear that in thicker cells, 
the Q-factors of all modes are larger. Figure 10c shows the dependence of Q-factors for B1 modes as a function 
of cell thickness, i.e. the number of cholesteric layers. The eigenfrequencies of the eigenmodes are also affected 
by the refractive indices and the birefringence �n , as shown in Figure 10d and e. Larger birefringence results in 
a wider band gap but it also means that the gradient of the effective refractive index for a given polarisation is 
larger, and hence the reflectivity is also larger. This leads to more light being trapped within the resonator, which 
corresponds to a higher Q factor. The combined influence of thickness and birefringence on the Q-factor of the 
mode B1 is shown in Fig. 10f.

In Fig. 8, the eigenmodes B1 and R1 look very similar, as do the B2 and R2, B3 and R3, etc. However, careful 
observation reveals that in a 20 pitches thick cholesteric sample, in mode R1, the electric field E rotates from edge 
to edge by an angle of 19.5 · (2π) , and in mode B1 by an angle of 20.5 · (2π) . Actually, one can generalize this 
observation: In a Np pitches thick sample, the electric field of the mode R1 rotates by an angle of 2π(Np − 1/2) , 
and that of mode B1 by an angle of 2π(Np + 1/2) . Furthermore, it can be observed that for the R mode group, 
the electric field of the mode R2 rotates by 2π(Np − 1) , of mode R3 by 2π(Np − 3/2),..., whereas for B modes, 
the electric field of mode B2 rotates by 2π(Np + 1) , of mode B3 by 2π(Np + 3/2) , etc. Evidently, the electric field 
of eigenmodes is, in general, neither parallel nor orthogonal to the liquid crystal director, as shown in Figs. 9 
and 11. Nevertheless, the profile of the electric field in each mode adapts to the liquid crystal director such that 

Figure 8.  (a) Q-factors of the eigenmodes in the region of the band gap p no < � < p ne (b) Schematic of the 
simulation domain geometry. (c–h) Electric field profiles of selected blue (B) and red (R) photonic eigenmodes 
in the vicinity of the band gap.
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the electric field is either parallel or perpendicular over the largest possible portion of the cell. Indeed, note that 
the distances at which the electric field rotates by an angle of 2π are not constant throughout the cell. Figure 9 
also shows the comparison between the orientations of the electric field E and the director field n in colours, φE 
and φn , respectively, whereas in Fig. 11, the spatial dependence of the relative angle γ (x) = |φE − φn| between 
the electric field and the director is shown for selected modes B1, B2, B3, and R1, R2, R3. If the distances at 
which the electric field rotates by a full angle 2π were constant throughout the cell, panels (c) and (e) of Fig. 11 
would show linear dependence, but this is not the case. For the R1 eigenmode, it turns out that the electric field 
is perpendicular to the director at both cell boundaries, whereas in between, it is parallel over most of the cell. 
Just the opposite is true for the mode B1. In modes R2, R3,...the field is perpendicular to the director at the cell 
boundaries, and in the nodes of the field envelopes, but in between, it is more or less aligned with the director. 
Again, the opposite holds for modes B2, B3,..., as shown in panels (c) and (e) in Fig. 11. Finally, effectively, the 
modes experience different effective refractive index profile as determined by the matching alignment between 
the electric field and the director, and higher modes see more effective regions of miss-alignment. Overall, this 
coupling results in different number of envelope (amplitude) peaks.

Understanding the eigenmodes of the passive resonator without gain is crucial for designing lasers. The 
Q-factor of the selected mode is essentially the ratio between the energy stored in the cavity and energy that is 
dissipated into the surroundings. Therefore the modes with higher Q-factor are more likely to lase or in other 
words, are expected to have lower lasing thresholds. The light of such modes is retained in the resonator for a 
longer time which allows more pumped atoms to be stimulated and emit light. We predict the shape of the mode 
inside the cavity. Later is important when we want to determine how to effectively pump the laser and efficiently 
use the gain. Additionally, LCs allow for the orientation of dissolved dye  molecules44,45 and understanding the 
angle between the director field and electric field of the mode could enable engineering of lasers that emit dif-
ferent light modes. To understand the role of gain, further investigation by using methods that can effectively 
simulate lasing is needed.

Discussion
In this work, we have analyzed the light transmittance through cholesteric liquid crystals and the corresponding 
photonic eigenmodes as conditioned by multiple system parameters and effects: (i) finite length of the cholesteric 
helical pattern, (ii) different material birefringence, (iii) different types of incoming polarisation, and (iv) relative 
angle between incoming polarisation and director. Experimental measurements of transmittance spectra have 
been systematically performed for several materials with different birefringences and with different polarisations 
of the incident light. Numerically, we calculated transmittance spectra for a general range of typical values of 

Figure 9.  Three-dimensional representation of electric field vectors E(x) of selected eigenmodes R1, R2, and 
B1 from Fig. 8. At the bottom surfaces, the orientation of the director φn = arctan(nz/ny) and the orientation 
of the electric field φE = arctan(Ez/Ey) inside the cell are shown in colours for comparison. Both red and blue 
modes have the same handedness as the CLC helix. In red modes, E and n are in phase in the areas of high 
electric field amplitude, whereas in blue modes, they are shifted by 90◦ . Relative angle between the electric field 
and the director γ = |φE − φn| is shown in Fig. 11.
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refractive indices, cell thicknesses, and incident polarisations. Additionally, we have analyzed the effect of the 
refractive indices dispersion on the transmittance spectra and shown how the transmittance spectra change when 
pulses with curved wavefronts propagate through the CLC cell. We have shown that the peaks in the transmit-
tance spectra coincide with the eigenfrequencies of the CLC resonator eigenmodes and presented the geometry 
of these modes as well as their Q-factors. Overall, this work explores and outlines the properties of cholesteric 
liquid crystal helical patterns as photonic resonators and highlights their properties that are important for the 
design of liquid crystal micro-lasers and other soft-matter-based photonic devices.

Methods
Numerical method
In numerical calculations, we assume that the system is infinite along y and z axes, allowing us to per-
form simulations on a one-dimensional mesh with three-dimensional electric and magnetic field vectors, 
E(x) =

(

Ex(x),Ey(x),Ez(x)
)

 and H(x) =
(

Hx(x),Hy(x),Hz(x)
)

 , respectively. Open boundary conditions are 
assumed at the boundaries of the system to prevent any additional reflections, which is modelled by adding a few 
wavelengths thick ( 2µm in our simulations) perfectly matched layers (PMLs)47,48 that absorb electromagnetic 
fields at the boundaries of the simulation domain, as also shown in Fig. 1.

Transmittance spectra of the CLC samples of different thicknesses are calculated using the finite-difference 
time-domain (FDTD)  method49, using Meep  software50 which solves Maxwell’s equations in the time domain. 
The transmittance spectrum T(�) is calculated as a ratio between the spectrum of a pulse with Gaussian time-
dependence transmitted through a CLC sample and a spectrum of an equal pulse transmitted through the 
isotropic glass. By time-limiting the pulse, we ensure that the spectrum of the pulse is spectrally broad and cov-
ers the frequency range of interest. In principle, we could choose any other smooth function with similar time 
dependence instead of a Gaussian profile. Here, a plane-wave source with time-dependence proportional to 

Figure 10.  (a) Overlap between the peaks in the transmittance spectrum and the frequencies of the eigenmodes 
with the same handedness as the director. (b) Q-factors for different thicknesses of the sample. (c) Q-factor 
of the B1 mode in differently thick cells. For this example, it can be seen that the Q-factor as a function of 
the thickness D increases approximately as Q ∝ D3.01 . (d) Q-factors for different birefringences (different 
extraordinary refractive indices ne at constant ordinary refractive index no = 1.5 ) and constant thickness 
D = 40µm . (e) Q-factor of the B1 mode for different birefringences of the sample at constant thickness. The 
Q-factor of this particular mode increases with birefringence approximately as Q ∝ (�n)1.94 . (f) The combined 
effect of birefringence �n and cell thickness D on the Q-factor of the B1 mode.
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exp(−iωt − (t − t0)
2/2w2) and arbitrary polarisation is placed at x = dG/2 though and has infinite size along y 

and z axes. The area at which the transmitted flux spectra are measured is placed at the same distance from the 
sample as the source but on the other side of the sample, at x = dG + D + dG/2 . The central spectral frequency 
of the source ω and the spectral width 1/w are set to ω = 1/(pn) , where n = (no + ne)/2 and 1/w = ω so that the 
spectrum roughly overlaps with the range of frequencies in which reflection of light is observed. In calculations, 
we take actual experimental values (when making comparisons, typically approx. 300 nm ) or a generic value of 
p = 1µm . The simulations are performed until the mean amplitudes of the electromagnetic fields at the flux 
measuring area decay by a factor of 5 · 10−5 compared to the maximum ones during each run. Numerical simula-
tions were performed for different combinations of material parameters D, no , ne and angles between linear light 
polarisation and anchoring direction at the incident surface γ (n0,E0) , shown in Fig. 1.

The electromagnetic field in resonators can be described as a superposition of photonic modes as 
E(r, t) =

∑

µ �µ(r)e
−ikµt , where �µ(r) are the given modes. We calculate the modes as eigensolutions of Max-

well’s equations using the finite-difference frequency-domain method by solving the  eigenproblem32,51:

where each eigenmode �µ(r) has its corresponding eigenvalue kµ = ωµ/c0 , sometimes also referred to as an 
eigenfrequency when c0 = 1 is assumed. The dielectric tensor ε(r) , which describes the liquid crystal structure 
and confining glass, is taken as real (i.e. without absorption) except in the PML region, where it has an imagi-
nary component to assure absorption and imitate open boundary conditions. Consequently, both the calculated 

(2)∇ × ∇ ×�µ(r)− k2µε(r)�µ(r) = 0,

Figure 11.  Q-factors of the eigenmodes in 100µm - (b), and 30µm-thick (d) CLC cells and corresponding 
spatial dependence of the relative angles γ = arccos [(n · E)/|E|] between the electric field polarisation E and 
the director n (as shown in (a)) for selected eigenmodes (c,e). The electric field of the mode R1 is perpendicular 
to the director at the boundaries whereas it is mostly parallel within the cell. The electric field of higher modes 
(R2, R3,...) is perpendicular to the director also in the nodes of their amplitude envelopes and it is parallel at 
maxima of amplitude envelopes. Opposite holds for the B modes.
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electric field profile of each resonator mode �µ(r) and the eigenfrequency kµ are always complex. The decay rate 
of the modes, is inversely proportional to the quality factor (Q-factor), defined  as52:

Especially, we focused on frequencies in the vicinity of the photonic band gap, as these modes are most interest-
ing for possible laser design.

Experimental methods and materials
Experimentally, we studied a series of different nematic materials with different birefringence ranging from 0.07 
to 0.45. The CLCs investigated in this study were prepared by mixing pure nematic liquid crystals with the right-
handed chiral dopant R-5011 (Grandin Chem Co Ltd, China) above the clearing temperature of pure NLCs. 
The helical twisting power (HTP) of R-5011 is around ∼116µm−1 at 20◦ C, and the amount of chiral dopant was 
adjusted to obtain nearly the same pitch in all CLC mixtures at room temperature where the experiments were 
performed. The birefringence and the clearing temperature of pure nematic liquid crystals are listed in Table 1.

To study the pitch length and the photonic band gap, as prepared CLCs were introduced into planar-aligned 
wedge cells by capillary action in the isotropic phase. The wedge cells were made of two 0.5 mm thick glass plates 
(Soda-lime glass, AGC Flat Glass (Thailand) Public Company Limited) that were covered by 20–30 nm thin 
layer of polyimide (Nissan SE-5291). The polyimide (PI) was rubbed prior to cell assembling, and the rubbing 
directions on each glass plate were set antiparallel to prevent any splay due to the surface pre-tilt on the PI. The 
thickness of wedge cells was from 1µm to 10µm , and the same type of cells was used in all experiments. The 
pitch lengths of different CLCs were measured by using the conventional Grandjean-Cano wedge  method53.

We used a Nikon polarising microscope (ECLIPSE TE2000-U) equipped with an unpolarised white light 
source (Halogen lamp 12V, 100W) and condenser to measure transmission or reflection spectra of CLC sam-
ples. The light, transmitted through the CLC sample was collected using a low numerical aperture 20× objective 
(Nikon, Plan Fluor 20×/0.5) and sent to a spectrophotometer with 0.5 nm resolution (Andor, Shamrock SR-500i), 
equipped with cooled EM-CCD camera (Andor, Newton DU 970N). The photonic band gap was measured for 
unpolarised white light at a sample thickness of 8µm for all CLCs. The transmittance data was collected for 1 s 
exposure time with a spectrometer slit size of 25µm.

Data availability
Data supporting this study’s findings are available upon reasonable request from the first author J.Z, and will 
be archived in Zenodo Community of the ERC project Light-operated logic circuits from photonic soft-matter 
(LOGOS).
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