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Spatiotemporal‑based automated 
inundation mapping of Ramsar 
wetlands using Google Earth 
Engine
Manish Kumar Goyal 1*, Shivukumar Rakkasagi 1, Soumya Shaga 1, Tian C. Zhang 2, 
Rao Y. Surampalli 3 & Saket Dubey 1,4

Wetlands are one of the most critical components of an ecosystem, supporting many ecological niches 
and a rich diversity of flora and fauna. The ecological significance of these sites makes it imperative to 
study the changes in their inundation extent and propose necessary measures for their conservation. 
This study analyzes all 64 Ramsar sites in China based on their inundation patterns using Landsat 
imagery from 1991 to 2020. Annual composites were generated using the short‑wave infrared 
thresholding technique from June to September to create inundation maps. The analysis was carried 
out on each Ramsar site individually to account for its typical behavior due to regional geographical 
and climatic conditions. The results of the inundation analysis for each site were subjected to the 
Mann–Kendall test to determine their trends. The analysis showed that 8 sites exhibited a significantly 
decreasing trend, while 14 sites displayed a significantly increasing trend. The accuracy of the analysis 
ranged from a minimum of 72.0% for Hubei Wang Lake to a maximum of 98.0% for Zhangye Heihe 
Wetland National Nature Reserve. The average overall accuracy of the sites was found to be 90.0%. 
The findings emphasize the necessity for conservation strategies and policies for Ramsar sites.

Despite covering only about 2.6% of the earth’s land area, wetlands are vital to the hydrological cycle and play 
a significant role in regulating water flow and  quality1. Moreover, wetlands are responsible for the production 
of over 20% of the earth’s organic  carbon2, making them an essential source of nutrients and energy for many 
aquatic and terrestrial  ecosystems3. The availability of adequate food and water makes them the best place for 
diverse species  forms4, 5. Wetlands provide a wide range of vital ecosystem services, such as purifying water, 
controlling floods, conserving biodiversity, supplying food, and sequestering  carbon6. Unfortunately, as one of 
the most vulnerable ecosystems, wetlands have suffered significant losses and degradation worldwide due to 
climate change and human  activities7–9. As wetlands have a close relationship with the climate, any changes in 
their behavior reflect the changing climatic conditions and vice  versa10, 11.

The Ramsar Convention, also known as the Wetlands Convention, is an international treaty signed on Feb-
ruary 2, 1971, in the city of Ramsar,  Iran12. Its objective is to conserve and sustainably use wetlands, which are 
designated as Ramsar sites (Please refer to S1 in the Supplementary Information to understand the criteria 
adopted for identification of wetland as a Ramsar site). The convention provides a framework for the protection 
and responsible use of  wetlands11. The mission of the convention is to achieve sustainable development worldwide 
by conserving and wisely using wetlands through local and national actions and international  cooperation13. 
Implementation of the Ramsar Strategic Plan contributes to the achievement of the Sustainable Development 
Goals (SDGs)14. The Ramsar Conventions’ fourth strategic plan (2016–2024) identifies addressing the drivers 
of wetland loss and degradation, effectively conserving and managing the Ramsar site network, wisely using all 
wetlands, and enhancing implementation as four overarching  goals13. Most of the proposed SDGs are relevant 
in some way or another to wetlands, but the following are of particular importance: wetlands ensure fresh water, 
help replenish ground aquifers, and purify and filter harmful waste from water (Goal 6 of SDG)14. Rice grown in 
wetland paddies is the staple diet of nearly three billion people (Goal 2 of SDG)13. They also help reduce drought 
and contribute to the land formation and coastal zone stability by regulating sediment transport (Goal 11 of 

OPEN

1Department of Civil Engineering, Indian Institute of Technology, Indore, India. 2Department of Civil and 
Environmental Engineering, University of Nebraska, Lincoln, NE, USA. 3Global Institute for Energy, Environment, 
and Sustainability, Lenexa, KS, USA. 4School of Infrastructure, Indian Institute of Technology, Bhubaneswar, 
India. *email: mkgoyal@iiti.ac.in

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43910-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17324  | https://doi.org/10.1038/s41598-023-43910-4

www.nature.com/scientificreports/

SDG)15, 16. Wetlands act as carbon sinks and coastal wetlands reduce the impact of rising sea levels, acting as 
storm surge buffers and providing erosion control (Goal 13 of SDG). Without wetlands, the water, carbon, and 
nutrient cycles would be significantly altered (Goal 14 and 15 of SDG)13.

Mainland China (China), with the fourth-largest wetland coverage in the world, has wetlands that cover 5% 
of the country’s territorial  area17. The country is home to 64 Ramsar sites, covering over 7.3 million hectares 
(73,000 square kilometres) of  area18. Wetlands in China, in spite of their international importance, have been 
rapidly  declining19, 20. Recognizing this issue, restoration has become a major focus of the Ramsar Convention. 
Numerous studies have explored wetland changes and the factors driving  them17, 21. For example, it has been 
estimated that China’s total wetland area decreased by over 50,000  km2 between 1990 and 2000, and that 33% of 
the country’s wetlands were lost between 1978 and  200822, 23. The loss of vegetated wetlands in China between 
1990 and 2010 was primarily due to agricultural  expansion24.

Inundation maps are important for analyzing the historical and present status of wetlands, forecasting future 
changes, and understanding the impact of climate change, natural phenomena, and human  resources25–27. They 
are also useful for wetland management plans and biodiversity  research28. However, wetland change detection 
and delineation that are comprehensive and timely are impossible to obtain using only standard in-situ meth-
ods of data  collection29. Satellite images can be used to prepare inundation maps for extensive or inaccessible 
regions or when the workforce is  limited30. However, inundation mapping is complicated due to the regular and 
non-uniform variations in the extent of inundation. Automating inundation mapping using machine learning 
algorithms such as Support Vector Machine (SVM), Random Forest (RF) classifiers, etc. can be a better way to 
comprehend  wetlands31. Recent developments in machine learning techniques and cloud-computing platforms 
such as Google Earth Engine (GEE) have made complete, large-scale wetland delineation maps  possible29, 32–34. 
GEE provides access to remotely sensed satellite data and significant computational capability for processing 
and analyzing satellite  images34, 35. Remote monitoring of wetlands using satellite data has become a successful 
way for long-term, systematic wetland  mapping36, 37.

In this study, we utilized Landsat data of 64 Ramsar sites in China to create a lengthy sequence of peak inun-
dation maps for the delta, with a medium spatial resolution of 30 m. We established an automated version of a 
previous technique that relies on SWIR band thresholding in GEE, a cloud-based tool for geospatial analysis. 
Results indicate that the SWIR thresholding method is dependable. The inundation maps and GEE code are now 
available for stakeholders, land managers, and academics to use and modify.

Study area
China became a member of the Ramsar Convention in 1992 and has since designated 64 Ramsar sites as of 
2021, located in 24 provincial-level regions (Fig. 1). Heilongjiang has the most sites with 10, followed by Gansu, 
Guangdong, Hubei, Yunnan, Tibet, and Inner Mongolia with four sites each. These wetlands include all types 
defined by the Ramsar Convention and have a carbon sink capacity of more than 1.71 million metric tons per 
 year38. The Ramsar sites in China cover various natural wetland types such as swamps, marshes, lakes, rivers, 
mangroves, tidal flats, estuaries, and shallow marine water. Of these, 17 receive more than 1500 mm of mean 
annual precipitation; 25 and 23 sites were found in the humid subtropical and continental climate regions, 

Figure 1.  Location map of Ramsar wetland sites in mainland China. The table represents names of the wetlands 
(NNR: National Nature Reserve and NR: Nature Reserve). This figure is created using QGIS 3.30.1 (Quantum 
Geographic Information System; https:// downl oad. qgis. org/ downl oads/) and the background shows the base-
map of Stamen terrain from HCMGIS Plugin.

https://download.qgis.org/downloads/
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respectively. The majority of the sites are located in low-altitude regions, with 35 sites at an elevation of less than 
250 m, and most have a mean temperature of less than 20 °C but a maximum temperature greater than 30 °C38, 39. 
Please refer to Table S3a and b in the Supplementary Information for the details such as area, latitude, longitude, 
wetland type, selection criteria, maximum, and minimum elevation of each Ramsar site of China.

Results and discussion
Inundation maps
This paper tried to evaluate the three-decade inundation pattern in China Ramsar sites. It cleared the way for a 
deeper comprehension of surface water dynamics and the ability to predict upcoming trends. The total area of 
shapefiles used in this analysis for China over a 30-year period was 73,269.52  km2. The thresholding technique 
produced inundation maps that displayed annual fluctuation at each site. Each site displayed a distinctive pattern 
of variation, in varying degrees, which was explicable by topographical and climatological  factors27, 40. Figures 2 
display the inundation frequency maps for 15 Ramsar sites (the remaining maps of 49 Ramsar sites are included 
in the Supplementary Information; Fig. S2a–d). On these maps, 100% (dark blue) pixels denote areas that have 
experienced flooding in all the timesteps that are available, whereas 0% (yellow) pixels denote areas that have 
experienced flooding in none of the timesteps and are, therefore, can be considered permanently  dry41.

The wetlands were divided into five classes as follows to effectively analyze the data related to the extent of 
variation in the inundation and draw conclusions.

(a) High-altitude wetlands are those wetlands whose elevation is greater than 4000 m. Nine wetlands are in this 
category, namely Bitahai Wetland, Gansu Yellow River Shouqu Wetlands, Zhaling Lake, Eling Lake, Tibet 
Trari Nam Co Wetlands Sichuan Changshagongma Wetlands, Maidika, and Mapangyong Cuo. Throughout 
the time series, i.e., 30 years, eight showed variation such that their maximum inundation extent was less 
than three times their minimum extent. However, Sichuan Changshagongma Wetlands exceptionally have 
their maximum inundation extent extremely greater than three times (~ 204.32 times) their minimum 
inundation extent (Fig. 3).

(b) Coastal wetlands are wetlands that are directly connected to the sea. As a result, their water level and 
hence the inundation extent was controlled by the sea level. There are 16 wetlands that were found under 
this category namely, Chongming Dongtan Nature Reserve, Dalian National Spotted Seal Nature Reserve, 
Dafeng National Nature Reserve, Fujian Zhangjiangkou National Mangrove Nature Reserve, Guangxi 
Beilun Estuary National Nature Reserve, Dongzhaigang, Huidong Harbor Sea Turtle National Nature 
Reserve, Guangdong Haifeng Wetlands, Guangdong Nanpeng Archipelago Wetlands, Mai Po Marshes 
and Inner Deep Bay, Shandong Yellow River Delta Wetland, Shanghai Yangtze Estuarine Wetland Nature 
Reserve for Chinese Sturgeon, Shankou Mangrove Nature Reserve, Shuangtai Estuary, Yancheng National 
Nature Reserve, and Zhanjiang Mangrove National Nature Reserve. All of them except Dongzhaigang have 
a maximum inundation extent of fewer than three times their minimum extent. However, Dongzhaigang 
exceptionally has its maximum inundation extent significantly greater than three times (~ 33.51 times) its 
minimum inundation extent (Fig. 3).

(c) Reservoirs/barrages are wetlands designed to maintain the desired water level with the help of a human-con-
trollable outlet (dam/weir). However, changes in the inflow over time created variations in their inundation 
extent. Twenty-three wetlands come under this category, namely Xianghai, Hubei Wang Lake, Hubei Chen 
Lake Wetland Nature Reserve, Dong Dongting Hu, San Jiang National Nature Reserve, Dashanbao, Hubei 
Honghu Wetlands, Anhui Shengjin Lake National Nature Reserve, Guangdong Haifeng Wetlands, Hang-
zhou Xixi Wetlands, Hubei Dajiu Lake Wetland, Jilin Momoge National Nature Reserve, Mai Po Marshes 
and Inner Deep Bay, Shandong Yellow River Delta Wetland, Nan Dongting Wetland, and Waterfowl Nature 
Reserve, Shuangtai Estuary, Xingkai Lake National Nature Reserve, Xi Dongting Lake Nature Reserve, and 
Yancheng National Nature Reserve. Among these, all wetlands except Hubei Dajiu Lake Wetland showed 
variation such that their maximum inundation extent was less than four times their minimum extent. 
However, Hubei Dajiu Lake Wetland exceptionally has a maximum inundation extent exceeding (~ 107.8 
times) its minimum inundation extent (Fig. 3).

(d) River stretches are wetlands that typically form part of a flowing river, their water level changes with the 
flow changes in the river. Henan Minquan Yellow River Gudao Wetlands, Fujian Zhangjiangkou National 
Mangrove Nature Reserve, Gansu Yanchiwan Wetlands, Guangxi Beilun Estuary National Nature Reserve, 
Yancheng National Nature Reserve, Shandong Jining Nansi Lake, Zhangye Heihe Wetland National Nature 
Reserve, and San Jiang National Nature Reserve were in this category. Their maximum inundation extent 
is 1 to 4 times their minimum inundation extent (Fig. 3).

(e) Natural wetlands: All the wetlands, excluding those mentioned above, lay in natural wetlands. These wet-
lands were marshes, swamps, lagoons, or shallow-water lakes. They function naturally and offer no con-
trol over the water content. No specific pattern was found between maximum and minimum inundation 
extent, but most sites have their maximum inundation value less than six times their minimum inundation 
value. The maximum inundation value of some sites is greater than ten times their minimum inundation 
value, such as Dongfanghong Wetland National Nature Reserve, Dongzhaigang, Eerduosi National Nature 
Reserve, Gansu Gahai Wetlands Nature Reserve, and Sichuan Ruoergai Wetland National Nature Reserve. 
The Guangdong Nanpeng Archipelago Wetlands (which is also a coastal wetland) displayed minimum 
variation with its maximum inundation extent ~ 1.01 times the minimum inundation extent, and Sichuan 
Changshagongma Wetlands which is also a high-altitude wetland displayed with its maximum inundation 
extent ~ 204.32 times the minimum inundation extent (Fig. 3).
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Trend analysis
The Mann–Kendall (MK) test was carried out under the presumption that a significant trend is the one with a p 
value less than 0.05 (also represented by an absolute Zc score greater than 1.96)42, 43. Since each site had a varied 
number of maps, the analysis was done using the information that was available, and the patterns were extrapo-
lated to cover the entire 30-year period to allow for a consistent comparison of all the locations. Observed trends 
from the trend analysis suggest that 35 sites (Fig. 3) follow an increasing trend with a positive MK test statistical 
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Figure 2.  Inundation maps represent the number of years each pixel was inundated during the period 1991–
2020 (June to September). This figure represents the first 15 out of 64 Ramsar sites. This figure is created using 
QGIS 3.30.1 (Quantum Geographic Information System; https:// downl oad. qgis. org/ downl oads/).

https://download.qgis.org/downloads/
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value (Zc). There are 14 out of these 35 sites (Dafeng National Nature Reserve, Eling Lake, Guangdong Haifeng 
Wetlands, Heilongjiang Hadong Yanjiang Wetlands, Heilongjiang Youhao Wetlands, Heilongjiang Zhenbaodao 
Wetland National Nature Reserve, Henan Minquan Yellow River Gudao Wetlands, Lashihai Wetland, Niaodao, 
Shandong Yellow River Delta Wetland, Tibet Trari Nam Co Wetlands, Xingkai Lake National Nature Reserve, 
Zhaling Lake, and Zhanjiang Mangrove National Nature Reserve) have a significantly increasing trend, with MK 
test statistical value (Zc) greater than + 1.96. Twenty-one out of a total of 64 sites were found to have decreasing 
trend with a negative MK test statistical value (Zc). Of these, eight sites (Dalai Lake National Nature Reserve, 
Dong Dongting Hu, Eerduosi National Nature Reserve, Hubei Dajiu Lake Wetland, Mapangyong Cuo, Nan 
Dongting Wetland, and Waterfowl Nature Reserve, Poyanghu, and Sichuan Changshagongma Wetlands) were 
found to have a significantly decreasing trend with MK test statistical value  (Zc) less than − 1.96 (Fig. 4).

While the MK test is a useful tool, there are some limitations and concerns associated are: (i) the MK test does 
not account for seasonal patterns or repeated variations in the data. (ii) the MK test assumes that datasets are 
collected at equal time intervals. If the data does not meet this assumption, then data interpolation or resampling 
need to be performed. (iii) the trend analysis was conducted using the data available at each site. Variations in 
data availability can affect the accuracy of trend detection, as sites with limited data may have less robust trend 
assessments. (iv) for small sample sizes, the capability of the MK test to find trends may be restricted. (v) The MK 
test assumes that datasets are independent of each other. If there is autocorrelation (correlation between datasets 
at different time lags), it can lead to incorrect conclusions about the presence or absence of trends. Therefore, we 
conducted autocorrelation checks before employing the MK test.

The patterns of trends were shown to be correlated with several variables, including mean annual precipita-
tion, mean temperature, average annual-maximum temperature, elevation, and climatic class. Most of the sites 
with increasing or significantly increasing trends have elevation values less than 4000 m, except Eling Lake, Tibet 
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Figure 3.  Boxplot representing the minimum, 1st quartile, mean, 3rd quartile, and maximum inundated areas 
for each Ramsar site. The arrows on each site represent the trend of the wetland during the period 1991–2020 
using the Mann–Kendall test. Also, the year of occurrence of minimum and maximum inundation is mentioned 
for each site. This figure is created using MATLAB R2022a (https:// www. mathw orks. com/ produ cts/ new_ produ 
cts/ relea se202 2a. html).
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Trari Nam Co Wetlands, Zhaling Lake, Maidika, and Tibet Selincuo Wetlands. Similarly, most of the sites with 
decreasing or significantly decreasing trends have elevation values less than 4000 m except Bitahai Wetland, 
Gansu Yellow River Shouqu Wetlands, Mapangyong Cuo, and Sichuan Changshagongma Wetlands (Fig. 5b).

An analogy was also found with respect to the precipitation that the wetlands received. Most of the sites with 
increasing or significantly increasing trends have average precipitation values greater than 500 mm, except Gansu 
Yanchiwan Wetlands, Jilin Momoge National Nature Reserve, and Tibet Trari Nam Co Wetlands. Most of the 
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Figure 4.  Change in inundation area for significantly decreasing Ramsar sites. The figure represents the area 
of each wetland for each year from 1990 to 2020. This figure is created using Microsoft Excel 365, Version 2308 
(https:// www. micro soft. com/ en- in/ micro soft- 365/ excel).

https://www.microsoft.com/en-in/microsoft-365/excel
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sites with decreasing trends have average precipitation values less than 1500 mm except Fujian Zhangjiangkou 
National Mangrove Nature Reserve, Guangxi Beilun Estuary National Nature Reserve, Huidong Harbor Sea Tur-
tle National Nature Reserve, Jiangxi Poyang Lake Nanji Wetlands, Shankou Mangrove Nature Reserve (Fig. 5a).

It can also be inferred that most of the sites with significantly increasing trends have maximum temperature 
values less than 35 °C except Anhui Shengjin Lake National Nature Reserve, Hangzhou Xixi Wetlands, Hubei 
Wang Lake. On the other hand, most of the sites with significantly increasing trends have maximum tempera-
ture values less than 30 °C except Shandong Yellow River Delta Wetland, Henan Minquan Yellow River Gudao 
Wetlands, Henan Minquan Yellow River Gudao Wetlands, Dafeng National Nature Reserve. Most of the sites 
with decreasing or significantly decreasing trends have maximum temperature values greater than 20 °C except 
Bitahai Wetland, Dashanbao, Gansu Gahai Wetlands Nature Reserve, Mapangyong Cuo, Sichuan Changshago-
ngma Wetlands (Fig. 5c).

The analogy was also found with respect to the mean Temperature of the wetlands. Most of the sites with 
increasing or significantly increasing trends have mean temperature values less than 15 °C except Anhui Shengjin 
Lake National Nature Reserve, Chongming Dongtan Nature Reserve, Hangzhou Xixi Wetlands, Hubei Chen 
Lake Wetland Nature Reserve, Hubei Wang Lake, Mai Po Marshes, Dafeng National Nature Reserve, Henan 
Minquan Yellow River Gudao Wetlands, Guangdong Haifeng Wetlands, and Inner Deep Bay. Among the sites 
showing increasing trends, Eling Lake, Gansu Yanchiwan Wetlands, Inner Mongolia Grand Khingan Hanma 
Wetlands, Maidika, Tibet Selincuo Wetlands, Zhaling Lake have negative mean temperature values. All the sites 
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Figure 5.  Bar chart showing the number of Ramsar sites in different ranges of (a) precipitation (mm), (b) 
elevation (m), (c) maximum temperature, (d) mean temperature, and (e) climate class. This figure is created 
using Microsoft Excel 365, Version 2308 (https:// www. micro soft. com/ en- in/ micro soft- 365/ excel).
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that show a significantly decreasing trend or decreasing trend, except Mapangyong Cuo, Heilongjiang Nanweng 
River National Nature Reserve, have their mean temperature values positive (Fig. 5d).

Ideally, a site should be decreasing if, at that site, the precipitation trend was found to be decreasing (i.e., 
decrease in the amount of water intake), and both mean Temperature and average annual-maximum Tempera-
ture were found to increasing (i.e., increase in the amount of water loss due to evapotranspiration and other 
surface water losses) and vice versa. Such an ideal relationship among the overall trend of the site, precipitation 
trend, maximum temperature trend, and mean temperature trend was found in the case of Dongfanghong 
Wetland National Nature Reserve, San Jiang National Nature Reserve, Shankou Mangrove Nature Reserve, 
Bitahai Wetland, Dalai Lake National Nature Reserve, Dong Dongting Hu, Dongzhaigang, Fujian Zhangjiangkou 
National Mangrove Nature Reserve, Guangxi Beilun Estuary National Nature Reserve, Heilongjiang Nanweng 
River National Nature Reserve, Hubei Dajiu Lake Wetland, Hubei Honghu Wetlands, Huidong Harbor Sea Tur-
tle National Nature Reserve, Jiangxi Poyang Lake Nanji Wetlands, Nan Dongting Wetland, Waterfowl Nature 
Reserve, Poyanghu, Shanghai Yangtze Estuarine Wetland Nature Reserve for Chinese Sturgeon, Tianjin Beidagang 
Wetlands, Xi Dongting Lake Nature Reserve, Zhalong, and Xianghai (Fig. 5c).

Accuracy assessment
The accuracy assessment allowed for the thresholding method to be relied upon as an effective way to produce 
inundation maps. Due to several circumstances, including the nature of the site, the digitizing areas, and the 
difference in the spectral values of wet and dry areas, the accuracy of each site turned out to be varied. The 
Accuracy ranged from a minimum Overall Accuracy of 72.0% at Hubei Wang Lake to a maximum of 98.0% at 
Zhangye Heihe Wetland National Nature Reserve. The average Overall Accuracy of the sites was found to be 
90.0%, with the average dry and wet Producer’s Accuracies of 86.4 and 81.3%, respectively and the dry and wet 
User’s Accuracy of 88.7 and 86.4% (Fig. 6).

The degree of accuracy was determined by contrasting a map made from a 4-month composite with a single 
image from a specific day (even though it was taken from the same period), which might not accurately depict 
the area that was entirely inundated. It either represented less extent due to no rainfall in the near time or more 
due to heavy rainfall that might have happened that day, thus creating a point of error. Secondly, digitizing wet 
and dry areas required a human process, which was simple in wetlands with open water and parts that were 
alternately permanently wet and dry. However, places in those wetlands with a lot of variation in the inundated 
and where every part had been inundated at some point in the series made digitization difficult since it confused 

Figure 6.  Graph showing the number of composites, overall accuracy, user accuracy, and producer accuracy for 
all the sites in the study. This figure is created using MATLAB R2022a (https:// www. mathw orks. com/ produ cts/ 
new_ produ cts/ relea se202 2a. html).

https://www.mathworks.com/products/new_products/release2022a.html
https://www.mathworks.com/products/new_products/release2022a.html
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the classifier. The disparity between the median wet and dry values was also lessened in lakes where the water 
was surrounded by greenery, and the dry area was also covered with vegetation. The shadows altered the pixel 
values, leading to an inaccurate estimate of the median wet and dry values and a classification error. Mixed pixels 
may also be a source of inaccuracy. Digitizing wet and dry areas was difficult due to the marshy environment 
because it was difficult to make judgments from the Landsat imageries, which reduced accuracy. Due to a number 
of factors, including some of those stated above, the average Overall Accuracy of this study was lower than the 
95.9% discovered by Inman and  Lyons27.

Conclusion
The effect of climatic change and commercial changes in the behavior of Ramsar wetlands has been given impor-
tance throughout the Ramsar report. This study focused on analyzing all 64 Ramsar sites in China based on their 
inundation pattern over the last three decades using pre-processed Landsat imageries for a period of 30 years 
(1991–2020). The technique of SWIR Thresholding was applied on these composites to generate inundation 
maps. The analysis was carried out on each Ramsar site individually to account for its typical behavior owing to 
regional climatic and geographical conditions. From the analysis, 37 sites showed an increasing trend, and 27 sites 
showed a decreasing trend. 14 out of 37 sites were significantly increasing and 8 out of 27 showed significantly 
decreasing behavior. The accuracy ranged from a minimum Overall Accuracy of 72.0% at Hubei Wang Lake to a 
maximum of 98.0% at Zhangye Heihe Wetland National Nature Reserve (Fig. 2). The average Overall Accuracy 
of the sites was found to be 90.0%, the average dry and wet Producer’s accuracies of 86.4 and 81.3%, respectively 
and the dry and wet User’s Accuracy of 88.7 and 86.4%. This study helps to understand, through circumstances, 
the importance of wetlands and their wise management.

The limitation of study comprises various factors, including: the composites in the 1991–2004 time-period 
showed the most flaws, with some composites completely missing the B7 (SWIR) band due to poor Landsat 5 
imageries. The coastal region adds to the complexity by forming clouds on a regular basis, making cloud mask-
ing difficult to process and resulting in regions of transparent (masked) pixels. Further, the degree of accuracy 
was determined by contrasting a map made from a 4-month composite with a single image from a specific day 
(even though it was taken from the same period), which might not accurately depict the area that was entirely 
inundated. The shadows altered the pixel values, leading to an inaccurate estimate of the median wet and dry 
values and a classification error. The mixed pixels may also be a source of inaccuracy.

For further study, the main focus would be on significantly decreasing sites, i.e., Dalai Lake National Nature 
Reserve, Dong Dongting Hu, Eerduosi National Nature Reserve, Hubei Dajiu Lake Wetland, Mapangyong Cuo, 
Nan Dongting Wetland and Waterfowl Nature Reserve, Poyanghu, and Sichuan Changshagongma Wetlands as 
they were found to be at the highest risk of extinction. For the conservation of these 8 sites, some machine learn-
ing models can be used to predict the future inundation of the sites and do the future analysis to find out possible 
reasons for the decrease in inundation area of the sites so that suitable measures can be taken to conserve the 
wetlands under threat. Future work could expand the management and conservation of wetlands by: (1) incorpo-
rating different satellite products at higher resolution; (2) using microwave and recently available Landsat-9 data 
where satellite temporal coverage is inadequate or cloud-covered; (3) mapping the spatiotemporal component of 
hazard with hotspots of climate impacts and risks; (4) establishing the science evidence base through recognized 
modelling and participatory risk assessment where modelling is not achievable; and (5) implementing actions 
that can lessen the vulnerability of wetlands to changing climate along with their management recommendations 
based on the risk assessment.

Methods
Numerous classification methods, including unsupervised, supervised band thresholding, band ratios, indices, 
various regression trees, and combinations of these methods, have been proposed in the  past44–46. Out of these 
methods, band thresholding has distinguished itself as an effective and accurate method. Using MODIS imagery, 
Murray-Hudson et al. proposed a technique for thresholding the Short-Wave Infrared (SWIR) band and gener-
ated highly accurate  findings46. The SWIR band is susceptible to moisture content on the Earth’s surface. It can 
accurately differentiate inundated areas covered with dense vegetation from  dryland46. This method is based on 
a simple formula for thresholding the SWIR band. Thus, its simplicity makes it time efficient, computationally 
straightforward, and readily applicable using concise algorithms; therefore, getting an edge over other com-
plex methods of vegetation is another advantage of this method. The above-mentioned advantages of the band 
thresholding method are incorporated into the current study. This innovative study tries to assess all of China’s 
Ramsar sites simultaneously and compare their various trends and features in order to draw some conclusions. 
The schematic flowchart of the process of generating inundation maps using GEE is shown in Fig. 7.

Cloud masking
Clouds and shadows can be seen in the Landsat sceneries; these elements must be hidden to produce correct 
composites and improve classification  accuracy47. The pixels on the Landsat cloud mask band categorized as 
clouds or cloud shadows, were concealed for each  scene48–50. The median value for the pixel from a year before 
or after the scenes’ date was used to fill in these pixels as part of a gap-filling  procedure51, 52.

Landsat composites
The SWIR band (B7) is chosen for each scene, and a gap-filling method was then applied to cloud-masked images. 
All the scenes available from June to September of each year are used to build the  composites27, 32. This period 
corresponds to the growing season in many regions when wetlands experience peak vegetation growth and 
dynamic changes. Monitoring wetland condition during this period provides valuable insights into vegetation 
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health, water availability, and the overall functionality of wetland ecosystems. Most of the wetlands in China 
endure yearly floods that coincide with the southwest monsoon, and they are most heavily inundated from June 
to  September53. The value of the relevant pixel in the composites to be formed is determined by evaluating the 
median of the corresponding pixel values from all the scenes of that year for each pixel in the study area.

Filtering bad composites
The SWIR (B7) band wasn’t present in all the composites that were produced. By deleting those composites from 
the image collection, they were manually screened. The majority of cloud masking is handled by the algorithm. 
But in practically every coastal site, there were some regions where the pixels were often categorized as clouds. 
The masking method turned those pixels transparent in these circumstances. A filtering method was used to filter 
these pixels. This resulted in a set of composites devoid of masking  whatsoever54. From site to site, a different 
number of final flawless composites were  produced55. For example, an average of 27 composites were obtained 
for each site, with a minimum of 6 composites on Tibet Selincuo wetland and a maximum of 30 composites 
on Dongfanghong Wetland National Nature Reserve, Donzhaigang, Eerduosi National Nature Reserve, Gansu 
Yanchiwan Wetlands, Guangdong Haifeng Wetlands, Guangxi Beilun Estuary National Nature Reserve, Heilongji-
ang Hadong Yanjiang Wetlands, Heilongjiang Qixing River National Nature Reserve, Heilongjiang Zhenbaodao 
Wetland National Nature Reserve, Huidong Harbor Sea Turtle National Nature Reserve, Inner Mongolia Bila 
River Wetlands, Shankou Mangrove Nature Reserve, Tianjin Beidagang Wetlands, Xi Dongting Lake Nature 
Reserve, Xingkai Lake National Nature Reserve, Zhaling Lake, and Zhangye Heihe Wetland National Nature 
Reserve. Out of 64 wetlands, 60 have more than 20 composites.

Creating inundation maps from the composites
By thresholding the SWIR band’s pixel values from composite images, inundation maps are generated. First, we 
manually evaluated and digitalized each site’s permanent wet (such as the lake’s central region and permanent 
channels) and dry portions (like barren land or hill region near the wetland). To account for the dynamic seasonal 
and annual nature of the inundation patterns in the Wetlands, a composite specific SWIRthreshold value is calcu-
lated using Eq. (1). Using these digitized areas, the median SWIR values for wet ( SWIRwet ) and dry ( SWIRdry ) 
inundated areas were calculated for each composite.

The classifier evaluates each pixel’s SWIR value against its SWIRthreshold for each composite. Inundated pixels 
are those with SWIR values below SWIRthreshold , and dry pixels are those with SWIR values above SWIRthreshold . 
To construct an inundation map, each pixel with a certain SWIR value is categorized and translated into one of 
the two values, namely 0 for dry pixels and 1 for inundated pixels.

Image‑based accuracy assessment
To determine the thresholding method’s applicability, particularly for China, remote sensing applications, valida-
tion was required. The simplest method might be to use Google Earth Pro’s (GEP’s) historical imagery to compare 
inundation maps with GEP. Based on the historical imageries that are now available in GEP, a random set of five 
years has been chosen for each Ramsar site. The random points function in GEE was used to create a set of 50 
random points for each of the five  years56. Using GEE’s Sample Region function, the pixel values at each location 
were extracted from the inundation maps and exported as a CSV file with just two values: 1 for inundated pixels 
and 0 for dry pixels. After importing the KML file into GEP, each location was evaluated visually interpretation 
and categorized as either dry (i.e., 0) or inundated (i.e., 1). Due to the lack of in-situ data, we had to use this as 
our reference dataset. This procedure was carried out at each random point in the five-year period for each site for 

(1)SWIRthreshold = SWIRwet + 0.3
(

SWIRdry − SWIRwet
)

i) Import Landsat 5, 7, & 8 
from June - September

ii) Mask clouds in each 
scene

iii) Fill gaps in each scene

iv) Select SWIR band
v) Create composites & clip 

to each site
vi) Filter years containing 

any band

vii) Filter years with 
missing areas

viii) Digitize wet and dry 
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ix) Find median wet and 
dry values and calculate 

threshold value
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Pixels<threshold=wet
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Figure 7.  Schematic flowchart depicting the process of generating inundation maps using GEE. This figure is 
created using Microsoft Excel 365, Version 2308 (https:// www. micro soft. com/ en- in/ micro soft- 365/ excel).

https://www.microsoft.com/en-in/microsoft-365/excel
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each year. Thus, for each location, a collection of 250 random points was obtained, together with reference data 
from the imagery and pixel values taken from the maps. This process confirmed 16,000 points (250 × 64 = 16,000). 
Each site’s unique error matrix was produced. Several different types of accuracy were calculated, including 
Overall Accuracy (defined as the sum of the diagonal elements in the error matrix that were correctly classified 
and divided by the total sampled points), Producers Accuracy (defined as the diagonal entry in the error matrix 
for each column divided by its respective column total), and User Accuracy (defined as the diagonal entry in the 
error matrix for each row divided by its respective row total).

Mann–Kendall (MK) test
The Mann–Kendall (MK) methodology is a statistical test used to find trends in time series data. The MK test 
was run on each site separately to look for trends in the variation of inundation extent. This test was initially 
developed by Mann et al.  in57 and was further investigated by Kendall et al.  in58 and by Hirsch et al.  in59. Blain 
et al. provided an  assessment42. The MK test generates test statistics, which follows a known probability dis-
tribution, allowing for the calculation of p values. The MK test was carried out under the presumption that a 
significant trend is the one with a p value less than 0.05 (also represented by an absolute Zc score greater than 
1.96)42. The p value is used to assess the significance of any observed trend and if less than a chosen significance 
level (typically 0.05) indicates a statistically significant trend, suggesting that the observed pattern is unlikely to 
be due to random  chance42, 43.

Data availability
To get the entire time series dataset from 1991 to 2020, we employed all three Landsat sensor imageries (Landsat 5 
TM, Landsat 7 ETM+, and Landsat 8 OLI). Landsat 5 (availability: 1984 to 2012) and Landsat 7 (availability: 1999 
to present) images contain four Visible and Near-Infrared (VNIR) bands and two short-wave infrared (SWIR 
or B7) bands processed to orthorectified surface reflectance, and one thermal infrared (TIR) band processed to 
orthorectified brightness temperature, while Landsat 8 (2013 to present) contains 11 bands. The SWIR bands in 
all the Landsat scenes have a 30 m/pixel resolution. The GEE has all the above datasets available in its data catalog 
and ready for usage (https:// devel opers. google. com/ earth- engine/ datas ets/ catal og/ LANDS AT_ LT05_ C01_ T1_ 
SR; https:// devel opers. google. com/ earth- engine/ datas ets/ catal og/ LANDS AT_ LE07_ C01_ T1_ SR; https:// devel 
opers. google. com/ earth- engine/ datas ets/ catal og/ LANDS AT_ LC08_ C01_ T1_ SR). For the analysis, most of the 
shapefiles of the wetlands were obtained from the official Ramsar website (https:// rsis. ramsar. org/). However, 
the shapefiles of Bitahai Wetland, Eerduosi National Nature Reserve, Jilin Momoge National Nature Reserve, 
Niaodao, Sichuan Ruoergai Wetland National Nature Reserve, Xi Dongting Lake Nature Reserve, and Zhanjiang 
Mangrove National Nature Reserve were manually created in QGIS using the coordinate information available 
on the official website at a scale of 10,000. Climate data such as average precipitation, maximum temperature, 
mean temperature, and average precipitation for each wetland, has been extracted from ECMWF reanalysis data 
(ERA5 monthly)60 using GEE (https:// devel opers. google. com/ earth- engine/ datas ets/ catal og/ ECMWF_ ERA5_ 
MONTH LY).

Code availability
The GEE allows the inundation mapping algorithm to be applied on Landsat images. Codes for inundation map-
ping and other parts of the analysis will be made available upon request to the corresponding author.
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