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Dual‑attention‑based 
recurrent neural network 
for hand‑foot‑mouth disease 
prediction in Korea
Sieun Lee  & Sangil Kim *

Hand–foot–mouth disease (HFMD) is a viral disease that occurs primarily in children. Meteorological 
factors have a significant impact on its popularity annually in Korea. This study proposes a new HFMD 
prediction model using a dual‑attention‑based recurrent neural network (DA‑RNN) and important 
weather factors for HFMD in Korea. First, suspected cases of HFMD in each state were predicted 
using meteorological factors from the DA‑RNN. Second, the weather factors were divided into six 
categories: temperature, wind, rainfall, day length, humidity, and air pollution to conduct sensitivity 
analysis. Because of this prediction, the proposed model showed the best performance in predicting 
the number of suspected HFMD cases in a week compared with other RNN methods. Sensitivity 
analysis showed that air pollution and rainfall play an important role in HFMD in Korea. This model 
provides information for HFMD prevention and control and can be extended to predict other infectious 
diseases.

Hand–foot–mouth disease (HFMD) is a viral disease caused by the transmission of coxsackievirus A16 (CoxA16) 
and enterovirus 71 (EV 71) into the  intestine1. It mostly affects preschoolers and is caused by respiratory secre-
tions and excretions from gathering places for children. Most of these diseases have mild symptoms; however, 
death occurs in severe  cases2,3. Asia shows a recurring trend  annually4,5. Because no specific treatment or vaccine 
is available, only treatments to alleviate symptoms in cases of infection have been  performed6. Various causa-
tive organisms can re-infect the disease. Models capable of predicting disease patterns are essential for disease 
prevention.

Asia has periodic fluctuations that show a repetitive epidemic pattern, with the peak of the epidemic occur-
ring every summer before COVID-197. It is classified as a national infectious disease (Level 4) in Korea and is 
reported by the National Institute of Health through the sampling surveillance system. Suspected cases among 
1000 patients are reported to the Korea Centers for Disease Control and Prevention on a weekly  basis8. Previous 
research has demonstrated a significant correlation between HFMD and meteorological conditions such as aver-
age temperature, relative humidity, wind speed, and sunshine  hours9–11. Among these meteorological conditions, 
it is important to determine the meteorological factors that should be prioritized.

Numerous studies have been conducted to generate HFMD predictive  models11–15. A mathematical model 
was used to determine the seasonality of HFMD infectivity and to predict the number of patients, which showed 
that peaks occur annually in summer and  autumn13. Long short-term memory (LSTM), autoregressive integrated 
moving average (ARIMA), and nonlinear autoregressive (NAR) neural networks have been used to determine 
the most appropriate model using machine learning and statistical methods. These methodologies accounted 
for the seasonal and trending characteristics of HFMD. However, these studies did not identify the factors that 
significantly influence  seasonality14. Similarly, the time-series pattern was learned using the LSTM method to 
predict HFMD generation and determine the contribution of meteorological factors to spatiotemporal effects 
using a statistical method called  geodetector12. In this study, we identified HFMD predictors and influential 
meteorological factors. However, the performance of the LSTM deteriorates as the length of the time series 
increases. Recently, models that predict epidemics in the form of extended LSTM using attention techniques 
have been  developed16,17.

Numerous studies on forecasting models using meteorological factors have been conducted in China. In 
Korea, the epidemiological characteristics and spatiotemporal distribution of HFMD in children under six years 
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of age were evaluated using national health insurance data, and the prevalence pattern was evaluated using the 
spatiotemporal clustering  method15. However, meteorological factors that significantly affect the prevalence of 
HFMD in Korea have not yet been studied.

The limitations of previous studies were overcome by predicting HFMD using a dual attention-based recur-
rent neural network (DA-RNN)  model18 with 20 meteorological factors. Through the training of this model, we 
identified important meteorological factors associated with HFMD in Korea that are unknown to our knowledge. 
This study provides the information necessary to establish national management and prevention strategies in 
the future. This model could be extended to predict other infectious diseases.

Results
Epidemiological and meteorological characteristics
In Korea, HFMD was reported to exhibit an annual repeating pattern from 2011 to 2020. The most prevalent 
weeks were typically those between weeks 25 and 30. The other two are represented by 2015, which had week 22 
as the popular, and 2020, which had week 38 as the popular week. The size of the prevalence varied significantly 
from year to year, with 2019 showing the highest level (66.7 thousand parts, 27 weeks) and 2020 showing the 
lowest level (2.2 thousand parts, 38 weeks). The HFMD statistics for each year are shown in Fig. 1A.

Table 2 shows 20 meteorological factors from six groups used from 2011 to 2020. Figure 1B–G show some 
meteorological factors by group. Figure 1 shows the epidemiological and meteorological characteristics from 
2011 to 2020, and similar patterns can be identified for each period. Supplementary Table S1 shows the Pearson’s 
correlation analysis between epidemiological and meteorological characteristics.

Estimation of suspected HFMD patients
Twenty meteorological factors were normalized and used. Meteorological factors and weekly HFMD data from 
2011 to 2018 were used as training sets for the DA-RNN. Meteorological factors and HFMD data from 2019 
to 2020 were used as a test set to check the forecasting model, which was saved after 1000 epochs. The mean 
absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared 
score  (R2) were used to evaluate the performance of the experiment. Table 1 compares the performances of 
each method. DA-RNN achieved the best performance for all evaluation indicators. Figure 2 shows the training 
and test prediction results for LSTM, GRU, seq2seq, encoder attention-based seq2seq, decoder attention-based 
seq2seq, and DA-RNN.

Sensitivity analysis
The sensitivity test results are shown in Fig. 3. The sensitivity analysis compared the evaluation scores (MAE, 
RMSE, MAPE, and  R2) by eliminating them by group, as shown in Table S2.

In order to determine important meteorological groups by objectifying the evaluation scores obtained from 
the sensitivity experiment, a spider map was obtained through the defined important values, which is shown in 
Fig. 3A. The importance score was calculated based on the area of this spider map, and the larger the value, the 
greater the importance, which is shown in Fig. 3B.

The predicted important score after removing the five elements from the temperature group was 0.0892. The 
predicted important score two elements of the wind group removed was 0.6455; the predicted important score 
with two elements of the rainfall group removed was 0.891; the predicted important score with two elements of 
the day length group deleted was 0; the important score with two elements of the humidity group omitted was 
0.5624; and the important score with five elements of the air pollution group deleted was 0.6485. The important 
score results for each group are shown in Fig. 3B. Supplementary Fig. S2 shows the sensitivity analysis important 
score results.

Because of the characteristics of its structure, DA-RNN calculates the attention scores of features every time, 
which can confirm changes in the importance of meteorological factors. Figure 3C shows changes in the impor-
tance of meteorological factors during the test period. Although the score values vary depending on the period, 
rainfall and air pollution groups have high important scores over the overall time.

Method
Figure 4 summarizes the HFMD prediction using DA-RNN. After data collection and normalization, weekly 
HFMD data were regression-targeted using DA-RNN to predict weekly suspected HFMD cases per 1000 people 
and to discriminate between important meteorological factor groups.

Data collection
HFMD data were obtained from 2011 to 2020 from the number of suspected cases per 1,000 people per state 
provided by the Korea Centers for Disease Control and  Prevention19. For meteorological factors, 15 types of data 
on temperature, wind speed, precipitation, day length, and humidity from 2011 to 2020 were collected using 
the Korea Meteorological Data Open  Portal20. Five types of air pollution data were collected from 2011 to 2020 
through  AirKorea21.

Table 2 shows 20 meteorological factors and descriptions used for predicting HFMD. These meteorological 
factors were classified into six categories: (1) Temperature: average temperature (°C), average maximum tempera-
ture (°C), maximum temperature (°C), average minimum temperature (°C), and minimum temperature (°C); (2) 
Wind: average wind speed (m/s), maximum wind speed(m/s), and maximum instantaneous wind speed(m/s); 
(3) Rainfall: average rainfall (mm), maximum rainfall (mm), 1 h maximum rainfall (mm); (4) Sunshine: day 
length (hr) and day length per year (MJ/m2); (5) Humidity: average humidity and minimum humidity; (6) Air 
pollution:  SO2, CO,  O3,  NO2, and PM10. Statistics on meteorological factors are shown in Fig. 1B–G.
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Figure 1.  Epidemiological and meteorological characteristics. (A) Number of suspected HFMD cases per 
thousand people per week. (B) Average, maximum, and minimum temperatures among the temperature group. 
(C) Maximum instantaneous wind speed and average wind speed among the wind group. (D) Maximum rainfall 
and 1 h maximum rainfall among the rainfall group. (E) Day length per year among the sunshine group. (F) 
Average and minimum humidity among the humidity group. (G)  SO2,  O3, and  NO2 among the air pollution 
group.
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Table 1.  Prediction results performances.

Models MAE RMSE MAPE R2

LSTM 3.0114 6.8165 1.5292 0.5785

GRU 3.4922 8.2496 1.8420 0.3827

Seq2seq 1.5339 3.2754 0.6816 0.9026

Encoder attention 1.4555 3.2731 0.4587 0.8905

Decoder attention 1.7313 3.6694 0.9307 0.8778

DA-RNN 0.8544 2.7117 0.3163 0.9333

Figure 2.  Estimation of suspected HFMD patients. In (A) LSTM; (B) GRU; (C) Seq2seq; (D) encoder 
attention-based seq2seq; (E) decoder attention-based seq2seq; (F) DA-RNN. The orange, blue, and green lines 
represent the actual data value, predicted value of the train, and predicted value of the test, respectively.
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Data normalization
Normalization pre-processing is essential when there is a difference in the scale of features between the data. 
Min–max normalization converts all features between zero and  one22. The min–max normalization equation 
is as follows:

x′ =
x −min

max −min

Figure 3.  Sensitivity analysis results. (A) Spider map of the sensitivity analysis important value results; (B) 
Important scores; (C) Encoder attention scores of the DA-RNN test results.
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where x denotes each feature value and x′ denotes the change in scaling. Min and max are the maximum and 
minimum values of each feature.

Estimation of suspected HFMD patients using DA‑RNN
The traditional RNN successfully uses a time-series prediction algorithm, which has the problem of vanishing 
gradients. LSTM and GRU have been used to overcome this limitation. The LSTM and GRU are shown in Figure 
 S323,24. However, the same problem occurs when the time series increases. The structure of the encoder-decoder 
network was used; a representative example is  Seq2Seq25,26. This structure has been extended to an attention 
mechanism that provides a score for past information because the performance degradation problem occurs 
when the input sequence is lengthy. Qin et al. proposed a DA-RNN as a time-series prediction  model18. This 
structure overcomes the shortcomings of the RNN model in existing time-series studies using two attention 
mechanisms with encoder and decoder structures. The structure of this study’s model is shown in Fig. 5. The 
attention mechanism does not use the input data of each forecasting point in the same ratio but rather evaluates 
the attention score related to the data of the corresponding forecasting point and uses it for prediction. Among 
various attention scores, the Bahdanau (concate) method was  used26.

This study compares the prediction results obtained using LSTM, GRU, and seq2seq to confirm the prediction 
performance of DA-RNN. The importance of the weather factor in the encoder and the temporal importance 

Figure 4.  Framework diagram.

Table 2.  Meteorological factors used in forecasting and their descriptions.

Group name Feature name Mean Std.div Min Max

Temperature

Average temperature (°C) 13.1228 9.4744  − 6.2714 29.8286

Average maximum temperature (°C) 18.5628 9.3420  − 2 35.5

Maximum temperature (°C) 23.2809 8.5362 5.4286 39.4

Average minimum temperature (°C) 8.3895 9.8835  − 11.3429 25.3429

Minimum temperature (°C) 1.7086 10.8119  − 20.8714 20.5

Wind

Average wind speed (m/s) 1.9545 0.3890 1.1857 3.5286

Maximum wind speed (m/s) 12.0837 2.4749 7.3857 20.5714

Maximum instantaneous wind speed (m/s) 17.3248 3.0480 10.5286 28.3571

Rainfall

Average rainfall (mm) 3.5180 4.9080 0 32.4714

Maximum rainfall (mm) 25.3245 29.2786 0 195.0143

1 h maximum rainfall (mm) 8.8643 12.6071 0 59.6286

Day length
Day length (hr) 6.5254 1.8445 1.4571 12.0714

Day length per year (MJ/m2) 13.7006 4.6451 4.5371 26.0343

Humidity
Average humidity (%) 67.5706 10.1568 44.2857 90.4286

Minimum humidity (%) 22.8662 10.2869 6.2857 52.2857

Air pollution

SO2 0.0045 0.0012 0.0026 0.01042

CO 0.4965 0.1158 0.3056 1.08039

O3 0.0270 0.0091 0.0105 0.05755

NO2 0.0224 0.0061 0.0085 0.03906

PM10 44.9482 15.7274 16.2785 120.7358



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16646  | https://doi.org/10.1038/s41598-023-43881-6

www.nature.com/scientificreports/

in the decoder were calculated. To confirm the influence of the importance calculation of each structure, the 
prediction results obtained through a single attention mechanism in the encoder and decoder were compared.

DA-RNN is an encoder-decoder-based algorithm comprising an attention mechanism in each encoder and 
decoder. The input data tensor consists of n driving series and n-1 target series during the T time step, and the 
output data are the T time step, which is called the target series of T time steps. Each encoder passes through the 
input attention and encoder LSTM structure. The input attention shown in Fig. 5 can be expressed mathemati-
cally as follows:

Figure 5.  DA-RNN diagram. (A) Encoder (B) Decoder.
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where xk denotes the kth weather variable, ht−1 denotes the hidden encoder state, and w denotes the encoder cell 
state. ekt  is calculated using the Bahdanau method as the kth attrition score of t time, and the attrition distribution 
αk
t  is calculated using softmax and calculated as the attention value x̃t of t time. The mathematical expression of 

the encoder LSTM is expressed as follows:

where b denotes the bias, and the encoder LSTM has the same structure as the general LSTM. ft is a forget gate, 
it is an input gate, ot is an output gate, st is a cell state, and ht is a hidden state. σ and ⊙ are sigmoid function and 
element wise multiplication, respectively.

The decoder has a temporal attention and an LSTM decoder structure. The temporal attention is expressed 
mathematically as follows:

The hidden state calculated using the encoder was used as the input for temporal attention. Similarly, the 
attention score lkt  was calculated using the Bahdanau method, and the attention distribution β i

t was calculated 
using the activation function softmax to obtain the temporal attention value ct at time t. In the LSTM decoder, 
the calculated attention value, and previous target value yt−1 were concatenated and used.

The mathematical expression of the decoder LSTM is identical to that of the encoder LSTM, as expressed in 
the following equation.

The DA-RNN model was configured using Python 3.9.7, PyTorch 1.11, Numpy 1.21.4, and Pandas 1.3.4.
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ŷT = vTy
(
wy[dT ; cT ]+ bw

)
+ bv .



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16646  | https://doi.org/10.1038/s41598-023-43881-6

www.nature.com/scientificreports/

Accuracy analysis of prediction
Four evaluation scores—MAE, RMSE, MAPE, and  R2—were computed to assess the effectiveness of the various 
methods for HFMD prediction. If yT is the actual value and ŷT  is the value predicted by the methods, each score 
is mathematically expressed as follows:

We set the accuracy scores metrics defined (MAE, RMSE, MAPE,  R2).

Sensitivity analysis
A drop group important measure was performed to determine the importance of the six meteorological groups. 
Accuracy scores metrics are calculated by removing each group of the meteorological group one by one. The 
smaller the calculated MAE, RMSE, and MAPE are, the better the performance is, but the closer R2 is to 1, the 
better the performance is. Therefore, the value of 1- R2 was used to provide the same standard.

To determine the order of important meteorological groups, we went through three steps. First, we calculated 
the important value to measure the accuracy scores for each meteorological group. Total group accuracy scores 
are values using all meteorological groups, and drop group accuracy scores are defined as accuracy scores with 
one group removed. The formula for calculating important value is as follows;

(Important value) = (total group accuracy scores) − (drop group accuracy scores).
After calculation, this important value was normalized to a minimum value of 0 and a maximum value of 1. 

The closer it is to 1, the higher the importance, and the closer it is to 0, the lower the importance.
Second, normalized important values are expressed as spider maps. We know that the group with the largest 

width in this spider map is the group with the highest importance. Thirdly, to determine the order of importance, 
we calculated the width of each group in the spider map to determine the order.

Ethical considerations
This study analyzed publicly available HFMD and meteorological  data19–21. Publicly available data with no per-
sonally identifiable information did not require ethical approval.

Discussion
This study explores the meteorological factors that predict and influence the prevalence of HFMD in Korea. 
This study aimed to predict the number of suspected HFMD cases per 1,000 people per week and analyze the 
sensitivity of meteorological factors. We conducted HFMD prediction and sensitivity analysis using the time-
series forecasting method DA-RNN. First, we estimated the number of suspected cases per 1000 people with 
HFMD from 2019 to 2020 using 2011 to 2018 data and all meteorological factors. To evaluate the performance of 
DA-RNN, we experimented with LSTM, GRU, Seq2seq, encoder attention-based seq2seq, and decoder attention-
based seq2seq under the same experimental conditions. Second, MAE, RMSE, MAPE, and  R2 were compared 
to determine the most influential group when meteorological factors were divided into groups based on tem-
perature, wind, rainfall, sunshine, and humidity under the same conditions and when each group was excluded.

The DA-RNN outperformed other methods in terms of MAE, RMSE, MAPE, and  R2 metrics (0.8544, 2.7117, 
0.3163, and 0.9333, respectively). This was confirmed using single attention, demonstrating the importance of 
calculating the weights of the wake-up factors in the encoder attention mechanism. Using the sensitivity test 
results, among the six meteorological groups, rainfall, air pollution, wind and humidity groups were identified 
as groups of overall importance (see Supplementary Information).

According to GeoDetector theory, the meteorological factors affecting HFMD in Guangxi, an inland region of 
China, are similar to temperature and rainfall. However, because our country is surrounded by sea on three sides, 
not only rainfall but also humidity has a significant impact. This is consistent with a study in Japan, which has 
a similar topography, where relative humidity was found to be an important factor in  HFMD10. We have added 
the day-length group and air pollution to examine the meteorological factors in previous studies. The prevalence 
pattern of HFMD from 2011 to 2019 and that in 2020 differed significantly, which indirectly confirms the great 
influence of the air pollution group on the degree of social activity of people owing to the impact of COVID-19.

This study has several limitations. First, the pattern of HFMD in 2020 changed significantly because of 
COVID-19. We chose the air pollution group as an indirect factor; however, the pattern was not sufficiently 
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learned because of the lack of directly related data. Therefore, factors related to social phenomena and popula-
tion density should be considered in future research. Additionally, the terrestrial viewpoint was not considered 
in this study. Therefore, it is necessary to establish a system that can evaluate risk levels by region and provide 
alerts. In this study, only meteorological factors were considered, which may have led to inaccurate forecasts, 
considering that other factors might be important. Subsequently, social and terrestrial factors should be con-
sidered to improve the accuracy of the DA-RNN model for HFMD prediction. To the best of our knowledge. 
This study is the first to use a DA-RNN for HFMD in Korea and reveals important meteorological factors. This 
model can significantly influence government policy by differentiating between the meteorological factors to be 
observed when predicting HFMD in Korea. This study’s framework could be extended to other epidemiological 
studies and time-series problems.

Conclusion
This study proposes a new model to predict the number of suspected weekly HFMD cases using 20 meteoro-
logical factors. The meteorological factors were divided into six groups, and a sensitivity test was conducted to 
determine the most influential group. Our model uses the DA-RNN and shows good prediction results even in 
2019 and 2020, which test period are difficult to predict compared with other models. The results showed that 
the factors that significantly affect HFMD are rainfall, air pollution, wind, humidity group. These results show 
the need for governments to consider meteorological factors in HFMD prevention guidelines.

Data availability
The meteorological dataset used in this study is available on the Korean Statistical Information Service website 
(https:// kosis. kr/). The air pollution dataset used in this study is available on the Airkorea website (https:// www. 
airko rea. or. kr/). The HFMD datasets used in this study are available on the Korea Centers for Disease Control 
and Prevention website (https:// www. kdca. go. kr/ npt/ biz/ npp/ iss/ hfmdS tatis ticsM ain. do).
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