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on modified zirconium 
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A novel catalyst was fabricated in this study based on zirconium MOF modified with pyridine 
carboxaldehyde in a solvothermal reaction, embedded with cerium. In order to confirm the catalyst 
structure, various characterization techniques, including FTIR, Far IR, EDX, XRD, TGA, FE‑SEM, ICP, 
and BET analyses, were employed. The results indicated that the UiO‑66‑Pyca‑Ce (III) catalyst had 
a Langmuir surface area of 501.63  m2/g, a pore volume of 0.28  cm3/g, and a pore size of 2.27 nm. To 
study catalytic activity, a sequential approach of Knoevenagel condensation and Michael addition 
was used to synthesize various polyhydroquinoline derivatives. The reaction took place at ambient 
temperature. The UiO‑66‑Pyca‑Ce (III) catalyst demonstrated high efficacy (90%) and reusability in 
asymmetric synthesis of polyhydroquinoline derivatives for several reasons, including the possession 
of three Lewis acid activation functions.

Recently, multi-component reactions have been employed to develop new methods of Synthesis strategies with 
abundant molecular  diversity1,2. These strategies have resulted high atom economy and simple methods for 
synthesizing heterocyclic  compounds3 which leading to biological active compounds like antituberculosis, 
anticancer, antipain, and antidiabetic agents. As a result, a wide variety of studies have been carried out on the 
popularization of the synthesis of these heterocyclic compounds using both heterogeneous and homogeneous 
 catalysts4–7. In addition, the development of synthetic methods to fabricate N-heterocyclic polyhydroquinoline 
has been highlighted by  researchers8. To prepare bioactive molecules, different types of catalysts, such as  LiBr9, 
 CTAB10,  CuBr11, GO  nanoparticles12, l-proline13,  CTACl14 and salicylic  acid15, have been utilized. Many of these 
reactions suffer from disadvantages like harsh reaction conditions, low product yields, and slow and tedious 
procedures, which all considered negative points. To solve these problems, scientists have developed and offered 
novel synthetic techniques. Recently; metal–organic frameworks (MOFs) that include metal-exo clusters and 
organic linkers have received more  attention16–18. These MOFs are utilized in various applications because of 
their high porosity, highly effective surface, and chemical stability. These applications include drug  delivery19,20, 
food  storage21, gas absorption or  storage22, hazardous gas  storage23, chemical  sensing24 and  optoelectronics25. 
MOFs either have catalytic activity or used as a suitable support for catalysts which make them a good choice in 
catalysis  applications26–32. Post-synthetic modification (PSM) method is used to functionalize MOFs which can 
improve their catalytic  activity33. PSM can be performed without causing any negative effects on the framework’s 
stability. these modifications are resulted by adding new active sites in MOFs  structure34 that enhance catalytic 
activities of these compounds. Another enhancement leads to easy separation and recovery of heterogeneous 
catalysts which highlighted MOFs as a reusable  catalysts35–44. Cerium (III) chloride heptahydrate  (CeCl3·7H2O), 
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known as a promoter in organic synthesis, has attracted much attention due to its various  applications45. Cerium 
halides have advantages such as being water resistance, user friendly, non-toxicity, and affordability. Further-
more, they can be reused multiple times without any  purification46. They are recognized as effective Lewis acid 
 catalysts47. In current study, catalytic activity of zirconium MOF from the UiO-66 family was investigated. 
Pyridine carbaldehyde was used to modify UiO-66-NH2 using a post-synthesis approach. The cerium was 
subsequently incorporated into UiO-66-Pyca. The asymmetric Hantzsch reaction was employed to evaluate the 
catalytic activity of UiO-66-Pyca-Ce (III). The catalyst showed recyclability and multiple reusability, which is 
very favorable for both the environment and the economic standpoint. The sufficiency and catalytic performance 
of this new UiO-66-Pyca-Ce (III) catalyst were assessed in the asymmetric Hantzsch condensation reaction for 
the synthesis of polyhydroquinoline derivatives (5a-f) (Fig. 1). It should be noted that the response conducted 
as part of this research is environmentally safe and no toxic waste is produced.

Experimental
Materials and physical techniques
All reagents for synthesis and analysis were commercially available from Aldrich and Merck Companies and 
were used without further purification. The infrared (IR) spectra were recorded using a Thermo Nicolet IR 100 
FT-IR spectrometer. A field emission scanning electron microscope (FESEM), specifically the German-made 
ZEISS SIGMA VP model with a gold coating, was used to analyze the samples. Utilizing monochromatic Co-Kα 
(1.78897 Å) radiation and a Philips X’pert diffractometer, measurements of X-ray powder diffraction (XRD) 
were made. The  N2 desorption/adsorption isotherms of the synthesized samples were obtained using the BET 
technique with a Microtrac Bel Corp Belsorp mini II instrument. The  N2 adsorption isotherm at 77 K was 
measured using a Micromeritics ASAP 2030 surface area analyzer. Thermogravimetry (TGA) was performed to 
determine the thermal stability using an SDTQ600 V20.9 analyzer with a heating rate of 10 °C/min under airflow. 
The metal cerium ion loading of the catalyst was determined by inductively coupled plasma (ICP) analysis using 
a Vavian 715-ES instrument. Proton nuclear magnetic resonance (1H NMR) spectroscopy was conducted on a 
Varian UnityPlus 400 instrument.

Synthesis of UiO‑66‑Pyca
The UiO-66-NH2 crystals were prepared according to the literature  procedure48–50. The prepared UiO-66-NH2 
(0.3 g) was dispersed in 30 mL of ethanol in an orbicular-bottomed flask and stirred for 30 min. Thereafter, 0.9 
mL of pyridine carboxaldehyde was added to the mixture, and the sealed flask was transferred to an oil bath. 
The solution was stirred at 80 °C for 20 h. The precipitate was separated by centrifugation after the yellow solu-
tion was cooled to room temperature. The acquired products were washed with abundant ethanol. Finally, the 
obtained UiO-66-Pyca was dried in a vacuum oven at 50 °C for 24 h.

Figure 1.  Preparation of MOF UiO-66-Pyca-Ce (III) correction reaction in 2 steps.
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Synthesis of UiO‑66‑Pyca‑Ce (III)
UiO-66-Pyca (10 mg) was dispersed into 20 mL of ethanol, and the suspension was sonicated for 10 min. Then, 
40 mg of  CeCl3 was added, and the mixture was stirred at room temperature for four days in darkness. The 
mixture was refluxed at 80 °C for 24 h. The yellow precipitated material was separated using centrifugation, and 
it was washed with ethanol and acetone. Finally, the material was dried at 50 °C for 24 h. This compound was 
named UiO-66-Pyca-Ce (III).

Catalyst reaction
General method for one‑pot synthesis of polyhydroquinoline derivatives (5a‑f), to assess the catalytic activity of the 
UiO‑66‑Pyca‑Ce (III)
To investigate the catalytic activity of UiO-66-Pyca-Ce (III) in the one-pot synthesis of polyhydroquinoline 
derivatives under ambient temperature conditions, several substituted aldehydes (1 mmol), dimedone (1 mmol), 
ammonium acetate (2 mmol), and ethyl acetoacetate (1 mmol) were stirred inside a flask in the presence of 
UiO-66-Pyca-Ce (III) (0.001 g) as a catalyst and ethanol as a green solvent. A 5:1 n-hexane/ethyl acetate ratio 
was used to monitor the reaction’s progress using the thin layer chromatography (TLC). Once the reaction was 
complete, the catalyst was separated through filtration and then washing. Additionally, to purify the received 
product, each individual product was recrystallized in ethanol.

Results and discussion
The  Zr6O4(OH)4(BDC-NH2)6 clusters that make up the UiO-66-NH2 metal–organic framework which result-
ing a 3D structure, has special properties like high surface area (1187  m2/g–1), good stability in wide variety 
of solvents, acidic and basic aqueous media (pH values ranging from 1 to 9), and thermal  stability51. Through 
post-synthetic modification (PSM), it is possible to create functionalized MOFs with multiple active  sites34,52. 
The high activity and good recyclability of these heterogeneous catalysts have shown that MOFs are an appro-
priate catalytic support. In this study, zirconium (IV) chloride, 2-amino-1,4-benzene dicarboxylic acid, and N, 
N-dimethylformamide (DMF) were used in a solvothermal reaction to create UiO-66-NH2. Three Lewis acid 
activating functions as a catalyst’s special quality, help to promote the asymmetric synthesis of polyhydroquino-
line derivatives at ambient temperature. The structural confirmation of UiO-66-Pyca-Ce (III) were interpreted 
using various types of analysis. The functional groups present in the compound structure were identified using 
the FTIR spectrum. The morphology and elemental composition were determined using FE-SEM images and 
EDX analysis, respectively. The crystalline phase of the material was analyzed using XRD, and its thermal stabil-
ity was assessed through TGA analysis. In order to examine the surface and porosity of UiO-66-Pyca-Ce (III), 
BET analysis was also carried out. Additionally, ICP analysis was performed to identify the elements present in 
the composition and determine their concentration.

Analysis
XRD patterns of UiO‑66‑NH2, UiO‑66‑Pyca, and UiO‑66‑Pyca‑Ce (III)
One benefit of crystalline materials is that the crystallinity and structural integrity can be assessed using XRD 
after post-synthesis modification. Figure 3a–c shows the XRD patterns of UiO-66-NH2, UiO-66-Pyca, and 
UiO-66-Pyca-Ce as they were synthesized using the solvothermal method. The UiO-66-NH2 metal–organic 
framework’s XRD pattern is consistent with those mentioned in  references49,53. The compound’s high crystallinity 
is also indicated by the presence of sharp peaks. The XRD patterns of UiO-66- Pyca and UiO-66-Pyca-Ce (Fig. 3b 
and c) show that the post-synthesis modification process did not alter the UiO-66- NH2 structure.

FTIR analysis of UiO‑66‑NH2, UiO‑66‑Pyca, and UiO‑66‑Pyca‑Ce (III)
Figure 2 displays the FTIR spectra of the synthetic UiO-66-NH2, UiO-66-Pyca, and UiO-66-Pyca-Ce (III) com-
pounds. The bands associated with the bending vibrations of N–H, the asymmetric and symmetric stretching 
vibrations of carboxylate (COO–), and the C–N stretching vibration of aromatic amines are found at 1568, 1629, 
1386, and 1256  cm–1, respectively, in the FTIR spectrum of UiO-66-NH2 (Fig. 2a), which is consistent with the 
knowledge gleaned from prior  studies49. A new band is seen at 1687  cm–1 in the FTIR spectra of UiO-66-Pyca 
and UiO-66-Pyca-Ce (III) (Fig. 2b and c), which can be attributed to the stretching vibration of the C=N bond 
caused by imine condensation of amino groups with the carbonyl group of pyridinecarbaldehyde, indicating the 
successful modification of the  structure49. In the FTIR spectrum of UiO-66-Pyca-Ce (III), the bands associated 
with the asymmetric and symmetric stretching vibrations of N-Ce are observed at 360 and 460  cm–1, respectively, 
which are in agreement with the reported values in the  literature54. To observe the peaks related to cerium, the 
spectrum in the range below 400  cm–1 should be checked. The closest vibration, VCe-Cl, appears at (356, 339, 
343, and 336  cm–1) (m), while the tensile vibration VCe-N and the flexural vibration due to Cl are in the same 
band at (145, 148, 150, and 142  cm–1) (Fig. 2d)54.

ICP and TGA of UiO‑66‑Pyca‑Ce (III)
Two main weight losses were discovered during the thermal analysis of the UiO-66-Pyca-Ce (III) catalyst, which 
were supported by TGA-DTA curves (Fig. 3d). The first mass loss started when the temperature reached 120 
°C. The solvent molecules trapped in the holes and the water molecules absorbed on the surface of the MOF are 
responsible for this 20% decrease, which results in a broad endothermic peak in this region of the DTA curve. 
The second 20% drop was noticed in the 120 to 500 °C temperature range. The presence of aliphatic groups, 
unreacted molecules, the breakdown of organic compounds, and cerium species are thought to be the causes of 
this reduction. Water molecules that were guests in big cages have also relaxed, which is another reason for the 
decrease. The effect of this reduction can also be seen in the DTA curve and the strength of its exothermic peak. 
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Decomposition of the framework occurs at a temperature higher than 550 °C, whereas UiO-66-Pyca-Ce (III) 
exhibits thermal stability up to 500 ℃. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) 
was also performed for UiO-66-Pyca-Ce (III), which revealed that the resulting compound contained 4.350 
mol% Ce and 30.372 mol% Zr.

SEM images and elemental mapping analysis
SEM images of UiO-66-Pyca-Ce (III) reveal that the catalyst’s structure remains unchanged after the modification 
during the functionalization process. Figure 4 demonstrates that the crystal size distribution appears uniform 
(Fig. 4a). Additionally, energy-dispersive X-ray (EDX) analysis confirms the presence of cerium in UiO-66-Pyca-
Ce (III) (Fig. 4b). Figure 4c demonstrates the elemental mapping analysis of the UiO-66-Pyca-Ce (III) catalyst. 
This figure further confirms the continuous dispersion of Ce, Zr, N, O, and C elements on the catalyst.

BET analysis
The nitrogen adsorption–desorption isotherm of UiO-66-Pyca-Ce (III) is shown in Fig. 5. As seen in the Figure; 
each sample exhibits a type I isotherm. The Langmuir surface area of UiO-66-Pyca-Ce (III) was determined to be 
501.63  m2/g, with a pore volume of 0.28  cm3/g and a pore size of 2.27 nm. These results indicate that a relatively 
high surface area and the presence of pores are necessary for constructing an effective catalyst.

Catalytic application evaluation of UiO‑66‑Pyca‑Ce (III)
Optimization of factors affecting the one‑pot synthesis of polyhydroquinolines derivatives
To identify the ideal reaction conditions, a number of variables affecting the one-pot, four-component con-
densation reaction of polyhydroquinoline derivatives were examined (Table 1, entries 1–10). The model reac-
tion consisted of a mixture of benzaldehyde (1 mmol), ethyl acetoacetate (1 mmol), dimedone (1 mmol), and 
ammonium acetate (2 mmol), performed at ambient temperature. Initially, without UiO-66-Pyca-Ce (III) pre-
sent, no significant progress was observed in the reaction (Table 1, entry 1). Subsequently, the effect of different 
parameters such as solvent type, reaction time, reaction conditions, and the amount of UiO-66-Pyca-Ce (III) was 
investigated (Table 1, entries 2–10). Under fixed conditions with UiO-66-Pyca-Ce (III), the model reaction was 
conducted at room temperature and under reflux conditions (Table 1, entries 2–3). It was found that the ambi-
ent temperature provided optimal reaction conditions, resulting in shorter reaction times and higher efficiency 

Figure 2.  FTIR spectra of (a) the as-synthesized UiO-66-NH2, (b) UiO-66-Pyca, (c) UiO-66-Pyca-Ce (III) and 
(d) The Far IR spectrum of UiO-66-Pyca-Ce (III).
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(Table 1, entry 3). Additionally, using ethanol instead of water as the reaction’s solvent produced noticeably better 
results (Table 1, entry 3). The model reaction was performed with varying amounts of UiO-66-Pyca-Ce (III), 
and based on the results, the most optimal amount was determined to be 0.01 g (Table 1, entry 3), considering 
that a lower value is preferable. Therefore, based on these investigations, it was determined that conducting the 
model reaction at room temperature, using ethanol as the solvent, and using 0.01 g of UiO-66-Pyca-Ce (III) 
were the best conditions.

To generalize the optimal reaction conditions and evaluate the performance and yield of UiO-66-Pyca-Ce 
(III) as a catalyst, an extensive range of substituted aldehydes (1 mmol) with both electron-donating and electron-
withdrawing substituents, along with dimedone (1 mmol), ethyl acetoacetate (1 mmol), and ammonium acetate 
(2 mmol), were used (Table 1, entries a-f). Diverse substituted polyhydroquinoline derivatives (5a-f) were syn-
thesized using 0.01 g of UiO-66-Pyca-Ce (III) at room temperature. The outcomes shown in Table 2 resulted 
that the desired products were synthesized in a brief amount of time with a high yield. Based on the relevant 
results, it can be deduced that the UiO-66-Pyca-Ce (III), at room temperature, resulted a successful synthesis of 
products with a high yield in a short amount of time.

Assessment of UiO‑66‑Pyca‑Ce (III) in the synthesis of polyhydroquinoline derivatives in comparison with other 
introduced researches
In Tables 1 and 2, the obtained results are presented to evaluate the efficiency and performance of UiO-66-Pyca-
Ce (III) in the synthesis of polyhydroquinoline derivatives by replacing a wide range of aldehydes (electron-
withdrawing or electron-donating). In order to evaluate the effectiveness and performance of UiO-66- Pyca-Ce 
(III), Table 3 compares UiO-66- Pyca-Ce (III) with other prior catalysts for the synthesis of polyhydroquinoline 
derivatives. For this, a number of variables have been taken into account, such as the quantity of catalyst, type 
of solvent, temperature during the reaction, reaction time, and the proportion of isolated products. The results 
are summarized in Table 3, entries 1–5. In addition to the advantages, the reported data have certain disadvan-
tages, including the high cost of the catalyst used, toxic and volatile solvents, harsh reaction conditions such as 
long reaction times and high temperatures, and low product yields (Table 3, entries 1–4). However, compared 
to prior studies, UiO-66-Pyca-Ce (III) demonstrates unique and distinct advantages. Its proficiency allows for 
synthesizing polyhydroquinoline derivatives with a lower catalyst dosage, shorter reaction times, and high effi-
ciency (Table 3, entry 5).

Proposed mechanism for synthesis of polyhydroquinoline derivatives
This study identified UiO-66-Pyca-Ce (III) as the primary catalytic agent driving the synthesis reaction of poly-
hydroquinoline derivatives forward. The proposed mechanism shown in Fig. 6 can be explained in two different 

Figure 3.  XRD patterns of (a) UiO-66-NH2, (b) UiO-66-Pyca, (c) UiO-66-Pyca-Ce (III) and (d) TGA-DTA 
curves of the UiO-66-Pyca-Ce (III) catalyst.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16584  | https://doi.org/10.1038/s41598-023-43869-2

www.nature.com/scientificreports/

Figure 4.  (a) SEM images of UiO-66-Pyca-Ce (III, (b) EDX analysis of UiO-66-Pyca-Ce (III) and (c) The 
elemental mapping analysis of the UiO-66-Pyca-Ce (III).

Figure 5.  BET analysis of UiO-66-Pyca-Ce (III).
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ways, according to earlier studies. In the first method, intramolecular interactions between the substituted alde-
hyde and the carbonyl group of ethyl acetoacetate activate each other. This leads to a Knoevenagel condensation 
reaction between the activated substituted aldehyde (1) and the enol dimedone (3), resulting in the formation 
of intermediate (I). Simultaneously, intermediate (II) is formed from the reaction between activated ethyl ace-
toacetate (2) and ammonium acetate (4). Finally, a Michael addition reaction occurs between intermediates (I) 
and (II), followed by cyclization and elimination of water, leading to the desired polyhydroquinoline derivatives 
(5a-f). In the second method, intermediate (III) is initially created in the Knoevenagel reaction between the 
active aldehyde (1) and the enol form of ethyl acetoacetate (2). Intermediate (IV) is also produced by the reac-
tion between activated dimedone (3) and ammonium acetate. Similarly, to the first method, a Michael addition 
reaction occurs between intermediates (III) and (IV), followed by cyclization and elimination of water, resulting 
in the desired polyhydroquinoline derivatives (5a-f). For further explanation, it can be said that the synthesized 
catalyst is an acidic catalyst, which generally activates electrophiles. In the case of aldehydes, either cerium or 
zirconium with vacant orbitals will perform this activation. They coordinate with the oxygen of the aldehyde, 
weakening the carbonyl double bond. Alternatively, the oxygen of the aldehyde forms a hydrogen bond with 
COOH groups, leading to the weakening of the carbonyl double bond. The weakened carbonyl then becomes 
vulnerable to attack. These events happen for ethyl acetoacetate and dimedone in both the first and second routes, 
and are followed by a tautomerization procedure that adds a double bond. The double bond has the potential 
to engage in nucleophilic attack on the activated aldehyde. In the subsequent steps, the dimedone and/or ethyl 
acetoacetate undergo similar activation processes, and ammonium acetate attacks the activated species.

Reusability assessment of UiO‑66‑Pyca‑Ce (III) after several catalytic performances
Recyclability and reuse of catalysts, whether in industrial applications or the discussion of green chemistry, are 
essential and vital for developing of chemical reactions. Therefore, in this study, the reusability of UiO-66-Pyca-
Ce (III) in the synthesis of polyhydroquinoline derivatives was investigated. After each reaction, the catalyst was 
detached through washing and centrifugation, and then dried. The results are depicted in Fig. 7, and they show 
that the catalyst can used as a qualified catalyst even after being used five times without significantly reducing 
the efficiency of the desired products.

Conclusions
In this study, a catalyst was fabricated using a solvothermal reaction based on zirconium MOF that had been 
modified with pyridine carboxaldehyde and cerium metal. UiO-66-Pyca-Ce (III) was created and introduced 
as an effective catalyst with noteworthy features for the synthesis of heterocyclic compounds. The structural 
properties of this catalyst were assessed through various analyses, including XRD, TGA, FE-SEM, ICP, and BET. 
Verification of the presence of functional groups, analysis of its main constituent elements, and their disper-
sion were performed through FT-IR, Far IR, and EDX analysis, respectively. This catalyst demonstrated high 
efficiency in producing the desired product in the shortest amount of time at room temperature, without requir-
ing special conditions, for a number of reasons, including three Lewis acid activating functions. These features 
show promising potential for the manifestation of a highly efficient catalyst, with a yield of 90%, particularly in 
the asymmetric synthesis of polyhydroquinoline derivatives. In addition to the benefits above, considering the 
importance of catalyst recovery, reusability in the industry, and its impact on the environment, the efficiency 
of the produced catalyst was evaluated multiple times. The results demonstrated the catalyst’s pleasant stability 
and performance in reuse.

Table 1.  Optimizing various factors based on model  reactiona. a benzaldehyde (1 mmol), ethyl acetoacetate (1 
mmol), ammonium acetate (2 mmol), and dimedone (1 mmol); bIsolated yield.

Entry Catalyst (g) Solvent Condition/temperature (˚C) Time (h:min) Yieldb (%)

1 – EtOH r.t./25 00:15 N.R

2 0.01 EtOH Reflux/80 00:08 90

3 0.01 EtOH r.t./25 00:08 90

4 0.01 C3H6O r.t./25 00:08 80

5 0.01 H2O r.t./25 00:08 74

6 0.01 CH2Cl2 r.t./25 00:08 84

7 0.005 EtOH r.t./25 00:04 84

8 0.015 EtOH r.t./25 00:10 90

9 0.020 EtOH r.t./25 00:12 88

10 0.025 EtOH r.t./25 00:06 85
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Table 2.  Synthesis of polyhydroquinoline derivatives using UiO-66-Pyca-Ce (III) as a  catalysta. a Reaction 
conditions: (1) Substituted aldehyde (1 mmol), (2) ethyl acetoacetate (1 mmol), (3) dimedone (1 mmol), (4) 
ammonium acetate (2 mmol), UiO-66-Pyca-Ce (III) (0.01 g), ambient temperature; bIsolated yield.
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Table 3.  Comparison of UiO-66-Pyca-Ce (III) catalyst with other reported  investigationsa. a Reaction mixture: 
benzaldehyde (1 mmol), ethyl acetoacetate (1 mmol), dimedone (1 mmol), ammonium acetate (2 mmol); 
bIsolated yield.

Entry Catalyst Amount of catalyst (g) Solvent Temperature (°C) Time (h:min) Yieldb (%) Ref

1 CTAB 10 mol% H2O Reflux 1:30 85 10

2 Palladium NPs 0.04 mmol THF Reflux 4:00 89 58

3 GSA@Fe3O4 MNPs 0.05 EtOH Reflux/80 4:00 90 59

4 L‑proline 10 mol% EtOH Reflux 6:00 92 13

5 UiO-66-Pyca-Ce (III) 0.01 EtOH r.t./25 00:06 90 This work

Figure 6.  Proposed mechanism for the synthesis of polyhydroquinoline derivatives in the presence of the UiO-
66-Pyca-Ce (III).
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Data availability
The datasets generated and/or analyzed during the current study are available at the http:// www. cryst allog raphy. 
net/ cod/ 43481 32. cif.
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