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Automatic biometry of fetal brain 
MRIs using deep and machine 
learning techniques
Jiayan She 1,3, Haiying Huang 2,3, Zhijun Ye 1, Wei Huang 2, Yan Sun 1, Chuan Liu 1, Weilin Yang 1, 
Jiaxi Wang 1, Pengfei Ye 1, Lei Zhang 2 & Gang Ning 1*

Linear biometric measurements on magnetic resonance images are important for the assessment 
of fetal brain development, which is expert knowledge dependent and laborious. This study aims to 
construct a segmentation-based method for automatic two-dimensional biometric measurements 
of fetal brain on magnetic resonance images that provides a fast and accurate measurement of fetal 
brain. A total of 268 volumes (5360 images) magnetic resonance images of normal fetuses were 
included. The automatic method involves two steps. First, the fetal brain was segmented into four 
parts with a deep segmentation network: cerebrum, cerebellum, and left and right lateral ventricles. 
Second, the measurement plane was determined, and the corresponding biometric parameters 
were calculated according to clinical guidelines, including cerebral biparietal diameter (CBPD), 
transverse cerebellar diameter (TCD), left and right atrial diameter (LAD/RAD). Pearson correlation 
coefficient and Bland–Altman plots were used to assess the correlation and agreement between 
computer-predicted values and manual measurements. Mean differences were used to evaluate the 
errors quantitatively. Analysis of fetal cerebral growth based on the automatic measurements was 
also displayed. The experiment results show that correlation coefficients for CBPD, TCD, LAD and 
RAD were as follows: 0.977, 0.990, 0.817, 0.719, mean differences were − 2.405 mm, − 0.008 mm, 
− 0.33 mm, − 0.213 mm, respectively. The correlation between the errors and gestational age was not 
statistically significant (p values were 0.2595, 0.0510, 0.1995, and 0.0609, respectively). The proposed 
automatic method for linear measurements on fetal brain MRI achieves excellent performance, which 
is expected to be applied in clinical practice and be helpful for prenatal diagnosis and clinical work 
efficiency improvement.

Assessment of fetal brain development is important for prenatal diagnosis. Fetal brain biometry, which is a 
quantitative evaluation of the fetal brain and its various anatomical segmentations using two-dimensional (2D) 
and three-dimensional (3D) measurements, is an important part of prenatal screening for central nervous system 
malformations because it contributes to the determination of gestational age (GA), fetal weight estimation, fetal 
growth and development monitoring, and abnormality diagnosis and prognosis  prediction1–4. Among them, 2D 
linear measurements, such as the biparietal diameter (BPD) and transcerebellar diameter (TCD), are important 
indicators for evaluating GA during second and third trimesters of  pregnancy5, 6. Increase in atrial diameter 
(AD), especially moderate-to-severe dilatation, may indicate abnormal fetal brain  development7. Therefore, in 
addition to qualitative assessment, quantitative assessment of suspected abnormal brain structures is crucial for 
prognosis assessment and prenatal  counseling4, 8.

In clinical practice, these measurements are obtained manually by radiologists on magnetic resonance images 
(MRI) of specific orientations and slices, which are highly dependent on professional knowledge and clinical 
experience. Additionally, manual measurements are time-consuming and laborious, and may introduce intra- 
and inter-observer variability, which can influence the accurate judgment of fetal brain development, leading to 
inappropriate pregnancy management. Therefore, automating fetal brain biometry through advanced artificial 
intelligence technology to provide faster, more accurate and reproducible measurements is necessary for the 
improvement of workflow and accuracy of prenatal diagnosis.
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We planned to establish an image segmentation-based artificial intelligence-assisted method by utilizing 268 
coronal fetal brain MRI data to achieve automatic linear measurements of the fetal brain, and analyze normal 
fetal brain growth and development trajectory.

Materials and methods
Study population
The fetal brain MRI images collected at West China Second University Hospital, Sichuan University between 
January, 1, 2020 and November, 31, 2021 were retrospectively analyzed. Inclusion criteria were as follows: (1) 
prenatal MRI is required for suspected fetal abnormalities using clinic or ultrasound diagnosis; (2) singleton 
pregnancy with no abnormalities seen in the diagnosis by fetal brain MRI; and (3) MRI image quality was 
excellent, the scanning position was symmetric, and fetal movement was slight, which did not affect the diag-
nosis and measurement. Exclusion criteria were as follows: (1) ultrasound showing head circumference (HC), 
abdominal circumference or femur length exceeding 3 standard deviation (SD) of the fetus at similar GA; (2) 
pregnant women with fetal chromosomal abnormalities, maternal infections or adverse pregnancy history; and 
(3) pregnant women with irregular menstruation, inaccurate last menstrual date.

This study was approved by West China Second University Hospital, Sichuan University’s Institutional Review 
Board. Data collection and analysis were performed in accordance with relevant guidelines and regulations. 
The informed consent was waived by West China Second University Hospital, Sichuan University’s Institutional 
Review Board due to retrospective nature of study.

Fetal MRI protocol
Magnetic resonance imaging scanners included Siemens MAGNETOM Skyra3.0T and Philips Achieva 1.5T Nova 
Dual MRI system with a phased-array body coil and a large field of view. Maternal sedatives or contrast agents 
were not administered. Scanning sequences included  T2 weighted imaging  (T2WI) single-shot fast spin echo 
(SSFSE), balanced steady-state free precession (BSSFP),  T1 weighted imaging  (T1WI), and diffusion weighted 
imaging (DWI). The scanning orientations included the axial, coronal, and sagittal planes of the fetal brain and 
maternal uterus for the SSFSE and BSSFSP sequences. The coronal scan of the fetal brain was perpendicular 
to the interhemispheric fissure and parallel to the brainstem. The number of slices depended on the size of the 
fetal brain, and the scanning time was not more than 30 min (range: 13.32–29.27 min, mean: 21.2 min, SD: 
3.92 min). The coronal images of the  T2WI SSFSE sequence of the fetal brain were selected as the training and 
testing sets, and the coronal and sagittal images of the maternal uterus of the  T2WI SSFSE sequence were used 
to determine the left and right body positions of the fetus. The scanning sequence and parameters used in the 
automatic method are listed in Table 1.

Data annotation
The original data were annotated by four professional radiologists on LIFEX-7.1.1, a freeware for radiomic feature 
calculation (https:// www. lifex soft. org/), to manually delineate the cerebrum, lateral ventricles, and cerebellum 
on all slices. The anatomical boundaries of each structure were as follows:

Cerebrum: Delineated along the outer edge of the cerebral cortex, including the frontal, parietal, occipital, 
and temporal lobes. The cavum septum pellucidum and ventricular system were excluded. The cerebrum and 
brainstem are bounded by a horizontal line between the cerebral peduncles and thalamus.

Cerebellum: Delineated by the cerebellar borders, including the cerebellar peduncles but excluding the fourth 
ventricle.

Lateral ventricles: The left and right lateral ventricles were drawn separately, excluding the third ventricle.
All annotation results were checked and corrected by a senior radiologist. (see Supplementary Information 

for annotation example).

Method
The automatic methothe maximum distance above the Sylvian Fissured of fetal brain MRI biometry, combined 
with deep and machine learning methods, is divided into two steps: segmentation and measurement, which 
automatically measure the cerebral biparietal diameter (CBPD), TCD, left and right atrial diameters (LAD/RAD).

1. Deep learning-based segmentation

First, a deep learning network, nnU-Net9, which is widely used in biomedical image segmentation, was used 
to segment the coronal images of the fetal brain in all slices into four parts: cerebrum, cerebellum, left and right 
lateral ventricles.

Table 1.  Sequence parameters of coronal fetal brain MRI used for automatic method. TE, echo time; TR, 
repetition time; SAR, specific absorption ratio, FOV, field of view.

Vendor System Sequence Cases TE (ms) TR (ms) Thickness (mm) Gap Matrix SAR (W/Kg) FOV Flip angle

Siemens MAGNETOM Skyra3.0T HASTE 139 80 1800 3–5
0 320 × 320  ≤ 2.0

350 × 350 140

Philips Achieva 1.5T TSE-SSH 129 80 1300 3–5 300 × 300 90

https://www.lifexsoft.org/
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Five-fold cross-validation was used to verify the performance of the model. The specific steps were as follows: 
data of 268 samples were randomly divided into five parts, one part was selected randomly as the validation set 
each time, and the other four parts were used as the training set for model training. When one round of training 
was completed, another part that was not repeated in the last round was selected randomly as the validation set, 
and the remaining four parts were used to train the model. This process was repeated five times to obtain the 
prediction results for all the 268 samples. The network training used the Adam optimizer. The learning rate was 
set to 1e−3, loss function was a combination of dice loss and cross entropy loss to improve training stability and 
segmentation accuracy, and the training epoch was 200. The patch size was set to 320 × 320, and batch size was 31.

2. Machine learning based linear measurements

After segmentation, CBPD, TCD, LAD and RAD were computed respectively with machine learning meth-
ods. The measurement region was determined, and the corresponding fetal brain biometric parameters were 
calculated according to the manual method clinically  used10, as well as the anatomical characteristics of the 
cerebrum, cerebellum, and lateral ventricles:

(a) Measurements computation of CBPD and TCD.

First, the maximal bounding rectangle based on segmentation mask was found by iterating through all the 
slices. Second, the orientation of the contour was determined (inferior and superior in anatomy, as shown by the 
red arrow in the Fig. 1A, B), and then calculate all the distances perpendicular to the main direction.

Combined with clinical knowledge, the maximum distance above the Sylvian Fissure (at approximately 1/2 
from the top of the cerebrum) is CBPD, and TCD is the maximum distance calculated.

(b) Measurements computation of LAD and RAD.

First, we used a template to locate the slice at the level of the atria. Second, the orientations of the long axis 
of the right and left lateral ventricles were determined separately (red arrows in the Fig. 1C), and finally the 
distances perpendicular to the long axis were calculated and the maximum values were taken as LAD and RAD.

Two-dimensional manual measurements (i.e., CBPD, TCD, LAD, and RAD) were obtained manually by a 
fetal neuroradiologist (> 30 years of experience) on the original coronal MR of the fetal brain on the picture 
archiving and communication system, an image workstation for daily use by radiologists to view, diagnose, and 
analyze images. The specific measurement methods are as follows:

Cerebral biparietal diameter is the maximum transverse diameter of the brain parenchyma above the Sylvian 
fissure in all the slices (usually at the level of the temporal horns of the lateral ventricles). Similarly, TCD is the 
maximum transverse diameter of all slices containing the cerebellum (usually at the level of the atria), while 
LAD/RAD is the inner diameter of the atrium perpendicular to the center of its axis.

Statistical analysis
Continuous variables were tested for normal distribution. If the data were normally distributed, they were 
expressed as mean ± SD, otherwise, the median and range were used. The significance level was set to α = 0.05, 
and all statistical analyses were performed using GraphPad Prism 9.3.0.

Automatic measurement method evaluation
Dice similarity coefficient (DSC) was calculated for segmentation task, which measures the similarity between 
manually segmented region and automatically segmented region.

With manual measurements as the “ground truth”, Pearson’s correlation coefficient (R) was used to assess the 
correlation between automatic and manual measurements, and the Bland–Altman plots were used to evaluate 
the agreement between the two methods. The mean difference (MD) between the manual and computerized 
measurements was used to quantitatively assess the errors. Correlation analysis of errors and GA was used to 
assess the robustness of the automatic method.

Inter‑observer agreements
A subgroup of fetuses was selected at random to test inter-observer reproducibility for manual measurements 
between two expert radiologists. Intra-class correlation (ICC) analysis and difference were used to evaluate the 
agreement between radiologists.

Analysis of automatic measurements and its relationship with GA
Correlation and regression analyses were performed between the obtained automatic biometric parameters and 
GA. The decision coefficient  (R2) was used to select the best-fitting model.

Results
Patients characteristics
A total of 5360 coronal brain  T2WI SSFSE images of 268 fetuses were included according to the inclusion and 
exclusion criteria (Fig. 2). And the indications of fetal brain MRI are shown in Table 2. The median GA at the time 
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Figure 1.  Linear measurements of CBPD, TCD, LAD, and RAD. (A–C) Are CBPD, TCD, and LAD, RAD, 
respectively. The red arrow in the left image represents the orientation of the segmentation mask, the right is 
the curve of the distances perpendicular to the contour orientation, and the red circle represents the measured 
value.
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of examination was 30.86 weeks, and the range was 21.29 ~ 38.71 weeks. Fetuses no more than 24 GA accounted 
for 9.3%. The distribution of GA is shown in Fig. 3.

Evaluation of segmentation
Table 3 shows the average Dice values of the five-fold cross-validation experiments, The nnU-Net based automatic 
segmentation has achieved high accuracy on the cross-validation of our dataset, which has a mean Dice of 0.9547 
± 0.0015, 0.9116 ± 0.0031, and 0.8507 ± 0.0352 for cerebrum, cerebellum, and lateral ventricles, respectively. The 
comparison of manual delineation and automatic segmentation at different GA is displayed in Fig. 4.

Figure 2.  Flowchart summarizing the inclusion and exclusion criteria.

Table 2.  The indications of fetal brain MRI. GA, gestational age; BPD, biparietal diameter; HC, head 
circumference.

Type n (%)

Ultrasound

Decreased cavum septum pellucidum(< 1 cm) 32 (11.9)

Discordance between fetal size and GA (< ± 3 SDs)

Decreased BPD or HC 110 (41.0)

Increased BPD or HC 29 (10.8)

Increased cerebellomedullary cistern(> 1 cm) 15 (5.6)

Unclear vermis 5 (1.9)

Cystic structures

choroid plexus cyst 9 (3.4)

cavum velum interpositum/cavum Vergae 10 (3.7)

subependymalcysts 8 (3.0)

Blake′s pouch 4 (1.5)

Agenesis of the corpus callosum 1 (0.4)

Ventriculomegaly (within 10–12 mm) 25 (9.3)

Subependymal hemorrhage 3 (1.1)

Clinic Old age pregnancy (> 35 years old) 17 (6.3)
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Figure 3.  Gestational age distribution of 268 patients.

Table 3.  The Dice similarity coefficient of automatic segmentation based on nnU-Net.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average (SD)

Cerebrum 0.9552 0.9538 0.9571 0.9534 0.9538 0.9547 (0.0015)

Cerebellum 0.9110 0.9090 0.9168 0.9115 0.9096 0.9116 (0.0031)

Lateral ventricles 0.8631 0.8649 0.9115 0.8739 0.8664 0.8507 (0.0352)

Figure 4.  Comparison of segmentation results at different gestational weeks between manual delineation by 
lIFEx and Auto-segmentation using nnU-Net.
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Automatic biometric measurements evaluation
The Pearson correlation coefficients between the manual and computerized measurements of the CBPD, TCD, 
LAD and RAD were 0.977, 0.990, 0.817 and 0.797, respectively. The MDs are − 2.405 mm, − 0.008 mm, − 0.33 mm 
and 0.213 mm, respectively.

The Bland–Altman plot shows the difference between the automatic computerized and manual measurements. 
The dotted line in the middle represents the average difference between the manual and computerized measure-
ments, and the upper and lower dotted lines represent a 95% agreement limit, respectively. A vast majority of 
measurement points for all metrics were within the 95% range (Fig. 5).

The relationship between automatic measurement error and GA is shown in Fig. 6. The bias of all measure-
ment indicators did not vary significantly throughout pregnancy, and was not significantly correlated with GA 
(correlation coefficients are as follows: CBPD = − 0.069, TCD = 0.156, LAD = − 0.079, RAD = − 0.115; P > 0.05). 
The predicted differences in bilateral AD were almost similar with GA, and there was no difference between the 
sides (AD: t = 1.969, p = 0.178).

Inter-observer agreements for manual measurements
Inter-observer agreements for manual measurements between two radiologists for the subgroup of 52 fetuses 
that were used for evaluation. The results are shown in Table 4.

Growth analysis between measurement parameters and GA
Based on the established automatic method, the mean, SD, and interquartile range of CBPD, TCD, LAD, and 
RAD for each GA are calculated (see Supplementary Information). Owing to the small sample size of 21–23 and 
38 GA (≤ 4), only the detailed measurement results (n = 258) of 24–37 GA are shown here.

Figure 5.  Scatter and Bland–Altman plots between computerized and manual measurements. (A–D) Are 
CBPD, TCD, LAD, and RAD, respectively. CBPD, cerebral biparietal diameter; TCD, transcerebellar diameter; 
LAD, left atrial diameter; RAD, right atrial diameter.

Figure 6.  Scatter plot between automatic measurement error and GA. (A) CBPD and TCD; (B) LAD and RAD. 
CBPD, cerebral biparietal diameter; TCD, transcerebellar diameter; LAD, left atrial diameter; RAD, right atrial 
diameter.
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For all 2D measurements, quadratic regression showed the best goodness of fit. With the exception of lateral 
ventricle width, all brain biometric measurements increased with GA (Fig. 7A–C), and had strong correlations 
with GA (correlation coefficients of CBPD and TCD were 0.9399, 0.9681, respectively). The AD remained stable 
throughout the second and third trimesters, and was not significantly correlated with GA (the correlation coef-
ficients of LAD and RAD with GA were 0.068 and 0.1602, respectively). The average LAD was 6.44 ± 1.83 mm, 
and the RAD was 5.88 ± 1.65 mm, there was a slight difference in the width of the bilateral atria (p < 0.001), and 
the difference between the two sides was about 0.56 mm.

Regression analysis between bilateral atrium diameters and CBPD is shown in Fig. 7D. There was a moderate 
correlation between bilateral AD and CBPD, with a correlation coefficient of − 0.5235 (p < 0.0001), indicating 
that the fetal brain grows with increasing GA while the size of the lateral ventricles remains relatively constant.

Figure  8 also shows the change in CBPD and TCD with GA from our measurements and previous 
 studies6, 11–16. All the results showed that these biometrics increased with GA, but there were slight differences 
in the reported values   and growth trajectories.

Discussion
Synthesis of results and comparison with existing literature
In this study, using 268 coronal MRI data of fetal brain, we established a combined method for accurate and rapid 
automatic measurements of CBPD, TCD, and AD through segmentation. Additionally, we provided reference 
biometry and growth trajectories of normal fetus at 24–37 weeks.

Table 4.  Inter-observer reproducibility of manual measurements between two expert radiologists.

CBPD TCD LAD RAD

ICC 0.994 0.997 0.945 0.922

Difference 0.176 0.026 0.025 0.020

Figure 7.  Nonlinear regression analysis between biometric parameters and GA based on automated 
measurements. (A–C) are CBPD, TCD, and AD in sequence, (D) changes in (LAD + RAD)/CBPD index with 
gestational age. All the 2D measurements were strongly correlated with GA except for AD, which was not 
significantly correlated with GA, and the quadratic regression was the best fit. The solid line represents the best 
fit curve. The light gray area is the 95% confidence interval, and the upper and lower dashed lines are the 95% 
prediction interval.

Figure 8.  Changes in linear measurements of normal fetal brains with gestational age based on automated 
measurements compared with previous studies. (A, B) are BPD, and TCD, respectively.
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By utilizing the advanced deep learning segmentation methods, nnU-Net, we have achieved precise segmenta-
tion of the cerebrum, cerebellum and lateral ventricles in fetal MRI, which determines the accuracy of quantita-
tive measurement to a great extent. And based on the accurate segmentation, we developed an automatic method 
for the computation of coronal biometric parameters with machine learning algorithms. The experiments showed 
that there was a good correlation between computerized and manual measurements (Fig. 5). For the 2D linear 
measurements, CBPD and TCD achieved high correlation coefficients of 0.977 and 0.990, respectively, and MD 
of − 2.405 mm and − 0.008 mm, respectively. In comparison, LAD and RAD had lower correlation coefficients, 
0.817 and 0.797, respectively, but still significantly correlated with manual measurement (p < 0.0001). Quantita-
tive error analysis showed that their MDs were all < 0.5 mm. The Bland–Altman analysis (Fig. 5) showed that 
a high degree of agreement was obtained between the computer-predicted and manual measurements for all 
linear measurements. Additionally, we also analyzed the relationship between MD and GA (as shown in Fig. 6). 
Although the fetal brain shape, volume, etc. change significantly with increase in GA, the established automatic 
method can still remain robust. Errors with manual measurements did not vary significantly throughout preg-
nancy. The above results demonstrate that the automated method achieves human-level performance and can 
cope with high variability in inputs such as multiple scanners, multiple field strengths, and multiple GA.

Because ultrasound has been the first choice for prenatal screening of fetuses for decades, MRI-based studies 
of the automatic measurement of fetal brain biometry have only recently begun to emerge. Avisdris et al.17 used 
convolutional neural networks to achieve automatic measurement of bone BPD, CBPD, and TCD in fetal brain 
MRI for the first time. Although we both adopt deep learning-based segmentation followed by linear measure-
ments computation, there are still significant differences between our studies. In addition to the different deep 
learning networks chosen, the biggest one is that their research requires reference slice selection and only seg-
ments the two selected slices, while ours segment all the slices of the fetal brain. This is very important because 
by segmenting total brain, we can compute the CBPD and TCD of all slices to select the maximum value, which is 
more accurate and in line with the clinical definitions than the results obtained by reference slice. As for biometric 
parameters measurement, our method achieved comparable performance for the CBPD and TCD measurements 
(mean absolute difference, 2.25 mm vs. 1.21 mm, 1.24 mm vs. 1.26 mm; 95% confidence interval [CI], 10.3 mm 
vs. 7.9 mm and, 4.6 mm vs. 6.5 mm, respectively). Furthermore, we performed 2D quantitative analysis of the 
lateral ventricles. Accurate measurement of AD is important because small technical differences can lead to false-
positive or false-negative results. Experiments showed that, for both lateral ventricles, our automatic method 
obtained a measurement error of < 0.5 mm, which is in good agreement with manual measurement.

Clinical implications
The morphology of fetal brain changes dramatically throughout pregnancy, which increases the difficulty of 
interpretation of fetal MRI radiologists. However, measurements of the diameters and volumes of the fetal brain 
increase with GA. When there are abnormalities in brain development, such as malformation, mass lesions, or 
obstruction, the measurements also change accordingly. Therefore, assessment of fetal brain development using 
biometric measurements is a simple and effective method.

As the brain parenchyma matures, the shape of the lateral ventricles changes accordingly and the volume 
decreases, but the AD remains constant in the second and third trimesters, with a normal value of < 10 mm. 
When the AD is ≥ 10 mm, it is called ventriculomegaly, which is the most common indication for referral to 
MRI by ultrasound, accounting for 40% of fetal central nervous system MRI  indications8, 18, 19. The etiology of 
ventriculomegaly and the degree of dilatation determine its neurodevelopmental prognosis. Severe ventriculo-
megaly (AD > 15 mm) has a poor long-term prognosis, with approximately 40% having severe disability and 18% 
having mild-to-moderate disability. When combined with other intracranial or extracranial malformations, the 
morbidity to mortality ratio ranges from 6% and rose to 56%20, 21. Therefore, assessment of lateral ventricular 
size is an important part of prenatal imaging.

According to the recommendations of the International Society of Ultrasound in Obstetrics and Gynecol-
ogy guidelines (2020)3, prenatal examination of the fetal head should routinely measure the BPD, HC, TCD and 
AD etc. As an important auxiliary imaging method of ultrasound, MRI can be in large-scale, multi-planar, and 
multi-parameter with brilliant soft tissue resolution. Additionally, MRI is not affected by the amount of amniotic 
fluid, thickness of subcutaneous fat, whether the fetal head enters the pelvis, and degree of ossification, mak-
ing it possible to precisely measure the anatomy of the  brain22. The general linear measurements (such as HC, 
BPD, etc.) established in ultrasound can reflect the size of the fetal head, but the inconsistent growth rate and 
characteristics of trade-offs of various parts of the fetal brain cause abnormalities in fetuses with normal skull 
size. Consequently, more comprehensive biometric measurements of the fetal brain by MRI (such as bone and 
cerebral biparietal diameters, extracerebral space, and brain volume) can improve the accuracy of fetal prenatal 
diagnosis and reduce misdiagnosis.

In this study, with the established automatic method, we obtained a large sample (n = 268) of 2D and 3D 
biometric data of normal fetal brain. Based on the automatic measurement data, we displayed the growth and 
development of fetal brain in the second and third trimesters in multiple directions, including the mean, SD, 
interquartile range, growth curve, 95% prediction interval, and the relationship between different parameters. 
Additionally, we compared the results with those of previous studies to verify the reliability and validity of the 
data.

Analyses showed that the CBPD, and TCD increased with GA in a secondary growth pattern, consistent with 
other MRI  studies6, 10–16. For CBPD, the variation between our reference value and growth trajectory and the 
results reported by other studies is relatively large, which may be related to the different measurement methods 
used by different researchers, including the report Shi et al.6 in which they measured the maximum transverse 
diameter of the skull in an “outer-inner” way in the axial section; that is, the measured value includes not only the 
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brain parenchyma but also the cerebrospinal fluid space and part of the skull, which explains why the reported 
BPD are overall higher than those in other studies. Quantitative analysis of brain volume showed that, our results 
are almost consistent with those of other previous studies, except for  Jarvis14, because the reported brain paren-
chyma volume included both cerebral hemispheres, cerebellum, and brainstem. Compared with other biometric 
parameters, TCD was less susceptible with minimal variation between studies. The growth trajectories almost 
completely overlapped, and maintained high consistency even in the third trimester. This may indicate that TCD 
maintains a higher accuracy as pregnancy progresses, which has important implications for the determination 
of GA in the third trimester.

Although the shape of the lateral ventricle changes significantly with GA, AD remains stable in the second 
and third trimesters, and is not significantly correlated with GA. The average value was approximately 6.2 mm, 
which is consistent with the conclusions of previous  studies23–25. The ratio of AD to CBPD decreased with an 
increase in GA, which also reflects the fact that the fetal brain volume increases, while the ventricular size remains 
relatively constant during pregnancy. Machado-Rivas et al. 26 reported the characteristic of asymmetry of fetal 
brain development, in which there was leftward asymmetry for lateral ventricles, and in our study, the AD also 
showed significant differences (P < 0.0001), wherein the LAD is about 0.56 mm wider than the RAD.

Strengths and limitations
Our study has two major strengths. First, the data size and GA included are the largest in similar studies, which 
also includes a combination of multi-manufacturer scanners and multi-field strength. The diversity of the dataset 
makes this automatic method more applicable. Second, we obtained a large sample of biometric measurements of 
normal fetal brain based on the proposed method and performed multifaceted analysis of biometric parameters 
to characterize the normal growth of fetal brain.

Our study has several limitations. First, the distribution of GA in our dataset was unbalanced, especially 
the images in the early second trimester and late third trimester (≤ 23 and ≥ 38 GA), which is mainly due to the 
inherent disadvantage of retrospective studies. This is because in current clinical practice, fetal MRI is recom-
mended at 20 GA and beyond. Second, we only evaluated normal fetal brains, and the applicability of this method 
in the presence of central nervous system malformations has not been tested. Third, we only trained and tested 
SSFSE sequence images, and it remains to be carefully evaluated whether BSSFP, the other most commonly used 
sequence in fetal MRI, can achieve similar results. Additionally, for the analysis of cerebral growth, our sample 
was selected from those suspected to be abnormal during prenatal ultrasound, but ultimately diagnosed as nor-
mal, and no follow-up after birth was performed to confirm that the data obtained were indeed from normal 
fetuses. However, a multicenter prospective study by Griffiths et al.27 showed that the diagnostic accuracy of 
fetal MRI was 93% with very low false-positive and false-negative rates. Limited by the sample size of the cor-
responding GA, reference values of fetal cerebral biometric parameters < 23 and ≥ 38 GA are not listed because 
of lack of accuracy. Though we are committed to establishing a comprehensive automatic tool for biometric 
parameters of fetal brain MRI for clinical use, coronal measurements are only our preliminary results, and meas-
urements in other two orientations, such as HC in axial images and measurements of corpus callosum, vermis, 
and brainstem in sagittal images, are currently under investigation. In the future, we will conduct multicenter 
experiments, accumulate larger datasets, further evaluate the performance of this automatic method on more 
diverse datasets, and perform prospective studies to establish comprehensive 2D and 3D reference values for 
fetal brain MRI at complete GA.

Conclusion
We proposed an image segmentation-based artificial intelligence-assisted measurement method that can achieve 
fast and accurate automatic measurement of biometric parameters of fetal brain MRI through two steps of 
segmentation and measurement. We also provided reference values of fetal growth, growth curves, and a 95% 
prediction interval. Therefore, biometric data based on automatic methods can assist clinicians in evaluating 
fetal development, thereby facilitating prenatal diagnosis and improving clinical work efficiency.

Data availability
The datasets used and analyzed in this study are available from the corresponding author upon reasonable 
request.
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