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Prediction of lithium‑ion battery 
SOC based on the fusion of MHA 
and ConvolGRU 
Pei Tang *, Jusen Hua , Pengchen Wang , Zhonghui QU  & Minnan Jiang 

If the charging state of the lithium‑ion battery can be accurately predicted, overcharge and 
overdischarge of the battery can be avoided, and the service life of the battery can be improved. In 
order to improve the prediction accuracy of SOC, a prediction method combined with convolutional 
layer, multi‑head attention mechanism and gated cycle unit is proposed to extract data feature 
information from different dimensions of space and time. Using the data set of the University of 
Maryland, we simulated the battery in real vehicle operating conditions at different temperatures 
(0 °C, 25 °C, 45 °C). The test results showed that the mean absolute error, root mean square error and 
maximum prediction error of the model were 0.53%, 0.67% and 0.4% respectively. The results show 
that the model can predict SOC accurately. At the same time, the comparison with other prediction 
models shows that the prediction accuracy of this model is the highest.

Lithium-ion batteries have become the preferred battery type for electric vehicles due to their large capacity, 
environmental friendliness and higher energy, but safety concerns also arise with their  use1. Inaccurate esti-
mates of the battery’s state of charge (SOC) prevent vehicle owners from accurately predicting remaining mile-
age. Inaccurate SOC values can also cause overcharging and discharging, which can damage internal chemical 
materials, leading to reductions in the battery’s  lifetime2. Since current measurement devices cannot directly 
measure SOC, accurate prediction of battery charge state is necessary. Currently, SOC prediction methods are 
mainly divided into three categories: 1. traditional estimation methods; 2. model-based estimation methods; 3. 
data-based forecasting  methods3.

Traditional estimation methods include ampere-hour integration method and open-circuit voltage  method4. 
Ampere-hour integration  method5 suffers from large errors due to measurement errors, especially due to cur-
rent offset errors, and introduces errors during initialization that cannot be compensated during subsequent 
processes. Battery capacity also depends on temperature and age status, which is difficult to correct. Although 
open-circuit voltage measurements have high estimation accuracy, they require long periods of inactivity (hours, 
even days) to achieve thermodynamic equilibrium of the battery, making them unsuitable for real-time meas-
urement of vehicle SOC. The method of combining the ampere-hour integration method and the open-circuit 
voltage method is proposed by Yuan  xu6 to estimate the battery SOC value. The correspondence between the 
open circuit voltage and the battery SOC is determined through the relevant charge and discharge experiments, 
and the relationship between the time required for the battery to achieve full standing and the battery SOC, so 
as to accurately estimate the initial value of the battery SOC, and then quickly estimate the battery SOC value in 
real time based on the ampere-hour integration method.

The model-based estimation method requires the establishment of complex equivalent circuit models for 
lithium-ion batteries and the use of algorithms such as Kalman filter to estimate SOC  online7. The model-based 
SOC estimation method can calibrate the estimated value in real time, thereby the SOC real-time estimation 
accuracy is greatly improved. However, as the battery ages or the temperature changes greatly, the model param-
eters of the battery will be changed at the same time so that the accuracy of the model and the estimation accuracy 
of SOC is reduced. Shijie  Li8chose the unscented Kalman filter (UKF) algorithm to estimate the SOC, it is found 
that with the increased of the initial value deviation of SOC, the error of SOC estimation increases in the initial 
period, but after the error converges, the estimated error of SOC can still be maintained within 2%. SOC estima-
tion of temperature and discharge rate compensation introduced by Jiao  Zhen9. The common SOC estimation 
algorithms are analyzed and compared, and the method of using the EKF algorithm combined with the second-
order RC circuit as the power estimation method is established, and the steady-state, dynamic and initial value 
automatic correction simulation verification is established. In addition, the temperature compensation factor 
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and discharge rate compensation factor are added to the EKF algorithm, and the SOC estimation accuracy of 
the battery is improved by the comparison of simulation verification.

Data-based prediction methods only require learning the relationship between SOC of lithium-ion batter-
ies and discharge data, avoiding the difficulty of determining the initial value in other prediction methods and 
eliminating the accumulation error problem with higher prediction  accuracy10. With the widespread application 
of convolutional neural networks (CNN) and recurrent neural networks (RNN) in many fields, data-based predic-
tion methods have also been used in the prediction of battery SOC. RNN can effectively preserve historical input 
information and has temporal memory capability, but the Simple Recurrent Neural Network (SimpleRNN) loses 
information with increasing time steps. Long short-term memory (LSTM) neural network relies on the input of 
past samples and effectively solves the problem of SimpleRNN unable to capture long-term dependencies. Shuip-
ing  Ni11 proposed the CNN-LSTM method for predicting battery SOC by combining CNN and LSTM, and the 
experimental results showed that the model has accurate and stable battery SOC prediction effects. Yanwei  Wu12 
used the gated recurrent unit (GRU) to establish an SOC prediction model and simulations demonstrated that the 
GRU prediction model had a promising performance for estimating SOC. Chong  Wen13 proposed a data-based 
predictive method for lithium-ion battery SOC based on the enhanced recurrent neural network algorithm with 
attention mechanism, which can improve the accuracy of SOC estimation results by reducing prediction errors.

In this paper, we propose the ConvolGRU-MHA method for predicting the SOC of lithium-ion batteries, 
which combines Convolutional layer, GRU and multi-head attention mechanism (MHA). The multi-head atten-
tion mechanism (MHA) overcomes the shortcomings of single-head attention in processing complex models 
and can better extract feature information from multiple aspects to prevent model overfitting. The convolutional 
layer (Convol) is the most important part of a convolutional neural network because it can extract data features. 
GRU can save the time sequence features of important data well, making it a good candidate for SOC predic-
tion. We use MHA to improve the feature selection process and adopt ConvolGRU to calculate representative 
features from the battery voltage data. Finally, we use the estimated result of the sequence data to predict the 
SOC of the lithium-ion battery.

ConvlGRU combined with MHA for state of charge prediction model
General model structure
In this study, we propose a model that combines the advantages of Convolutional layers, Gated Recurrent Unit 
(GRU) networks, and Multi-Head Attention Mechanism (MHA) to create the ConvolGRU-MHA fusion model, 
as shown in Fig. 1. First, the input channel is amplified by the convolution layer to extract features from the input 
data. Next, the GRU network extracts time-series information features and discards unimportant feature data 
to improve network performance. Multi-head attention mechanism is then used to extract data features from 
various levels to prevent the model from overfitting. GRU network and convolutional layer are added to ensure 

Figure 1.  Structure diagram of the predictive model.
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the output’s dimension is consistent with the input’s dimension, enabling the addition of residual structures to 
guarantee the network’s performance. Finally, two fully connected layers output the predicted SOC value.

Convolutional neural networks
Convolutional layers are not only capable of extracting features from inputs but also of extracting information 
from time series data, making them particularly suitable for extracting data with temporal features such as those 
found in  batteries14. A simple convolutional neural network model is shown in Fig. 2. The convolution of 1 × 1 is 
chosen in this paper, whose direct effect is to broaden the number of channels, so that the prediction model can 
continuously extract the features of the data, and each layer can learn more abundant features, and the predic-
tion effect will be improved accordingly.

Structure of GRU 
In contrast to the Long Short-Term Memory (LSTM) structure, which contains many parameters, Gated Recur-
rent Units (GRU) Structure is simple and contains fewer parameters while still using two gate structures: reset 
and update  gates16. These gates combine input parameters, previous states, and hidden states to control the output 
information. Consequently, the GRU structure can train the model faster. Figure 3 shows the GRU structure 
diagram.

The computational formula is shown in Eqs. (1, 2, 3, 4):

(1)z(k) = s{WZ × [h(k − 1), x(k)]}

(2)r(k) = σ {Wr · [h(k − 1), x(k)]}

Figure 2.  A simple convolutional neural network example  model15.

Figure 3.  GRU structure diagram.
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z(k) and r(k) are the states of the reset and update gates, respectively; h(k) is the output;Wz, Wr, and Wh represent 
the reset gate, update gate, and output weight, respectively.The reset gate checks whether past data has value for 
predicting future information. If not, its value approaches 0, and the model forgets the past information and saves 
the current input  information17. If the model considers past information to be related to future information, the 
reset gate value approaches 1, and it is added to the current information.

Multi‑heads attention mechanism
Multi-heads Attention Mechanism can be useful to allocate more computational resources to the information 
that is most important for the current task, whereas other information is allocated fewer resources to increase 
the computational efficiency and accuracy of the  model18. In GRU, features that depend on each other at long 
distances require accumulation of information over multiple time steps which may result in diminished effec-
tive feature capture as the distance increases. Introduction of Multihead Attention Mechanism also can more 
easily capture long-distance dependent features in the sequence. In the calculation process, any two features 
in the sequence can be directly linked together via a calculating step. Therefore, distant dependent features are 
directly connected, thereby greatly reducing the distance between them, and facilitating effective utilization 
of these features and accelerating the convergence of the model. The Multihed Attention Mechanism model is 
shown in Fig. 4.

Residual structure
Residual Structure Due to the excessive model, overfitting may occur during the training process, ultimately 
leading to an increase in the error rate of estimating SOC. To prevent overfitting and ensure the network’s stabil-
ity, additional connection structures, i.e., residual structures, were introduced in the prediction model. The use 
of residual connections not only enhances the convergence speed of the network but also makes it more stable. 
Moreover, residual connections do not increase the number of parameters nor increase computational com-
plexity, yet enables the network to learn more valid information, resulting in further reduction of the error rate 
of the prediction model. Since residual connections are used in the network, the input and output dimensions 
of the network should be the same. The formula for mapping function H (x) is calculated as shown in Eq. (5):

In Formula (5), x is the input feature of the current residual module; F(x) is layer convolution, activation and 
other  operations19. The residual connection does not add extra parameters or computational complexity, but it 
can help the network model learn more effective information, so as to further reduce the error rate predicted 
by the model.

Multi-heads Attention Mechanism and residual structure algorithms offer several advantages. Firstly, they 
can adaptively select data features relevant to SOC to train the network model. The use of Multi-heads Atten-
tion Mechanism increases the diversity of feature extractions, and cooperation among multiple heads helps the 
network learn deeper-level data features. Secondly, residual connections with weight matrices can make the 
network more stable and robust, and when combined with convolutional neural networks, enhance the accuracy 
of estimating SOC, and finally, the multi-head parallel processing can accelerate the network’s training speed, 
making the network more responsive to real-time requirements.

(3)H̃(k) = tanh{WH̃ · [r(k) ∗H(k − 1), x(k)]}

(4)H(k) = [1− z(k)] ×H(k − 1)+ z(k)× H̃(k)

(5)H(x) = x + F(x)

Figure 4.  Model of multi-head attention mechanism.
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Experimental data and evaluation metrics
Data source
The data used in this study was obtained from the Center for Advanced Life Cycle Engineering (CALCE) at the 
University of  Maryland20. The data measured by CALCE was chosen as our training dataset because the INR-
18650R data is the authoritative public data set in the field of lithium-ion battery research, measured by rigorous 
test methods and sophisticated measuring equipment. It is widely used in the research of lithium-ion battery 
state estimation methods, which provides the possibility to compare the performance of various state estima-
tion algorithms. The research object was the INR18650-20r battery. They studied the FUDS condition and DST 
condition test under the conditions of 0 °C, 25 °C and 45 °C when the battery was in the initial value of 80% and 
50% of the initial value respectively.There are a total of 12 such data sets.

Data preprocessing
Standardized processing
Although predictive models can be trained on unprocessed data, the difference in magnitude of current, voltage 
and temperature values could make the learning process difficult. To improve the training speed and sensitivity 
of the algorithm, it is necessary to standardize the input data (current, voltage, and temperature) of the unpro-
cessed training, validation, and test sets such that the state of charge (SOC) of the battery remains in the range 
of 0–1. The method used for data standardization is shown in equation:

where µ presents the mean and σ represents the standard deviation.

Window slide
Window sliding technique is used at the input to include both current and past information in the model, which 
improves the performance of the predictive model and fully utilizes the temporal information of the  battery21. 
The window size is set to 10, which predicts 10-time steps at once with a stride of 1. As the window moves one 
step forward, 9 pieces of overlapping information are used as input to the model. In the phase of battery decline, 
more and more relevant SOC characteristics are recorded over time, including voltage, current, temperature and 
other data. This increases the amount of data available to the model and fully considers the temporal nature of the 
battery data, which reduces the prediction error of the model. The window sliding structure is shown in Fig. 5.

Evaluation metrics
To evaluate the performance of the model, two evaluation metrics are selected to assess the predictive perfor-
mance of the proposed algorithm, including Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). 
RMSE (Root Mean Square Error) represents the standard deviation of the residual, which is the difference 
between the predicted and the observed values. RMSE is chosen to indicate the dispersion of the sample. For 
non-linear fitting, the lower the RMSE, the better. MAE (Mean Absolute Error) represents the average absolute 
error between the predicted and the observed values. The definitions of RMSE and MAE are shown in Eqs. (7, 8).

(6)x′ = (x− µ)/σ

(7)RMSE =

√

√

√

√

1

n

n
∑

k=1

(yk −
∧
yk)2

Figure 5.  Window slide model.
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where ∧yk repsents Predicted value, yk repsents Predicted value, n presents Total number of records.

Experimental platform and model parameter settings
Experimental platform
The experimental environment in this article is Windows 10 64-bit operating system, based on Python 3.8.4 
environment programming, all model construction and training are based on pytorch version 1.13. The hardware 
is configured as an 11th Gen Intel(R) Core(TM) i7-11800H with 32 GB of memory and a GeForce RTX3060 
Laptop GPU.

Parameter optimization experiments
Because different parameter Settings will directly affect the prediction effect of the model, it is necessary to carry 
out parameter optimization experiments to ensure that the model can achieve the best prediction effect. In order 
to find the optimal model parameters, we conducted comparative experiments on Epoch, Batch_size, Learning 
rate, Dropout parameters. We use relative error, MAE and RMSE to describe the model prediction effect. The 
relative error formula is shown in Eq. (9) The prediction effect and relative error of the model are shown in Figs. 6, 
7, 8, 9, 10, 11, 12 and 13. Because the curve between the forecast and the real value is too close, we use a local 
amplification schematic diagram to represent the gap between the predictive value and the real value curve of a 

(8)MAE =
1

n

n
∑

k=1

∣

∣

∣

∧
yk −yk

∣

∣

∣

Figure 6.  Comparison of different epoch prediction curves.

Figure 7.  Comparison of different epoch errors.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16543  | https://doi.org/10.1038/s41598-023-43858-5

www.nature.com/scientificreports/

certain period of time. The direction of the black arrow refers to a local amplification diagram between the pre-
dictive values and the real values in the rectangular range. Finally we selected the parameters with the best effect.

Table 1 shows the evaluation index of the prediction effect of the model under each parameter. Through the 
parameter comparison optimization experiment, we select the parameter with the smallest MAE and RMSE of 
the model prediction. The parameter settings for the forecast model are shown in the following Table 2:

Results and analysis
The CALCE dataset was used as the simulation data in this study. Voltage, current, and temperature were selected 
as input features of the model and SOC as the output. The performance of the proposed ConvolGRU-MHA SOC 
prediction model was evaluated using the evaluation indicators RMSE and MAE.In order to explore the effect 
of initial values on model predictions, we also used the same FUDS operating conditions to predict the battery 
SOC with initial SOC values of 50% and 80% at 25 degrees Celsius. Figures 14, 15, 16 and 17 compare the pre-
diction curve and the true SOC curve at 80% and 50% of the initial SOC and the prediction error, respectively. 
The black section represents the predicted SOC values of the model proposed in this study and the red section 
representing the actual SOC value. AS is shown in Figs. 16, 17, 18, 19, 20 and 21, in order to explore the effect 

(9)error =
predicted − real

real

Figure 8.  Comparison of different batch size prediction curves.

Figure 9.  Comparison of different batch size errors.
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of temperature on model predictions, we select the data recorded by the FUDS conditions of the battery at 0 °C, 
25 °C and 45 °C to verify the influence of temperature on the prediction effect of the model.

Four groups of prediction models were employed to predict SOC using ConvolGRU, GRU-MHA, Convol-
GRU-Attention, and ConvolGRU-MHA. Predicted results are shown in Fig. 22, and Fig. 23 is a schematic dia-
gram of local magnification. The error between the predicted SOC values and actual values is shown in Fig. 24.
As can be seen from the local magnification diagram in Fig. 23, the prediction effect of using convolution layer 
alone or combining MHA and GRU is inferior to that of using convolution layer, GRU and MHA together. This 
is because the single combination of GRU and GRU cannot fully extract the features of the data, while the com-
bined method used by the three can extract the feature data from different dimensions of the data, and can use 
historical data information to improve the prediction accuracy.

From Figs. 14, 15, 16, 17, 18, 19, 20 and 21, it can be seen that regardless of different temperatures or differ-
ent initial SOC, the model proposed in this paper has good tracking performance and prediction effect, and the 
maximum error is kept within 1%.

AS is shown from Tables 3 and 4, under different initial values and different temperatures, the evaluation 
functions RMSE and MAE can prove that the model can adapt to different temperatures and initial SOC values 
and achieve satisfactory prediction effects.

As shown in Figs. 22 and 23, compared with the ConvolGRU, GRU-MHA, ConvolGRU-Attention, and other 
prediction models, the GRU-MHA and ConvolGRU models exhibit larger fluctuations in both predicted and 
actual SOC values, while the ConvolGRU-Attention model fused with Convolutional and attention mechanisms 
has a smoother and more stable predicted curve. The proposed ConvolGRU-MHA fusion model has a curve that 

Figure 10.  Comparison of different Learning rate prediction curves.

Figure 11.  Comparison of different Learning rate errors.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16543  | https://doi.org/10.1038/s41598-023-43858-5

www.nature.com/scientificreports/

Figure 12.  Comparison of different Dropout prediction curves.

Figure 13.  Comparison of different Dropout errors.

Table 1.  Predicted effected of different parameters.

Parameter Parameter selection MAE RMSE

Epoch

50 0.0651 0.0817

100 0.0123 0.0154

200 0.0053 0.0067

400 0.0427 0.0538

Batch_size

32 0.0053 0.0067

64 0.0639 0.2529

128 0.2130 0.2901

Learning Rate

0.001 0.0102 0.0126

0.0001 0.0053 0.0067

0.00001 0.0418 0.0525

Dropout

0 0.0053 0.0067

0.3 0.0229 0.0287

0.5 0.0120 0.0149
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closely fits the actual value curve, exhibiting better stability. As evident from Fig. 24, the overall error fluctua-
tion of the proposed prediction model is the smallest, and the maximum error is 0.4%, demonstrating that the 
proposed ConvolGRU-MHA prediction model has better SOC prediction performance.

To further compare and analyze the predictive performance of the four algorithms, the Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) were employed for comparison. Table 5 shows the RMSE and MAE 
of different prediction models. Based on Table 5, the proposed method applied in ConvolGRU-MHA model 

Table 2.  Setting of different parameters in the forecast model.

Parameter Settings

Loss function MSE

Epoch 200

Batch_size 32

Learning rate 0.0001

Dropout 0

Optimizer Adam

Figure 14.  Prediction results at 25 °C and initial 50% SOC.

Figure 15.  Prediction error at 25 °C and initial 50% SOC.
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Figure 16.  Prediction results at 25 °C and initial 80% SOC.

Figure 17.  Prediction error at 25 °C and initial 80% SOC.

Figure 18.  Prediction results at 0 °C.
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Figure 19.  Prediction error at 0 °C.

Figure 20.  Prediction results at 45 °C.

Figure 21.  Prediction error at 45 °C.
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Figure 22.  different models SOC prediction results.

Figure 23.  Schematic diagram of local enlargement.

Figure 24.  Prediction error of the comparison model.
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exhibits better predictive indicators than that of other models, such as GRU-MHA, ConvolGRU, and Convol-
GRU-Attention. ConvolGRU-MHA prediction model has a smaller MAE and RMSE than the other three models, 
indicating that the proposed ConvolGRU-MHA prediction model has better SOC prediction performance.

Comparisons with other methods
Table 6 compares the proposed estimation performance to other model-based algorithms. These comparisons 
were conducted under similar or the same condition as this study.

Zhang considered using Kalman filter to modify the estimated result curve and improve the anti-interference 
performance of the network model. Bian Used BLstm to consider historical and future information, the bidi-
rectional model constructed can capture the time information of LIBS from past and future directions, thus 
improving the estimation accuracy; Hannan changed the number of GRU hidden layers to improve the model’s 
prediction performance. However, the feature information of the data is not fully extracted. In this paper, the 
convolution layer, GRU and multi-head attention mechanism are combined to extract data features from the 
two dimensions of time and space, and the data features extracted from the convolutional layer of multi-head 
attention mechanism and GRU are used to calculate the attention weight of variables, which can better identify 
the input variables related to SOC prediction. It can effectively reduce the prediction error of the model.

Conclusions
This study proposed a ConvolGRU-MHA method for predicting the SOC of lithium-ion batteries. Two different 
evaluation functions, namely, MAE and RMSE, were employed to verify the accuracy of this proposed method. 
The predictive performance was also compared with that of GRU-MHA, ConvolGRU, and ConvolGRU-Attention 
models using a public dataset. Results indicate that The results show that the proposed model has the lowest 
RMSE of 0.67% and MAE of 0.53% compared with other predictive models. Compared to the single-fusion 
predictive models ConvolGRU and GRU-MHA, RMSE is reduced about 0.24 and MAE is reduced about 0.19. 
Compared to the ConvolGRU-Attention prediction model, RMSE was reduced 0.0151 and MAE was reduced 
0.0101.The ConvolGRU-MHA model takes advantage of the powerful feature extraction capabilities of convolu-
tional layers and GRU networks’ ability to preserve the temporal data, allowing for comprehensive exploration of 

Table 3.  RMSE and MAE predicted by SOC of different initial SOC.

Initial SOC (%) RMSE MAE

50 0.0138 0.0110

80 0.0067 0.0053

Table 4.  RMSE and MAE predicted by SOC of different temperature.

Temperature SOC ( °C) RMSE MAE

0 0.0111 0.0089

25 0.0067 0.0053

45 0.0138 0.0102

Table 5.  RMSE and MAE predicted by SOC of different models.

Model RMSE MAE

GRU-MHA 0.2466 0.1969

ConvolGRU 0.2438 0.1941

ConvolGRU-Attention 0.0218 0.0154

ConvolGRU-MHA 0.0067 0.0053

Table 6.  RMSE and MAE predicted by SOC of different models.

Ref Method RMSE MAE (%)

Zhang et al22 LSTM-AT-Kalman 1.65% 1.49

Bian et al23 BLSTM-ED / 1.07

Hannan et al[24 GRU 0.96% 0.67

Ours ConvolGRU-MHA 0.67% 0.53
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data features. The proposed model utilizes a multi-head attention mechanism, extracts more important features, 
and achieves effective and accurate prediction.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.
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